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Abstract

We prove that if two graphs of girth at least 6 have isomorphic squares, then the
graphs themselves are isomorphic. This is the best possible extension of the results
of Ross and Harary on trees and the results of Farzad et al. on graphs of girth
at least 7. We also make a remark on reconstruction of graphs from their higher
powers.

1 Introduction

For a simple, undirected, connected graph H its square G = H2 is the graph on the same
vertex set in which two distinct vertices are adjacent if their distance in H is at most 2.
In this case H is called the square root of G. Also, recall that the girth of a graph is the
length of its shortest cycle (or ∞ for a tree). The neighbourhood NH(u) of u will be the
set consisting of u and its adjacent vertices in H . By distH(u, v) we denote the distance
between two vertices in H .

We investigate the uniqueness of square roots of graphs. Ross and Harary [5] proved
the following theorem:

(1) If T1 and T2 are two trees such that T 2

1
and T 2

2
are isomorphic, then T1 and T2 are

isomorphic.
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This was recently improved by the authors of [1] who proved:

(2) If H1 and H2 are two graphs of girth at least 7 such that H2

1
and H2

2
are isomorphic,

then H1 and H2 are isomorphic.

In the next section we prove the best possible result, which is:

(3) If H1 and H2 are two graphs of girth at least 6 such that H2

1
and H2

2
are isomorphic,

then H1 and H2 are isomorphic.

The key idea behind (1) and (2) is that each maximal clique of the square corresponds to
the neighbourhood of some vertex in the root. This fails in the case of roots of girth 6.
For example, the vertices 1, 3, 5 of the cycle C6 form a maximal clique in C2

6
even though

they do not induce a star in C6. This is where we will need a new idea to prove (3).

2 Proof of the theorem

Let H be a graph of girth at least 6 on the vertex set V and let G = H2. We have the
following easy observations:

(*) If there is a path from u to v in H of length exactly 3, then u 6∈ NG(v) (otherwise
there would be a cycle in H of length at most 5).

(**) If uv ∈ E(H) then NG(u) ∩ NG(v) = NH(u) ∪ NH(v). Indeed, the inclusion ⊇ is
obvious. To prove ⊆ note that if some vertex w ∈ NG(u) ∩ NG(v) was adjacent to
neither u nor v in H , then it would be in distance 2 from both of them, which would
yield a 5-cycle in H .

We start with a lemma which can also be deduced from [1]. The notation H1 = H2

means that two graphs are equal (the same vertex set and the same edges), not just
isomorphic.

Lemma 2.1. Let H1 and H2 be graphs of girth at least 6 on the vertex set V . Suppose
that G = H2

1
= H2

2
and that u, v, w ∈ V are three vertices such that uvw is a path in both

H1 and H2. Then H1 = H2.

Proof. Let H be any graph of girth at least 6 such that G = H2. The following statements
follow easily from (*) and (**):

• If xyz is a path in H , then (see Fig. 2)

NH(x) = (NG(x) ∩ NG(y)) \ NG(z) ∪ {x, y}.

• If y is of degree 1 in H and xy ∈ E(H) then

NH(x) = NG(y).
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x y z

(NG(x) ∩ NG(y)) \ NG(z)

NG(x) ∩ NG(y)

Figure 1: The structure of the neighbourhoods of x and y in H.

With the above formulas, given one path uvw of H one can recursively compute all
the edges of H using only the information from G, so the square root of G with this
distinguished path is unique. This ends the proof.

Clearly, it suffices to prove our main result with the assumption “H2

1
and H2

2
are

isomorphic” replaced by “H2

1
= H2

2
”. This is what we now prove:

Theorem 2.2. Suppose H1 and H2 are two graphs of girth at least 6 such that G = H2

1
=

H2

2
. Then H1 and H2 are isomorphic.

Proof. Let V be the common vertex set of H1, H2 and G. If uvw is a path in both H1

and H2 for some u, v, w then H1 = H2 by the previous lemma. Therefore we may assume
that for every v the set Xv = {u : uv ∈ E(H1) ∩ E(H2)} has at most 1 element. Define
the following map f : V −→ V :

• if |Xv| = 0 then f(v) = v,

• if |Xv| = 1 then f(v) is the unique element of Xv.

Clearly f is an involution.
We shall first prove two statements:

• (A) if uv ∈ E(H1), |Xv| = 1 and u 6= f(v) then |Xu| = 0,

• (B) if uv ∈ E(H1) and |Xv| = 0 then |Xu| = 1.

Proof of (A). Let v be a vertex with |Xv| = 1 and let f(v) = w, meaning that vw is an
edge in both H1 and H2. Let u be any neighbour of v in H1, other than w. We will show
that |Xu| = 0. Suppose, on the contrary, that z ∈ Xu (Fig.2.). Then distH1

(w, z) = 3,
so, by (*), z 6∈ NG(w). Since u and v are not neighbours in H2, but u ∈ NG(v) ∩ NG(w),
the property (**) implies that uw is an edge in H2. However uz is also an edge in H2, so
z ∈ NG(w). This contradiction proves that |Xu| = 0 for all neighbours u of v in H1 other
than w.

Proof of (B). Let v be a vertex with |Xv| = 0. Let u be adjacent to v in H1. We will
show that |Xu| = 1. Suppose, on the contrary, that |Xu| = 0. In H2 the vertex v must
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Figure 2: Illustration for the proof of (A) in Theorem 2.2. The bold edges are present in both

H1 and H2.

be in distance 2 from u, so there is an x such that uxv is a path in H2. In particular,
x ∈ NG(v) ∩ NG(u), so by (**) we have x ∈ NH1

(u) ∪ NH1
(v). This is a contradiction

since x would be adjacent to either u or v in both H1 and H2, which is impossible by
Xv = Xu = ∅.

Proof of the theorem. Now we prove that f (treated as a map of graphs H1 −→ H2)
maps edges to edges. Let uv ∈ E(H1).

If |Xu| = |Xv| = 1 then, by (A), f(u) = v, f(v) = u and uv is an edge in both graphs,
so f takes uv to an edge vu in H2.

If |Xu| = 0 and |Xv| = 1, then let w = f(v). Since uv 6∈ E(H2) and u ∈ NG(v)∩NG(w),
we have from (**) that uw ∈ E(H2) and f takes uv ∈ E(H1) to f(u)f(v) = uw ∈ E(H2).

The case |Xu| = |Xv| = 0 is not possible by (B).
To prove that f−1 maps edges to edges one simply inverts the roles of H1 and H2

in the above argument (the definition of f was symmetric with respect to H1 and H2).
Therefore f is an isomorphism.

3 Remarks and modifications

This result is optimal in the sense that it cannot hold for girth at least 5 because K1,4
2 =

C5
2 = K5.
The r-th power Hr of a graph is defined analogously, that is edges in Hr correspond

to pairs of vertices in distance at most r in H . Observe that regardless of the girth
restriction, there can be no analogous general result for higher graph powers, because
there exist non-isomorphic trees whose r-th power is a complete graph for all r ≥ 3. This
and the work of [2, 3] suggest that one may benefit from forbidding vertices of degree one
in the root. Consider the following problem: what are the minimal values of g1(r) and
g2(r) for which the following statements hold:

(1) For any two graphs H1 and H2 of girth at least g1(r) with no vertices of degree one,
if Hr

1
= Hr

2
then H1 and H2 are isomorphic.

(2) For any two graphs H1 and H2 of girth at least g2(r) with no vertices of degree one,
if Hr

1
= Hr

2
then H1 = H2.

For example g2(2) = 7, as proved in [3]. Our work proves that g1(2) ≤ 6 and this is, in
fact, optimal: there exist two non-isomorphic graphs of girth 5 and no degree one vertices
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Figure 3: Two non-isomorphic graphs of girth 5, minimal vertex degree 2 and the same square.

having the same squares. The smallest such example is a pair of graphs on 16 vertices
shown in Fig.3 (found with [4]). Therefore g1(2) = 6.

It is known that 2r + 3 ≤ g2(r) ≤ 2r + 2⌈(r − 1)/4⌉+ 1 (see [2]) and conjectured that
g2(r) = 2r + 3 for all r. Any nontrivial result about g1(r) (possibly in relation to g2(r))
would be very interesting.
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