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Abstract

A partial word, sequence over a finite alphabet that may have some undefined
positions or holes, is bordered if one of its proper prefixes is compatible with one of
its suffixes. The number theoretical problem of enumerating all bordered full words
(the ones without holes) of a fixed length n over an alphabet of a fixed size k is well
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known. It turns out that all borders of a full word are simple, and so every bordered
full word has a unique minimal border no longer than half its length. Counting
bordered partial words having h holes with the parameters k, n is made extremely
more difficult by the failure of that combinatorial property since there is now the
possibility of a minimal border that is nonsimple. Here, we give recursive formulas
based on our approach of the so-called simple and nonsimple critical positions.

Keywords: Theory of formal languages; Combinatorics on words; Number The-
ory; Partial words; Bordered partial words; Simple border; Simply bordered partial
words; Critical positions.

1 Introduction

The two fundamental concepts of primitive words and bordered words are highly connected
in areas including coding theory, combinatorics on words, formal language theory, and
text algorithms [8, 9, 12, 16]. A primitive word is a sequence that cannot be written as a
power of another sequence, while a bordered word is a sequence such that at least one of
its nonempty proper prefixes is one of its suffixes. For example, abaab is bordered with
border ab while abaabb is unbordered. The numbers of primitive and bordered words of
a fixed length over an alphabet of a fixed size are well known, the number of primitive
words being related to the Möbius function [12]. In 1999, being motivated by a practical
problem on gene comparison, Berstel and Boasson used the terminoloy of partial words for
sequences over a finite alphabet that may have some “do not know” symbols or “holes”
denoted by �’s [2]. For instance, a�bca�b is a partial word with two holes over the three-
letter alphabet {a, b, c}. Actually in 1974, partial words were introduced as strings with
don’t-cares by Fischer and Paterson in [10]. Partial words are a special case of what
are variously called “generalized” or “indeterminate” or “degenerate” strings, which were
first discussed in 1987 by Abrahamson in [1] and which have been studied by several
authors since 2003. Combinatorial properties of partial words have been investigated,
and connections have been made, in particular, with problems concerning primitive sets
of integers, lattices, vertex connectivity in graphs, etc [4].

Primitive partial words were introduced by Blanchet-Sadri in 2005 [3]. Testing whether
or not a partial word is primitive can be done in a way similar to that of words [6]. The
problem of counting primitive partial words with h holes of length n over a k-size alphabet
was initiated in [4]. There, formulas for h = 1 and h = 2 were given through a constructive
approach, and some bounds were also provided for h > 2. Bordered partial words were
also introduced in [3], two types of borders being identified: simple and nonsimple. A
partial word is called unbordered if it does not have any border. For the finite alphabet
{a, b, c}, the partial word a��b has both a simple border ab and a nonsimple border aab,
the first one being minimal, while the partial word a�bc is unbordered (the � symbol
represents an undefined position or a “hole,” and matches every letter of the alphabet).

In this paper, we investigate the problem of enumerating all bordered partial words
with h holes of length n over a k-letter alphabet, a problem that yields some recursive
formulas. It turns out that every bordered full word (one without holes) of length n has a

the electronic journal of combinatorics 18 (2011), #P138 2



unique minimum-length border no longer than bn
2
c. When we allow words to have holes

(even when we allow only one hole), counting bordered partial words is made extremely
more difficult by the failure of that combinatorial property since there is now the possibility
of a minimal border that is nonsimple as in a�bb. Thus, we will restrict our attention
almost exclusively to partial words with one hole. Note that several counting problems
for partial words have been proved to be “hard” by Manea and Tiseanu in [13].

The contents of our paper are as follows: In Section 2, we define the notion of bordered
partial words and discuss some of their properties. The simply bordered partial words are
introduced (partial words that have a minimal border that is simple), and there we also
count the number of bordered full words (every bordered full word turns out to be simply
bordered). In Section 3, we give a formula for the number of simply bordered partial
words of length n with h holes over a k-letter alphabet. Our approach is a recursive
one, dependent only on the number of “perfect squares” (bordered partial words of even
length, that have a minimal border length equal to exactly half their length). In Sec-
tion 4, we introduce the notion of critical positions that once their letters are changed
into holes create borders, and investigate the number of bordered partial words with the
parameters h, k, n and with respect to these positions. Using the two distinct border
notions, depending on the type of border created, the critical positions are divided into
“simple critical positions” and “nonsimple critical positions.” Under these conditions,
the previously defined concept of perfect squares can be expressed in terms of the critical
positions. Using independent recursive formulas, we compute the exact number of simple
and nonsimple critical positions, and in Section 5, we achieve our main goal of calculating
the number of bordered partial words of length n with one hole over an alphabet of size
k answering an open problem of [5].

We first review basic concepts on words and partial words. Let A be a nonempty finite
set called an alphabet. Elements of A are called letters and finite sequences of letters from
A are called (full) words over A. A partial word over A is a sequence of symbols from the
alphabet A enlarged with the hole symbol, denoted by �, that is a sequence of symbols
from A� = A ∪ {�}. Note that every full word is also a partial word. The set of all full
words over A is denoted by A∗, the set of all partial words over A by A∗

�. The empty word
is denoted by ε. We denote by |u| the length of a full or a partial word u (the length of
the empty word is 0). We say that position i in u is part of the domain of u, denoted by
i ∈ D(u), if the symbol at position i, denoted by u(i), is from A, and i belongs to the set
of holes of u, denoted by i ∈ H(u), otherwise. A word over A is a partial word over A
with an empty set of holes. The labelling of the positions of a partial word start at 0.

If u and v are two partial words of equal length, then u is said to be contained in
v, denoted by u ⊂ v, if u(i) = v(i) for all i ∈ D(u). The partial words u and v are
called compatible, denoted by u ↑ v, if there exists a partial word w such that u ⊂ w and
v ⊂ w, in which case we denote by u ∨ v the least upper bound of u and v. For example,
u = aba�a and v = a��ba are compatible, and (u ∨ v) = ababa.

A (strong) period of a partial word u over A is a positive integer p such that u(i) = u(j)
whenever i, j ∈ D(u) and i ≡ j mod p. In such a case, we call u (strongly) p-periodic.
Similarly, a weak period of u is a positive integer p such that u(i) = u(i + p) whenever
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i, i + p ∈ D(u). In such a case, we call u weakly p-periodic. The partial word abb�bbcbb
is weakly 3-periodic but is not strongly 3-periodic. The latter shows a difference between
partial words and full words since every weakly p-periodic full word is strongly p-periodic.
Another difference worth noting is the fact that even if the length of a partial word u is a
multiple of a weak period of u, then u is not necessarily a power of a shorter partial word.
A partial word u is nonperiodic if it is not p-periodic for any positive integer p, p < |u|.

2 Bordered partial words

A nonempty partial word u is unbordered if no nonempty partial words x1, x2, v, w exist
such that u = x1v = wx2 and x1 ↑ x2. If such nonempty words exist, then x exists such
that x1 ⊂ x and x2 ⊂ x and we call u bordered and call x a border of u. It is easy to see
that if u is unbordered and u ⊂ u′, then u′ is unbordered as well. A border x of u is called
minimum if |x| > |y| implies that y is not a border of u.

Note that there are two types of borders. Writing u as x1v = wx2 where x1 ⊂ x
and x2 ⊂ x, we say that x is an overlapping (nonsimple) border if |x| > |v|, and a
nonoverlapping (simple) border otherwise. The partial word u = a��ab is bordered with
the simple border ab and nonsimple border aab, the first one being minimal, while the
partial word ab�c is unbordered. We have that 2 is a simple border length of u = a��ab
and 3 is a nonsimple border length of u. Here the minimal border length, which is 2, is
simple.

Proposition 1. Let u be a partial word.

1. If 0 < l < |u|, then u has a border of length l if and only if u has weak period |u|− l.

2. If 0 < l ≤ b |u|
2
c, then u has a border of length l if and only if u has strong period

|u| − l.

Proof. Set |u| = n. For the backward implication of Statement 1, assume that u has
weak period n − l. Write u as u = u1u2 . . . udx where for 1 ≤ i ≤ d, |ui| = n − l,
|x| = j = n mod (n− l) and d = b n

n−l
c. Note that ui ↑ ui+1 for all 1 ≤ i < d and x

must be compatible with the prefix y of ud of length j. We may also assume that x is not
empty since otherwise u would have the border (u1u2 . . . ud−1) ∨ (u2u3 . . . ud) of length l.

We begin with the case when d = 1, that is, u = u1x. Obviously, x ∨ y is a border of
length l because x is compatible with y. Now suppose d ≥ 2. In this case, a border of
length l is a nonsimple border. Let v, w be the prefix and suffix of u of length l, that is,
v = u1u2 . . . ud−1y and w = u2u3 . . . udx:

u = u1 u2 u3 . . . ud x
u1 u2 . . . ud−1 y

Since ui ↑ ui+1 for 1 ≤ i < d and x ↑ y, it follows that v ↑ w.
For the forward implication, it is easy to see that if u has a border of length l ≤ bn

2
c,

then u has strong period n− l, and thus weak period n− l. If bn
2
c < l < n, then the result

follows similarly as above.
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Note that for Statement 2, since any strong period is a weak period, we have that if
u has strong period n− l, then u has a border of length l.

Note that the partial word u = aaa�aba has a border of length 5 but is not strongly
2-periodic. Hence the bound on l in Statement 2 of Proposition 1.

We call a bordered partial word u simply bordered if a minimal border x exists satisfying
|u| ≥ 2|x|.

Proposition 2 ([7]). Let u be a nonempty bordered partial word. Let x be a minimal
border of u, and set u = x1v = wx2 where x1 ⊂ x and x2 ⊂ x. Then the following hold:

1. The partial word x is unbordered.

2. If x1 is unbordered, then u = x1u
′x2 ⊂ xu′x for some u′.

Note that Proposition 2 implies that if u is a full bordered word, then x1 = x is
unbordered. In this case, u = xu′x where x is the minimal border of u. Hence a bordered
full word is always simply bordered.

Note that because borderedness in partial words is defined via containment, it does
not make sense to talk about the minimal border of a partial word, there could be many
possible borders of a certain length.

We will denote by Uh,k(n) (respectively, Bh,k(n)) the number of unbordered (respec-
tively, bordered) partial words of length n with h holes over a k-letter alphabet. Clearly,

Bh,k(n) =

(
n

h

)
kn−h − Uh,k(n), n ≥ h

The problem of enumerating all unbordered full words of length n over a k-letter alphabet
yields to a conceptually simple recursive formula [11, 17, 15]: U0,k(0) = 1, U0,k(1) = k,
and for n > 0,

U0,k(2n) = kU0,k(2n− 1)− U0,k(n)

U0,k(2n + 1) = kU0,k(2n)

These equalities can be seen from the fact that if a word has odd length 2n + 1, then it is
unbordered if and only if it is unbordered after removing the middle letter. If a word has
even length 2n, then it is unbordered if and only if it is obtained from an unbordered word
of length 2n− 1 by adding a letter next to the middle position unless doing so creates a
word that is a perfect square.

Using these formulas and Proposition 2, we can easily obtain a formula for counting
bordered full words. The number of full words of length n over a k-letter alphabet that
have a minimal border of length l is

U0,k(l)k
n−2l

Then we have that

B0,k(n) =

bn
2
c∑

l=1

U0,k(l)k
n−2l
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When we allow words to have holes, counting bordered partial words is made more
difficult since they are not necessarily simply bordered.

We end this section with two propositions that give properties for bordered partial
words with one hole that will be useful in the sequel.

Proposition 3. Let u be a partial word with one hole that has a minimal border that
is nonsimple, and let x, y denote a prefix and a suffix of u such that x ↑ y. Then both
‖H(x)‖ = ‖H(y)‖ = 1.

Proof. Let x, y denote a prefix and a suffix of u such that x ↑ y with the length of x being
minimal. Assume now that y is a full word and that x contains �. We let x = x1x2 and
y = y1y2 = x2y

′ such that x1 ↑ y1 and x2 ↑ y2 and ‖H(x1)‖ = 1. Because x2, y2 are full
words it follows that x2 = y2. We can now write x as x = x′

2y
′′ where x2 ↑ x′

2 and y′ ↑ y′′.
This implies that u has a prefix x′

2 and a suffix y2 that are compatible, that is, u has a
border shorter than |x|, which implies a contradiction.

Proposition 4. Let u be a nonperiodic bordered partial word with one hole. There exists
a unique integer l with dn

2
e ≤ l < n such that u has a border of length l.

Proof. First, a result of [4] states that if x, y and z are partial words such that |x| = |y| > 0,
then xz ↑ zy if and only if xzy is weakly |x|-periodic. Second, a result of [2] states that if
a partial word x with one hole is weakly p-periodic and weakly q-periodic and |x| ≥ p+ q,
then x is gcd(p, q)-periodic. Now, let us assume that there exist more than one border
of u of length at least

⌈
n
2

⌉
. Hence, we can write u = x1y1zy2x2 with x1y1z ↑ zy2x2 and

x1y1zy2 ↑ y1zy2x2, where |x1| = |x2| and |y1| = |y2|. Here l = |x1y1z| and l+|y2| are lengths
of the borders. From x1y1z ↑ zy2x2, we get that u is weakly |x1y1|-periodic. Also, from
x1y1zy2 ↑ y1zy2x2 we get that u is weakly |x1|-periodic. Since u is weakly |x1|-periodic and
weakly |x1y1|-periodic, and |u| ≥ |x1|+ |x1y1|, we have that u is gcd(|x1|, |x1y1|)-periodic,
a contradiction with the fact that u is nonperiodic.

3 Counting simply bordered partial words

When counting bordered partial words, we cannot assume that the length of a minimal
border x satisfies |x| ≤ bn

2
c, as there is now the possibility that a partial word has a

minimal nonsimple border. The bordered partial words where this inequality is satisfied
are the simply bordered ones.

Let Sh,k(n) be the number of simply bordered partial words of length n with h holes
over a k-letter alphabet, and let Sh,k(n) be the set of such partial words. Clearly if h > n,
then Sh,k(n) = 0. Note that S0,k(n) = B0,k(n). In this section we give a formula for
Sh,k(n).

The case when n is odd is easy to deal with. We can obtain all simply bordered partial
words of odd length just by inserting a letter or a � in the middle position of a simply
bordered word of even length. If the inserted symbol is a letter, then kSh,k(n−1) distinct
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words in Sh,k(n) can be generated. The case when we insert a � produces Sh−1,k(n − 1)
words. Thus,

Sh,k(n) = kSh,k(n− 1) + Sh−1,k(n− 1), n odd

A similar argument gives a recurrence relation for the number of partial words that
are not simply bordered. Let Nh,k(n) be the number of partial words with h holes, of
length n, over a k-letter alphabet that are not simply bordered. Obviously we can find
the value of this function by subtracting the value of Sh,k(n) from the total number of
partial words with those parameters (that is, Nh,k(n) = (n

h
)kn−h − Sh,k(n)). We have

N0,k(n) = U0,k(n)

since a full word that is not simply bordered is an unbordered full word. It is easy to
see that N1,k(0) = 0, N1,k(1) = 1, N1,k(2) = 0, and for h > 1 that Nh,k(1) = 0 and
Nh,k(2) = 0. Now, for h > 0, the following formula holds:

Nh,k(n) = kNh,k(n− 1) + Nh−1,k(n− 1), n odd

Although the approach for the case when n = 2m is similar, it yields a more compli-
cated formula. We construct the words in Sh,k(2m) by inserting two symbols of A ∪ {�}
into simply bordered partial words of length 2m− 2 with h, h− 1 or h− 2 holes.

We write w → w′, if w′ = a0a1 . . . a2m−1, w = b0b1 . . . b2m−3, ai = bi for i ∈ [0..m− 2],
and ai+2 = bi for i ∈ [m− 1..2m− 3]:

w′ = a0 a1 . . . am−2 am−1 am am+1 am+2 . . . a2m−1

w = b0 b1 . . . bm−2 bm−1 bm . . . b2m−3

We denote by Wh,k(2m) the set of partial words w′ of length 2m with h holes over a
k-letter alphabet A such that, for some w ∈ Sh′,k(2m − 2) we have w → w′, where
h′ ∈ {h, h− 1, h− 2}, and by Wh,k(2m) the cardinality of Wh,k(2m).

We analyze three cases, depending on whether am−1 and am are letters of A or �’s.
Case 1. am−1 ∈ A and am ∈ A

Since am−1 and am can be any letters, this case creates k2Sh,k(2m − 2) new words in
Sh,k(2m).

Case 2. am−1 = � and am = �
Since w has h− 2 holes, this case yields Sh−2,k(2m− 2) words.

Case 3. am−1 ∈ A and am = �, or am−1 = � and am ∈ A
The two cases are identical and both create kSh−1,k(2m− 2) words in Sh,k(2m) since

we can pick any letter in the alphabet and w has h− 1 holes.
This gives us a total of

Wh,k(2m) = k2Sh,k(2m− 2) + 2kSh−1,k(2m− 2) + Sh−2,k(2m− 2)

Now, let Sh,k(n, l) (respectively, S ′
h,k(n, l)) represent the number of partial words with

h holes of length n over a k-letter alphabet that have a border of length l (respectively, a
minimal border of length l), and by Sh,k(n, l) and S ′

h,k(n, l) respectively the sets of such
words.
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Proposition 5. The following equality holds for h ≥ 2, k ≥ 2 and m ≥ 1:

Wh,k(2m) =
m−1∑
l=1

S ′
h,k(2m, l)

In other words, Wh,k(2m) represents the total number of simply bordered partial words
with h holes of length 2m over a k-letter alphabet, which have a minimal border x where
1 ≤ |x| < m.

Proof. Pick w ∈ Wh,k(2m). From the definition of Wh,k(2m), it follows that there exists
u ∈ Sh′,k(2m−2) for some h′ ∈ {h, h−1, h−2} such that u → w. Since u ∈ Sh′,k(2m−2),
there must exist l < m such that u has a minimal border of length equal to l. Thus,
w ∈ S ′

h,k(2m, l) and obviously w ∈
⋃m−1

l=1 S ′
h,k(2m, l).

Now pick w ∈
⋃m−1

l=1 S ′
h,k(2m, l). Say w has a minimal border of length l < m. If we

take out the two middle positions in w and denote the resulting word by u, we have that
u → w and u ∈ Sh′,k(2m−2) for some h′ ∈ {h, h−1, h−2}. Furthermore, since l < m, the
two middle positions we eliminated from w do not affect the length of a minimal border
of u, which will still have length l. Since u → w it follows that w ∈ Wh,k(2m).

It is obvious that for l 6= l′ it holds that S ′
h,k(2m, l) ∩ S ′

h,k(2m, l′) = ∅, since all words
in the former set have a minimal border of length l while the latter has only words with
minimal border of length l′. Note that unbordered partial words of length 2m− 2 cannot
create any bordered partial words with a border of length less than or equal to m− 1.

We may now say that

Wh,k(2m) = ‖
m−1⋃
l=1

S ′
h,k(2m, l)‖ =

m−1∑
l=1

S ′
h,k(2m, l)

which concludes our proof.

Corollary 1. The following equality holds for h ≥ 2, k ≥ 2 and m ≥ 1:

Sh,k(2m) = k2Sh,k(2m− 2) + 2kSh−1,k(2m− 2) + Sh−2,k(2m− 2) + S ′
h,k(2m, m)

Corollary 2. The following equality holds for h ≥ 2, k ≥ 2 and m ≥ 1:

Nh,k(2m) = k2Nh,k(2m− 2) + 2kNh−1,k(2m− 2) + Nh−2,k(2m− 2)− S ′
h,k(2m, m)

Proof. Note that Nh,k(2m) = (2m
h

)k2m−h−Sh,k(2m). The result easily follows from Corol-

lary 1 and the fact that (2m
h

) = (2m−2
h−2

) + 2(2m−2
h−1

) + (2m−2
h

).

In the next section, we will express S ′
h,k(2m, m) in terms of “critical pairs.”
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4 Counting bordered partial words by critical pairs

In this section, we count the simple critical pairs determined by a word of length n, as
well as the nonsimple ones. Most of the recurrences obtained are for full words, since our
goal, see Section 5, is to calculate the number of bordered partial words with one hole by
critical pairs.

We start with a definition.

Definition 1. A partial word u is said to generate a partial word v if v ⊂ u and ‖H(u)‖+
1 = ‖H(v)‖. For the unique i with u(i) ∈ A and v(i) = �, we say v is generated by
redefining Position i or letter u(i) in u.

For example, the word ababb generates �babb, a�abb, ab�bb, aba�b, abab� by replacing
a letter with a hole. Only a�abb is unbordered. Furthermore, a�abb can be obtained as
well from aaabb.

For an alphabet of size k and a partial word v with h holes, there are hk words that
generate v. It is easy to see that if v is unbordered and is generated by a partial word
u, then u is unbordered as well. Hence, every unbordered word over a k-letter alphabet
with h holes can be generated by hk unbordered words with h− 1 holes each.

Any given partial word of length n with h − 1 holes can generate n − h + 1 partial
words each with h holes. Given an unbordered word of length n with h−1 holes, we wish
to determine how many of the n− h + 1 words that it generates will also be unbordered.
Note that the words generated by an unbordered word may be bordered. Thus, to find
Uh,k(n), it suffices to count the total number of unbordered words with h holes generated
by each of the unbordered words with h− 1 holes, and divide by hk.

Definition 2. Given a partial word u and Position i, 0 ≤ i < |u|, we say that the pair
(u, i) is a critical pair for the border length l if u does not have a border of length l, but
the word generated by redefining Position i in u has a border of length l. We say (u, i)
is a simple critical pair if it is a critical pair for a simple border length, and a nonsimple
critical pair if it is a critical pair for a nonsimple border length and is not a critical pair
for any simple border length.

For example, consider the word u = abaababb. We have that (u, 0), (u, 2), (u, 6), (u, 7)
are simple critical pairs and (u, 3) is a nonsimple critical pair. For the rest of the paper,
whenever we fix a word u, we will refer to u(i) as the critical letter and i as the critical
position of the critical pair (u, i).

Proposition 6. Let u be a partial word with prefix x of length l and suffix y of length l,

where l <
⌈
|u|
2

⌉
.

• A pair (u, i), with i in the prefix x, is a simple critical pair for the border length l
if and only if x = x1u(i)x2 and y = y1u(n − i − 1)y2 where x1 ↑ y1, x2 ↑ y2, and
u(i) 6 ↑ u(n− i− 1).
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• A pair (u, i), with i in the suffix y, is a simple critical pair for the border length l
if and only if x = x1u(n − i − 1)x2 and y = y1u(i)y2 where x1 ↑ y1, x2 ↑ y2, and
u(i) 6 ↑ u(n− i− 1).

Note that we allow x1, x2, y1 and y2 to be empty.

Definition 3. Let Ch,k(n, l) be the set of pairs (u, i) such that u is an unbordered partial
word of length n over a k-letter alphabet with h holes, where (u, i) is a critical pair for the
border length l but (u, i) is not a critical pair for any border length less than l. Denote by
Ch,k(n, l) the cardinality of Ch,k(n, l). Let

Ch,k(n) =
n−1⋃
l=1

Ch,k(n, l) and Ch,k(n) =
n−1∑
l=1

Ch,k(n, l)

Note that, if u is an unbordered word of length n over an alphabet of size k with h−1
holes, and v is the word generated by redefining Position i in u, then v is bordered if and
only if (u, i) ∈ Ch−1,k(n).

For example, when n = 5, we have U0,2(5) = 12 and U1,2(5) = 4. The following are
the unbordered words which begin with an a:

Unbordered word u Pairs which are Generated word v
with no hole not critical with one hole

u1 = aaaab none none
u2 = aaabb (u2, 1) a�abb
u3 = aabbb (u3, 3) aab�b
u4 = aabab (u4, 3) aab�b
u5 = abbbb none none
u6 = ababb (u6, 1) a�abb

Here,

C0,2(5, 1) = {(u1, 0), (u2, 0), (u3, 0), (u4, 0), (u5, 0), (u6, 0),
(u1, 4), (u2, 4), (u3, 4), (u4, 4), (u5, 4), (u6, 4),
(u1, 0), (u2, 0), (u3, 0), (u4, 0), (u5, 0), (u6, 0),
(u1, 4), (u2, 4), (u3, 4), (u4, 4), (u5, 4), (u6, 4)}

C0,2(5, 2) = {(u1, 1), (u4, 1), (u5, 3), (u6, 3),
(u1, 1), (u4, 1), (u5, 3), (u6, 3)}

C0,2(5, 3) = {(u1, 2), (u4, 2), (u5, 2), (u6, 2),
(u1, 2), (u4, 2), (u5, 2), (u6, 2)}

C0,2(5, 4) = {(u1, 3), (u2, 2), (u2, 3), (u3, 1), (u3, 2), (u5, 1),
(u1, 3), (u2, 2), (u2, 3), (u3, 1), (u3, 2), (u5, 1)}

where u denotes the complement of u, and C0,2(5) = 52 (here u(i) = a if u(i) = b, and
u(i) = b if u(i) = a).
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Proposition 7. The following equality holds for h ≥ 1, k ≥ 2 and n ≥ h:

Uh,k(n) =
(n− h + 1)Uh−1,k(n)− Ch−1,k(n)

hk

Proof. Redefining Position i in an unbordered word u with h − 1 holes of length n over
a k-letter alphabet will generate an unbordered word if and only if (u, i) is not a critical
pair. Since each unbordered word of length n with h − 1 holes has n − h + 1 letters,
there are (n − h + 1)Uh−1,k(n) − Ch−1,k(n) pairs which are not critical. However, each
unbordered word with h holes will be generated hk times.

Furthermore it is easy to get a formula for S ′
1,k(2m, m).

Proposition 8. The following equality holds for k ≥ 2 and m ≥ 1:

S ′
1,k(2m, m) =

C0,k(2m, m)

k − 1

Proof. A partial word, u, of length 2m, with one hole and a minimal border of length m
can be generated by exactly k full words: one perfect square and k−1 unbordered partial
words. We have that u will be generated by an unbordered partial word if and only if
the word which generates it is in a critical pair in C0,k(2m, m) with the position in the
critical pair taking any value from the remaining k − 1 letters of the alphabet, that do
not determine a border of length m.

To determine Ch,k(n), it will be useful to distinguish those pairs which are simple
critical and those which are nonsimple critical.

Definition 4. Let Ch,k(n, S) denote the set of simple critical pairs in Ch,k(n) and Ch,k(n, N)
the set of nonsimple critical pairs in Ch,k(n).

The following equations, which are consequences of the definition, hold:

Ch,k(2m, S) =
⋃m

l=1 Ch,k(2m, l)
Ch,k(2m + 1, S) =

⋃m
l=1 Ch,k(2m + 1, l)

Ch,k(2m, N) =
⋃2m−1

l=m+1 Ch,k(2m, l)

Ch,k(2m + 1, N) =
⋃2m

l=m+1 Ch,k(2m + 1, l)

Observe that
Ch,k(n) = Ch,k(n, S) + Ch,k(n, N)

where Ch,k(n, S) (respectively, Ch,k(n, N)) denotes the size of Ch,k(n, S) (respectively,
Ch,k(n, N)). Also, we have that Ch,k(1, S) = Ch,k(1, N) = 0, as well as Ch,k(2, S) =
2Uh,k(2) and Ch,k(2, N) = 0.

Note that for a simple critical pair, the position appears in either the prefix or the
suffix determined by the simple border length, but not in both the prefix and the suffix.
Since, for any given length, we will consider both a word and its reversal, we make the
following remark.
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Remark 1. Exactly half of the simple critical pairs are critical in a prefix, and half in a
suffix.

For the unbordered word u = ababb, (u, 0) is critical in a prefix while (u, 3) and (u, 4)
are critical in a suffix, and for the unbordered word u = bbaba, (u, 0) and (u, 1) are critical
in a prefix while (u, 4) is critical in a suffix.

For a nonsimple critical pair (u, i) where u is a full word, i appears in exactly one
nonsimple border because the word generated by redefining Position i will not have a
simple border according to Definition 2, and thus, will be a nonperiodic bordered partial
word with one hole. In this case, by Proposition 4, the nonsimple border length l is
unique. In addition, for that nonsimple border length l, Position i will appear in both the
prefix and the suffix of length l because a word with one hole will have the hole in both
the prefix and the suffix of that length, according to Proposition 3.

Nonsimple critical pairs may be critical in only the prefix, only the suffix, or both. To
illustrate this, if u1 = abbbb, then (u1, 1) is a nonsimple critical pair which is critical only
in the suffix

a0 a1 a2 a3

a b b b
b b b b
a1 a2 a3 a4

But if u2 = abccc, then (u2, 1) is a nonsimple critical pair which is critical only in both
the prefix and the suffix

a0 a1 a2 a3

a b c c
b c c c
a1 a2 a3 a4

Assume an unbordered full word u = a0a1 . . . an−1 of length n has a nonsimple critical
pair (u, i) for the border length l. Consider the letters al−n+i, which is in the prefix and
corresponds to ai in the suffix, and an−l+i, which is in the suffix and corresponds to ai in
the prefix. Figure 1 denotes this situation (if ai = al−n+i we say that (u, i) is only critical
in the prefix, and if ai = an−l+i we say that (u, i) is critical only in the suffix). In the
figure, the prefix of length l of u, a0 . . . al−1, has been aligned with the suffix of length l
of u, an−l . . . an−1.

Figure 1: Nonsimple critical pair

Proposition 9. Considering all full words of a given length over a k-letter alphabet, 2
k

of
the nonsimple critical pairs are critical in only the prefix or the suffix.
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Proof. Referring to Figure 1, the factor of the prefix preceding al−n+i agrees with the factor
of the suffix preceding ai, so we have a0 . . . al−n+i−1 = an−l . . . ai−1. The factor of length
l− n + i of the prefix preceding ai, which is equal to an−l . . . ai−1, is equal to the factor of
length l− n + i of the suffix preceding an−l+i, and thus, an−l . . . ai−1 = a2n−2l . . . an−l+i−1.
This gives us

a0 . . . al−n+i−1 = a2n−2l . . . an−l+i−1

Similarly, al−n+i+1 . . . a2l−n−1 = an−l+i+1 . . . an−1. It must be that al−n+i 6= an−l+i, or u
would have a border of length 2l − n with prefix a0 . . . a2l−n−1 and suffix a2n−2l . . . an−1.
Hence, given distinct letters al−n+i and an−l+i, we have (u, i) critical in only the prefix
or the suffix for exactly two letters of the k-letter alphabet (that is when ai = al−n+i or
ai = an−l+i).

4.1 Counting simple critical pairs

To count the simple critical pairs determined by a word of length n, we can count the
critical pairs for the border lengths 1 through bn

2
c.

Proposition 10. The equality C0,k(2m+1, S) = kC0,k(2m, S) holds for m ≥ 1 and k ≥ 2.

In Proposition 11, we will determine simple critical pairs in perfect squares. To il-
lustrate our ideas, if v1 = abccc then (v1, 0) is critical in the prefix of length 1, (v1, 4) is
critical in the suffix of length 1, and (v1, 1) is critical in both the prefix and suffix of length
4. For the word w1 = v1v1 = abcccabccc, only (w1, 0) and (w1, 9) are simple critical pairs.
Now if v2 = abbbb then (v2, 0) is critical in the prefix of length 1, (v2, 4) is critical in the
suffix of length 1, (v2, 3) is critical in the suffix of length 2, (v2, 2) is critical in the suffix
of length 3, and (v2, 1) is critical in the suffix of length 4. For w2 = v2v2 = abbbbabbbb,
(w2, 0), (w2, 6), (w2, 7), (w2, 8) and (w2, 9) are simple critical pairs.

Proposition 11. The following equality holds for k ≥ 2 and m ≥ 1:

C0,k(2m, S) = kC0,k(2m− 1, S)− C0,k(m, S)− 2

k
C0,k(m, N) + C0,k(2m, m)

Proof. Consider the unbordered full word u = a0 . . . a2m−1, of length 2m, and u′ =
a0 . . . am−1am+1 . . . a2m−1 of length 2m− 1. The pair (u, i) is simple critical if and only if
by redefining Position i, u generates a word with a minimal simple border of length m, or
(u′, i) is a simple critical pair when 0 ≤ i < m or (u′, i− 1) is a simple critical pair when
m < i < 2m. There are C0,k(2m, m) pairs for which a redefined position generates words
with minimal borders of length m. For every unbordered word u′ of length 2m − 1, we
can construct k words of length 2m which will all be unbordered except for the perfect

squares. Thus,
m−1∑
l=1

C0,k(2m, l) equals kC0,k(2m−1, S) plus C0,k(2m, m) minus the number

of simple critical pairs in perfect squares of length 2m.
Let v be an unbordered full word of length m and w = vv. Position i, 0 ≤ i < m,

where (w, i) is a simple critical pair, will create a critical pair (v, i) only in the prefix of
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the same length of v. Similarly, Position i, m < i < 2m, where (w, i) is a simple critical
pair, will create a critical pair (v, i−m) only in the suffix of v of that length. In addition,
a position which is critical only in a prefix of v will determine a simple critical pair in the
prefix of w of the same length, and a position which is critical only in a suffix of v will
create a simple critical pair in the suffix of w of that length.

Thus, the number of simple critical pairs in perfect squares of length 2m equals the
number of pairs that are critical only in a prefix or a suffix of an unbordered word of
length m.

To illustrate ideas of the proof of Proposition 12, first u = u1u2 = (abaab)(abaab) is
bordered with a border length 2, while u′ = u′

1u2 = (aaaab)(abaab) is unbordered. In
the latter example, (u′, 1) is simple critical for the border length 2. Here, u2 is bordered
with a border length 2 < 5. Now u = u1u2 = (aaabb)(aaaab) is bordered with a border
length 4, while u′ = u′

1u2 = (aaacb)(aaaab) is unbordered. Here, (u2, 3) is critical in the
prefix and not critical in the suffix for the border length 4, and (u′, 3) is simple critical
for that border length. Last u = u1u2 = (aaaab)(aaacb) and u′ = u′

1u2 = (aaabb)(aaacb)
are unbordered. Here, (u2, 3) is critical in both the prefix and suffix for the border length
4, and (u, 3) and (u′, 3) are critical for the border length 5.

Proposition 12. The following equality holds for k ≥ 2 and m ≥ 2:

C0,k(2m, m) = 2(k − 1)(mU0,k(m)− 1

2
C0,k(m, S)− 1

k
C0,k(m, N))

Proof. Consider a full word of length 2m over a k-letter alphabet, u = a0 . . . a2m−1. We
wish to determine when (u, i) ∈ C0,k(2m, m), for all i ∈ [0..2m − 1]. To simplify this, we
will count only the pairs (u, i) ∈ C0,k(2m, m) with i ∈ [0..m− 1] and multiply by 2 (refer
to Remark 1). We have (u, i) ∈ C0,k(2m, m) if and only if u is unbordered, (u, i) is a
critical pair for the border length m, but (u, i) is not a critical pair for any border length
less than m. This is equivalent to having all three of the following conditions hold:

1. (u, i) is not critical for any border length less than m

2. u does not have a border of length less than or equal to m

3. u = vaiwvam+iw for some full words v, w with |v| = i, |w| = m−i−1, and ai 6= am+i

Therefore, to count C0,k(2m, m) it suffices to count the number of words u for which the
above three conditions hold.

Define u1 = vaiw and u2 = vam+iw. Note that, if u2 is bordered with a border length
l < m, then it must be the case that either u has also a border of length l or (u, i) is
a critical pair for the border length l. So, for Conditions 1 and 2 to hold, u2 must be
unbordered. Thus, to count C0,k(2m, m), we may count the pairs of unbordered words
u2 and letters ai 6= am+i, and then subtract the number of those pairs which still cause
u to violate either Condition 1 or Condition 2. Given an index i, the number of pairs of
unbordered words u2 and letters ai 6= am+i is equal to (k − 1)U0,k(m).

Now we have the following additional condition for u to be constructed by an unbor-
dered word u2 and letter ai 6= am+i, but for u to still violate Condition 1 or 2:
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4. (u2, i) ∈ C0,k(m, l) is critical in the prefix and not critical in the suffix (note that
Position i in u2 is Position m + i in u)

First, we prove that if (u2, i) ∈ C0,k(m, l) is critical in the prefix but not the suffix, then
u violates either Condition 1 or 2. Considering the prefix and suffix of u of length l, it
must be that either u has a border of length l or (u, i) is critical for l. Now, assume that
u is bordered with a border of length l < m. For this not to be a border of u2, it must be
that (u2, i) ∈ C0,k(m, l) is a critical pair only in the prefix, because the suffixes of u and
u2 of length l are equivalent. Assuming that (u, i) is critical for a border length l < m,
by the same reasoning, (u2, i) ∈ C0,k(m, l) is a critical pair only in the prefix of length l.

By Proposition 9, the number of pairs (u2, i) for which Condition 4 holds is

1

2
C0,k(m, S) +

1

k
C0,k(m, N)

Thus,

C0,k(2m, m) = 2(k − 1)(mU0,k(m)− 1

2
C0,k(m, S)− 1

k
C0,k(m, N))

Corollary 3. The following equality holds for k ≥ 2 and m ≥ 2:

C0,k(2m, S) = kC0,k(2m− 1, S)− kC0,k(m, S)− 2C0,k(m, N) + 2(k − 1)mU0,k(m)

Proof. Follows immediately from Proposition 11 and Proposition 12.

4.2 Counting nonsimple critical pairs

To count the nonsimple critical pairs determined by a word of length n, we can count the
critical pairs for the border lengths bn

2
c+1 through n−1. Recall that if a position in a full

word is critical for a minimal nonsimple border length, then it is critical for exactly one
nonsimple border length. This is due to the fact that the word generated by redefining
that position will have a unique nonsimple border.

If v is the word generated by redefining a position from a nonsimple critical pair of a
full word u of length n, for a border length n− l, 0 < l ≤ dn

2
e− 1, then, by Proposition 1,

v is weakly l-periodic with one hole. For q = dn
l
e − 1 and r = n − ql, note that q ≥ 2

and 0 < r ≤ l. We claim that for some full words v1, v2, w, u must be of the form
(v1av2w)q1(v1bv2w)q2(v1cv2w)q3v1cv2, where a, b, c are distinct letters, q1 > 0, q2 ∈ {0, 1},
q3 ≥ 0, q = q1 + q2 + q3, l = |v1av2w| and r = |v1cv2|. In this form, only the positions
determined by the letters a, b, c can be part of nonsimple critical pairs, depending on the
values of q1, q2 and q3.

To see this, consider first the case where v = u1wu2w . . . uqwuq+1 with |u1w| = |u2w| =
· · · = |uqw| = l, |u1| = |u2| = · · · = |uq+1| = r, and ui = v1�v2 for some 1 ≤ i ≤ q + 1.
Then there exist letters of the alphabet a, c such that uj = v1av2 for 1 ≤ j < i, and
uj = v1cv2 for i < j ≤ q + 1. Note that a 6= c (otherwise, u would have a simple border
of length r < n− l). There are three possibilities to consider:
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• If i = 1, then (u, |v1|) is a simple critical pair, a contradiction.

• If i = q + 1, then (u, ql + |v1|) is a simple critical pair, a contradiction.

• If 1 < i < q + 1, then there are three possibilities:

– If the hole corresponds to an a in u, then q1 = i > 1, q2 = 0, q3 = q − i ≥ 0.

– If the hole corresponds to a c in u, then q1 = i−1 > 0, q2 = 0, q3 = q−i+1 > 0.

– If the hole corresponds to a b in u, distinct from both a and c, then q1 = i−1 >
0, q2 = 1, q3 = q − i ≥ 0.

Consider now the case where v = wu1wu2 . . . wuqw where |wu1| = |wu2| = · · · = |wuq| = l,
|w| = r, and ui = v1�v2 for some 1 ≤ i ≤ q. In this case, u would have a simple border of
length r < n− l.

Proposition 13. Let v1, v2, w be full words, q1 > 0, q2 ∈ {0, 1}, q3 ≥ 0, and a, b, c
distinct letters. Then the word u′ = v1av2wv1cv2 is unbordered if and only if the word
u = (v1av2w)q1(v1bv2w)q2(v1cv2w)q3v1cv2 is unbordered.

Proof. Let l = |v1av2w|, r = |v1cv2|, and i = |v1|. A simple border of u′ will be a simple
border of u, so if u′ is bordered, then u is bordered. First, let us assume that q2 = 0. If u
has a border of length smaller than |v1av2|, then u′ has a border of the same length. And
if u has a border of length at least |v1av2|, then for the last a, u((q1 − 1)l + i), appearing
in the prefix, the factor of the prefix of length strictly less than r + l and beginning with
v1av2 corresponds to a factor of the suffix of the same length, ending with v1cv2. These
factors represent a border of v1av2wv1cv2.

Now, let us assume that q2 = 1. Given a simple border length of u, at least one of the
prefix or suffix must be strongly l-periodic. If u has a simple border, where u(q1l + i) = b
is in the prefix, then the corresponding position in the suffix is a b. But then, the last a,
u((q1 − 1)l + i), in the prefix, must also correspond to a b in the suffix, since the suffix is
strongly l-periodic. Similarly, if u(q1l + i) = b were to appear in the suffix, then the first
c, u((q1 +1)l+ i), in the suffix, must also correspond to a b. Now, if u has a simple border
in which u(q1l + i) = b does not appear, then we proceed as in the case where q2 = 0.

In addition, we have that, if v1av2wv1cv2 is unbordered, then v1av2v1cv2 is unbordered.
This is because any simple border of v1av2v1cv2 must be a border of v1av2wv1cv2. Thus, if
we can count the unbordered full words of the form v1av2wv1cv2 for a certain r = |v1cv2|
and l = |v1av2w|, then we can count the number of ways to construct u so it has critical
pairs for the border length n− l.

Definition 5. Let k ≥ 2, n > 0 and r > 0 be integers.

• If n ≤ r, then F0,k(n, r) = 0.

• If n > r, then set n = l + r for some l > 0. Then F0,k(n, r) is the number of
unbordered full words of length n that have a prefix v1av2 and a suffix v1cv2 of length
r, where a, c are distinct letters of the alphabet of size k, and v1, v2 are full words.
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Proposition 14. The following equality holds for k ≥ 2, n ≥ 2, 0 < l ≤ dn
2
e − 1, where

q = dn
l
e − 1 and r = n− ql:

C0,k(n, n− l) = k(q − 1)F0,k(l + r, r)

Therefore,

C0,k(n, N) =

dn
2
e−1∑

l=1

k(q − 1)F0,k(l + r, r)

Proof. Consider the unbordered full word

u = (v1av2w)q1(v1bv2w)q2(v1cv2w)q3v1cv2

of length n, where q1 > 0, q2 ∈ {0, 1}, q3 ≥ 0, q = q1+q2+q3, l = |v1av2w| and r = |v1cv2|.
Set |v1| = i. When q1 = 1 and q2 = 0, we have

u = v1u(i)v2w(v1cv2w)q3v1u(ql + i)v2

Since the first a, u(i), and the last c, u(ql + i), determine the simple critical pairs (u, i)
and (u, ql + i) for the border length r (here r < n− l), only the first c, u(l + i), will create
a nonsimple critical pair for the border length n− l in the suffix. The prefix and suffix of
u of length n− l are respectively:

v1av2(wv1cv2)
q3

v1cv2(wv1cv2)
q3

When q2 = 0 and q3 = 0, we have u = (v1av2w)q1v1cv2 and only the last a, u((q− 1)l + i),
will determine a critical pair for the border length n− l in the prefix:

(v1av2w)q1−1v1av2

(v1av2w)q1−1v1cv2

When q1 > 1, q2 = 0 and q3 > 0, we have u = (v1av2w)q1(v1cv2w)q3v1cv2 and both the
last a, u((q1 − 1)l + i), in the prefix, and the first c, u(q1l + i), in the suffix, will create
critical pairs for the border length n− l (in this case, q1 may assume any of the values 2
through q − 1):

(v1av2w)q1−1v1av2wv1cv2(wv1cv2)
q3−1

(v1av2w)q1−1v1cv2wv1cv2(wv1cv2)
q3−1

When q2 = 1, we have u = (v1av2w)q1(v1bv2w)(v1cv2w)q3v1cv2, only the b, u(q1l + i),
creates a critical pair for the border length n− l, both in the prefix and the suffix, and q1

may assume any of the values 1 through q − 1. Given distinct letters a and c, there are
k − 2 choices for the letter b such that it is distinct from both a and c. The prefix and
suffix of u of length n− l are respectively:

(v1av2w)q1−1v1av2wv1bv2(wv1cv2)
q3

(v1av2w)q1−1v1bv2wv1cv2(wv1cv2)
q3
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Thus, we have

C0,k(n, n− l) = (2 + 2(q − 2) + (q − 1)(k − 2))F0,k(l + r, r)

Note that if a letter other than the first a, u(i), or the last c, u(ql + i), determines a
critical pair for the nonsimple border length n− l, then it does not create a simple critical
pair for any border length. For a simple border of u, either the prefix, the suffix, or
both, will be strongly l-periodic. Thus, for a pair (u, j), critical for the nonsimple border
length n − l, to be a simple critical pair with j 6= i, j 6= ql + i, either the prefix of the
simple border is (v1av2w)q1v1u(j)v′

2, where u(j) 6= a, and the suffix is strongly l-periodic,
or the suffix of the simple border is v′

1u(j)v2(wv1cv2)
q3 , where u(j) 6= c, and the prefix

is strongly l-periodic, for some prefix v′
2 of v2 or some suffix v′

1 of v1. Without loss of
generality, assume (u, j) is critical in the prefix. Then the letter corresponding to j in the
suffix is an a, because it must agree with the other a’s in the prefix. However, then v1av′

2

is a border of u.

Proposition 15. The following equality holds for k ≥ 2 and r ≥ 1:

F0,k(2r, r) = (k − 1)rU0,k(r)−
1

k
C0,k(r, N)

Proof. Here F0,k(2r, r) counts the unbordered words of length 2r of the form

u = v1av2v1cv2 = v1u(i)v2v1u(r + i)v2

with a 6= c (where |v1| = i). Note that, it must be the case that either u1 = v1u(i)v2,
u2 = v1u(r + i)v2, or both, are unbordered. This is because, if both the full words u1 and
u2 are bordered, then they both have only simple borders. If u(i) does not appear in the
minimal border of u1, then u has the same border. If u(r + i) does not appear in the
minimal border of u2, then u has the same border. Thus, it must be that both minimal
borders are simple with u(i) and u(r + i) in the same position, and either both appear in
the prefixes or suffixes. If u(i), u(r + i) appear in the prefixes, then let x1 be the prefix of
u1 and x2 be the suffix of u1 that create a border of u1 such that |x1| ≥ |v1u(i)|. In this
case, x2 being a suffix of v2, we see that x1 and x′

2, the suffix of length |x2| of u2, create
a border of u. A similar argument can be made if u(i), u(r + i) appear in the suffixes.
Thus, it suffices to count the number of pairs u1, u2 which are both unbordered, and add
the number of pairs u1, u2 where exactly one is unbordered. For every word u1, we will
have k − 1 choices for u2, such that u(r + i) 6= u(r).

Given an unbordered word u1 and position i, the following hold for u and u2.

• If (u1, i) is not a critical pair, then u and u2 will be unbordered.

• If (u1, i) is a simple critical pair in the prefix, then u will be unbordered and u2 will be
bordered if there exists a critical border length in which the position corresponding
to u(i) is a c. Otherwise u2 will be unbordered.
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• If (u1, i) is a simple critical pair in the suffix, then u will be bordered if there exists
a critical border length in which the position corresponding to u(i) is a c. Otherwise
u will be unbordered. The word u2 is unbordered if and only if u is unbordered.

• If (u1, i) is a nonsimple critical pair in only the prefix, then u and u2 will be unbor-
dered.

• If (u1, i) is a nonsimple critical pair only in the suffix, then u will be unbordered for
the k− 2 of k− 1 letters which are neither a nor c and correspond to u(i) appearing
critically in the suffix. The word u2 will be unbordered when u is unbordered.

• If (u1, i) is a nonsimple critical pair in both the prefix and suffix, then both u and
u2 are unbordered.

Let α be the proportion of words u1 in which (u1, i) is a simple critical pair in the
prefix and there exists a critical border length in which the position corresponding to u(i)
is a c. This is equal to the proportion of words u1 in which (u1, i) is a simple critical pair
in the suffix and there exists a critical border length in which the position corresponding
to u(i) is a c. For the case k = 2, we have α = 1.

Since we can choose either u1 or u2 to be unbordered, we add twice the number of
words where u2 is bordered and add once the number of words where both u1 and u2 are
unbordered. Then we have

F0,k(2r, r) = (k − 1)

(
rU0,k(r)− C0,k(r, S)− C0,k(r, N) + 2α

(
1

2
C0,k(r, S)

)

+(1− α)
1

2
C0,k(r, S) + (1− α)

1

2
C0,k(r, S) +

1

2

(
2

k

)
C0,k(r, N) +

k − 2

k
C0,k(r, N)

+
1

2

(
k − 2

k − 1

) (
2

k

)
C0,k(r, N)

)
= (k − 1)rU0,k(r)−

1

k
C0,k(r, N)

Proposition 16. The following equalities hold for k ≥ 2, n ≥ 2, r ≥ 1, q = d n
n−r

e − 1,
and r′ = n− q(n− r):

F0,k(n, r) =



0 if n ≤ r

U0,k(n) if 1 = r < n

qF0,k(n− r + r′, r′) if 1 < r < n < 2r

(k − 1)rU0,k(r)− 1
k
C0,k(r, N) if 1 < r < n = 2r

kF0,k(n− 1, r) if n > 2r, n odd

kF0,k(n− 1, r)− F0,k(
n
2
, r) if n > 2r, n even

the electronic journal of combinatorics 18 (2011), #P138 19



Proof. Note that for n > 2r, in order to construct an unbordered full word of length
n = r + l of the form v1av2wv1cv2 where l = |v1av2w|, r = |v1cv2|, and a, c are distinct
letters, we may take a word of the same form v1av2w

′v1cv2, of length n− 1 = r + (l− 1),
and add a letter to the center. However, we need to consider those cases when a perfect
square is created. Thus, for n > 2r, n odd, we have

F0,k(n, r) = kF0,k(n− 1, r)

And for n > 2r, n even, we have

F0,k(n, r) = kF0,k(n− 1, r)− F0,k(
n

2
, r)

Next, we need to compute F0,k(n, r) for values of n from 2 to 2r. We have that
F0,k(n, r) = 0, for n ∈ [2..r]. For r = 1, n > r, F0,k(n, 1) is the number of unbordered
words of length n. Thus, F0,k(n, 1) = U0,k(n). For 2r = n > r > 1, F0,k(n, r) is computed
according to Proposition 15.

For 2r > n > r > 1, F0,k(n, r) represents the number of unbordered words u of
length n with a prefix v1av2 of length r, and a suffix v1cv2 of length r. Since (u, |v1|)
and (u, n − 1 − |v2|) are both critical pairs for the nonsimple border length r, we can
count the words of length n with critical pairs for the border length r. These words can
be constructed from words of the form u′ = v′

1av′
2wv′

1cv
′
2, where |v′

1av′
2w| = n − r and

|v′
1cv

′
2| = r′. However, we have the additional requirement that (u, |v1|) and (u, n−1−|v2|)

are only critical in either the prefix or the suffix, and not in both. From Proposition 14,
for q1 = 1, q2 = 0, u has one nonsimple critical pair which is critical only in the suffix. For
q2 = 0, q3 = 0, u has one nonsimple critical pair which is critical only in the prefix. For
q1 > 1, q2 = 0 and q3 > 0, u has two nonsimple critical pairs, one of which is critical only
in the prefix and the other critical only in the suffix (q1 may assume any of the values
2 through q − 1). For q2 = 1, all nonsimple critical pairs are critical in both the prefix
and the suffix, and thus, words of this form are not considered. Therefore, we can use the
following recursive formula for n from r + 1 to 2r − 1:

F0,k(n, r) = (2 + q − 2)F0,k(n− r + r′, r′) = qF0,k(n− r + r′, r′)

with q = d n
n−r

e − 1 and r′ = n− q(n− r), such that r′ < n− r < r.

5 Counting bordered partial words with one hole

We can use the previously obtained results to calculate U1,k(n), for any integers k ≥ 2,
n ≥ 2.

Theorem 1. The following equalities hold for k ≥ 2:

• If m ≥ 1, then

U1,k(2m) =
2mU0,k(2m)− C0,k(2m, S)− C0,k(2m, N)

k
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• If m ≥ 0, then

U1,k(2m + 1) =
(2m + 1)kU0,k(2m)− kC0,k(2m, S)− C0,k(2m + 1, N)

k

where C0,k(2m, S) is computed according to Proposition 10 and Corollary 3, and

C0,k(2m, N), C0,k(2m + 1, N)

are computed according to Propositions 14, 15 and 16.

As an example, consider n = 4. By Proposition 10 and Corollary 3, we have

C0,k(4, S) = kC0,k(3, S)− kC0,k(2, S)− 2C0,k(2, N) + 4(k − 1)U0,k(2)
= k2C0,k(2, S)− 2k2(k − 1) + 4(k − 1)(k2 − k)
= (k − 1)(2k3 − 2k2 + 4k2 − 4k)
= 2k4 − 6k2 + 4k

By Propositions 14 and 16, we have

C0,k(4, N) = k(3− 1)F0,k(1 + 1, 1)
= 2k((k − 1)U0,k(1)− 1

k
C0,k(1, N))

= 2kU0,k(2)
= 2k3 − 2k2

Therefore,

C0,k(4) = C0,k(4, S) + C0,k(4, N)
= 2k4 + 2k3 − 8k2 + 4k

By Proposition 7, we have

U1,k(4) =
4U0,k(4)−C0,k(4)

k

= 4(k4−k3−k2+k)−(2k4+2k3−8k2+4k)
k

= 2k3 − 6k2 + 4k

Table 1 gives formulas for Uh,k(n) when 0 ≤ n ≤ 7.

We can also use the previously obtained results to calculate S1,k(n), for any integers
k ≥ 2, n ≥ 1.

Theorem 2. The following equalities hold for k ≥ 2, m ≥ 1:

S1,k(2m) = k2S1,k(2m− 2) + 2k
m−1∑
l=1

U0,k(l)k
2m−2−2l

+2(mU0,k(m)− 1
2
C0,k(m, S)− 1

k
C0,k(m, N))

S1,k(2m + 1) = kS1,k(2m) +
m∑

l=1

U0,k(l)k
2m−2l
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k = 2 k = 3 k = 4

Uh,k(0) = 1 if h = 0 1 1 1
0 if h ≥ 1 0 0 0

total: 1 1 1
Uh,k(1) = k if h = 0 2 3 4

1 if h = 1 1 1 1
0 if h ≥ 2 0 0 0

total: 3 4 5
Uh,k(2) = k2 − k if h = 0 2 6 12

0 if h ≥ 1 0 0 0
total: 2 6 12

Uh,k(3) = k3 − k2 if h = 0 4 18 48
0 if h ≥ 1 0 0 0

total: 4 18 48
Uh,k(4) = k4 − k3 − k2 + k if h = 0 6 48 180

2k3 − 6k2 + 4k if h = 1 0 12 48
0 if h ≥ 2 0 0 0

total: 6 60 228
Uh,k(5) = k5 − k4 − k3 + k2 if h = 0 12 144 720

3k4 − 6k3 − k2 + 4k if h = 1 4 84 384
0 if h ≥ 2 0 0 0

total: 16 228 1104
Uh,k(6) = k6 − k5 − k4 + k2 if h = 0 20 414 2832

4k5 − 6k4 − 6k3 + 8k2 if h = 1 16 396 2304
4k4 − 16k3 + 20k2 − 8k if h = 2 0 48 288
0 if h ≥ 3 0 0 0

total: 36 858 5424
Uh,k(7) = k7 − k6 − k5 + k3 if h = 0 40 1242 11328

5k6 − 7k5 − 6k4 + 7k3 − 3k2 + 4k if h = 1 52 1632 12192
9k5 − 26k4 + 9k3 + 24k2 − 16k if h = 2 8 492 3456
2k4 − 12k3 + 22k2 − 12k if h = 3 0 0 48
0 if h ≥ 4 0 0 0

total: 100 3366 27024

Table 1: Formulas for Uh,k(n) when 0 ≤ n ≤ 7
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where S1,k(0) = 0, S1,k(1) = 0, and where C0,k(m, S) is computed according to Proposi-
tion 10 and Corollary 3, and C0,k(m, N) is computed according to Propositions 14, 15 and
16.

As an example, consider n = 4. We have

S1,k(2) = k2S1,k(0) + 2k(0) + 2(U0,k(1)− 1
2
C0,k(1, S)− 1

k
C0,k(1, N))

= k2(0) + 2(k − 1
2
(0)− 1

k
(0))

= 2k

and consequently,

S1,k(4) = k2S1,k(2) + 2kU0,k(1)k0

+2(2U0,k(2)− 1
2
C0,k(2, S)− 1

k
C0,k(2, N))

= 2k3 + 2k2 + 2(2(k2 − k)− 1
2
2(k2 − k)− 1

k
(0))

= 2k3 + 4k2 − 2k

Tables 2 and 3 give formulas for Sh,k(n) when 2 ≤ n ≤ 7. Note that Sh,k(0) = Sh,k(1) =
0 for h ≥ 0.

6 Conclusion

In [14], Moore et al. discuss how to count and generate all words of length n constructed
using exactly k letters that give rise to distinct border arrays, for all positive integers n and
k, providing an algorithm that computes all such words in constant time per word. Recall
that the border array β corresponding to a word u of length n over a k-letter alphabet is
a word of same length over the alphabet {0, 1, . . . , n− 1} such that for 0 ≤ j < n, β(j) is
the length of the longest border of the prefix of length j +1 of u. For example, the binary
words abaab and ababb of length 5 give rise to the distinct border arrays 00112 and 00120,
respectively.

A possible topic to investigate in the future is the generalization to partial words of
the enumeration of strings with distinct border arrays. Unfortunately, a translation of
the results from [14] to partial words is not trivial. This is due, in particular, to the fact
that the authors use a tree structure over the alphabet in order to illustrate the smallest
canonical strings that give each of the border arrays. Their tree starts with the letter a
at the first level, giving the border array 0, and continues to the second level with b and
a, giving all possible border arrays of length two, that is, 00 and 01. Continuing in this
manner, the authors are able to generate all possible border arrays, by giving the smallest
canonical string in each class.

Let us now consider this approach in the context of partial words. Note that the
root of the tree would be in this case �, which is the smallest lexicographical symbol. It
follows that all canonical strings of length two start with � and so do all canonical strings
of length three. Note however that Moore et al.’s tree construction is not suitable for
partial words since the border array 001, associated with the canonical string ab�, cannot
be obtained in such a way. Thus, not only using such a tree structure we cannot get all
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k = 2 k = 3 k = 4

Sh,k(2) = k if h = 0 2 3 4
2k if h = 1 4 6 8
1 if h = 2 1 1 1
0 if h ≥ 3 0 0 0

total: 7 10 13
Sh,k(3) = k2 if h = 0 4 9 16

2k2 + k if h = 1 10 21 36
3k if h = 2 6 9 12
1 if h = 3 1 1 1
0 if h ≥ 4 0 0 0

total: 21 40 65
Sh,k(4) = k3 + k2 − k if h = 0 10 33 76

2k3 + 4k2 − 2k if h = 1 28 84 184
6k2 if h = 2 24 54 96
4k if h = 3 8 12 16
1 if h = 4 1 1 1
0 if h ≥ 5 0 0 0

total: 71 184 373
Sh,k(5) = k4 + k3 − k2 if h = 0 20 99 304

2k4 + 5k3 − k2 − k if h = 1 66 285 812
8k3 + 4k2 − 2k if h = 2 76 246 568
10k2 if h = 3 40 90 160
5k if h = 4 10 15 20
1 if h = 5 1 1 1
0 if h ≥ 6 0 0 0

total: 213 736 1865
Sh,k(6) = k5 + k4 − k2 if h = 0 44 315 1264

2k5 + 6k4 + 4k3 − 8k2 + 2k if h = 1 164 1014 3720
10k4 + 14k3 − 12k2 + 3k if h = 2 230 1089 3276
20k3 if h = 3 160 540 1280
15k2 if h = 4 60 135 240
6k if h = 5 12 18 24
1 if h = 6 1 1 1
0 if h ≥ 7 0 0 0

total: 671 3112 9805

Table 2: Formulas for Sh,k(n) when 2 ≤ n ≤ 6
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k = 2 k = 3 k = 4

Sh,k(7) = k6 + k5 − k3 if h = 0 88 945 5056
2k6 + 7k5 + 5k4 − 8k3 + k2 if h = 1 372 3357 16144
12k5 + 20k4 − 8k3 − 5k2 + 2k if h = 2 624 4281 16824
30k4 + 14k3 − 12k2 + 3k if h = 3 550 2709 8396
35k3 if h = 4 280 945 2240
21k2 if h = 5 84 189 336
7k if h = 6 14 21 28
1 if h = 7 1 1 1
0 if h ≥ 8 0 0 0

total: 2013 12448 49025

Table 3: Formulas for Sh,k(7)

canonical strings associated with the border arrays, but moreover, some border arrays are
missing.

We observe that, except for partial words of length 1, all border arrays associated with
partial words with at least one hole have at least one position greater than 0. Note that
it may also be possible to change some positions of a word with holes while preserving
the border array. Consider for example the word u = abaab with border array 00112.
The partial words ab�ab, abaa� and ab�a� all have the same border array as u (they
belong to the same equivalence class); however, changing position 1 in u with a hole, to
obtain v = a�aab, does “increase” the border array from 00112 to 01232. Note that the
2 (respectively, 3) in position 2 (respectively, 3) is due to the presence of a nonsimple
border. Determining which positions in a word can be changed to holes while preserving
the border array becomes an interesting problem.
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