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Abstract

Let γm,n denote the size of a minimum dominating set in the m× n grid graph.
For the square grid graph, exact values for γn,n have earlier been published for
n 6 19. By using a dynamic programming algorithm, the values of γm,n for m,n 6
29 are here obtained. Minimum dominating sets for square grid graphs up to size
29× 29 are depicted.

∗Supported by the Academy of Finland, Grant No. 132122 and by the Finnish Foundation for Tech-
nology Promotion.

†Supported in part by the Academy of Finland, Grants No. 130142, 132122.

the electronic journal of combinatorics 18 (2011), #P141 1



1 Introduction

An m × n grid graph G has the vertex set V = {vi,j : 1 6 i 6 m, 1 6 j 6 n} with two
vertices vi,j and vi′,j′ being adjacent if i = i′ and |j − j′| = 1 or if j = j′ and |i− i′| = 1.
The m× n grid graph can also be presented as a Cartesian product Pm�Pn of a path of
length m− 1 and a path of length n− 1.

A dominating set of a graph G = (V, E) is a subset V ′ ⊆ V such that every vertex not
in V ′ is adjacent to at least one vertex in V ′. The domination number γ(G) of a graph
G is the cardinality of a smallest dominating set. When G is the m × n grid graph, we
denote the domination number by γm,n = γ(G).

The domination number of grid graphs has been studied since the 1980s. For the
general case, efforts have been made to obtain lower and upper bounds on γm,n. Studies
of general bounds on γm,n include [2, 4, 6, 7, 10]. Several studies have also been carried
out on specific bounds for small values of (either one or both of) the parameters.

Jacobson and Kinch [16] established γm,n for 1 6 m 6 4 and all n. This work was
later extended to the cases of m = 5, 6 and all n by Chang and Clark [3]. Hare [11] used
a computational approach to determine γm,n for m = 7, 8, n 6 500; m = 9, n 6 233; and
m = 10, n 6 125. Some of the early results were later confirmed in [18]. In the 1990s
Fisher developed a new method for calculating domination numbers for grid graphs. This
work remained unpublished but is described in Spalding’s PhD thesis [21], where the
values of γm,n for m 6 19 and all n are given. We summarize these results in Figure 1.

The values of γn,n are at the moment of writing recorded for n 6 14 in the On-Line
Encyclopedia Integer Sequences (OEIS) [20] as sequence A104519. However, it follows
from the discussion above that the range of settled cases of γn,n is actually n 6 19. In the
current work, this range will be extended to n 6 29.

The explanation of the sequence A104519 in OEIS is that it is the smallest number
of cells in an n × n array that need to be occupied to make it impossible to add an
X-pentomino to the array that does not intersect the occupied cells. Indeed, there is a
direct correspondence between this formulation of the problem and minimum dominating
sets of the (n − 2) × (n − 2) grid via the correspondence between an X-pentomino and
the vertices dominated by a vertex in a grid graph.

In this study the problem of determining γn,m for as large parameters as possible
will be attacked by a dynamic programming algorithm. Algorithms based on dynamic
programming have also earlier been developed for this problem [11, 12, 14, 17] (algorithms
have earlier been studied also in, for example, [18, 19, 22]).

In Section 2 we give some definitions and theorems that are necessary in the develop-
ment of the new algorithm, which is presented in Section 3. Using this algorithm we have
calculated γm,n for the cases m 6 27, n 6 1000 and for m = n = 28 and m = n = 29.
The values of γm,n for m, n 6 29 are tabulated in Section 4, where minimum dominating
sets for γn,n, n 6 29 are also depicted.
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γ1,n =

⌊
n + 2

3

⌋
γ2,n =

⌊
n + 2

2

⌋
γ3,n =

⌊
3n + 4

4

⌋
γ4,n =

{
n + 1, if n = 5, 6, 9
n, otherwise

γ5,n =

{ ⌊
6n+6

5

⌋
, if n = 7⌊
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5

⌋
, otherwise

γ6,n =

{ ⌊
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7

⌋
, if n ≡ 1 (mod 7)⌊

10n+12
7

⌋
, otherwise

γ7,n =

⌊
5n + 3

3

⌋
γ8,n =

⌊
15n + 14

8

⌋
γ9,n =

⌊
23n + 20

11

⌋
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30n+37

13

⌋
, if n 6= 13, 16 or n ≡ 0, 3 (mod 13)⌊

30n+24
13

⌋
, otherwise

γ11,n =

{ ⌊
38n+21

15

⌋
, if n = 11, 18, 20, 22, 33⌊

38n+36
15

⌋
, otherwise

γ12,n =

⌊
80n + 66

29

⌋
γ13,n =

{ ⌊
98n+111

33

⌋
, if n ≡ 14, 15, 17, 20 (mod 33)⌊

98n+78
33

⌋
, otherwise

γ14,n =

{ ⌊
35n+40

11

⌋
, if n ≡ 18 (mod 22)⌊

35n+29
11

⌋
, otherwise

γ15,n =

{ ⌊
44n+27

13

⌋
, if n ≡ 5 (mod 26)⌊

44n+40
13

⌋
, otherwise

γm,n =

⌊
(m + 2)(n + 2)

5

⌋
, for 16 6 m 6 19

Figure 1: Known formulas for γm,n, m 6 n
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2 Preliminaries

To simplify the description of the algorithm, we first define an order of the vertices of an
m× n grid graph with vertices vi,j, 1 6 i 6 m, 1 6 j 6 n, as defined in the Introduction.
This notation gives a lexicographic order of the vertices, where vi,j is smaller than vk,l if
i < k or if i = k and j < l.

We will next introduce some notations that are useful in the sequel.

Definition 2.1. Consider a grid graph G = (V, E).

• For a vertex v ∈ V , the set of vertices dominated by v is denoted by D(v).

• For a set V ′ ⊆ V , the set of vertices dominated by (the vertices in) V ′ is denoted by
D(V ′). In other words, D(V ′) = ∪v∈V ′D(v).

• For a set S ⊆ V , the lexicographically smallest vertex in V \ S is denoted by s(S).

We are now ready to present the theorems that will help us in developing the algo-
rithm. There are many similarities between our approach and that in [12] but also many
differences, so a detailed treatment of the details is required.

Theorem 2.1. Every minimum dominating set can be constructed by an exhaustive search
where in each step any undominated vertex is picked, after which all possible ways of
dominating this vertex are considered in turn.

Proof. Every vertex must be dominated. The order in which vertices are added to the
dominating set is irrelevant.

As we can pick the vertices to be dominated in any order, we have chosen to always
consider the lexicographically smallest undominated vertex. Each vertex can be domi-
nated in five different ways. We shall now show that it is not necessary to consider all
five possibilities in the exhaustive algorithm. We need the following observation in the
proofs, cf. the concept of beatable dominating sets in [12].

Theorem 2.2. Consider an m × n grid graph G = (V, E), and let V1 ⊆ V and V2 ⊆ V
such that |V1| = |V2| and D(V1) ⊆ D(V2). To find a minimum dominating set of G, one
may ignore V1 and only consider dominating sets that extend V2.

Proof. For any dominating set V1 ∪ V3 of G, V2 ∪ V3 is a dominating set. Hence, as
|V1| = |V2|, it suffices to consider V2 in the search for a minimum dominating set.

In the subsequent theorems, we focus on sets S of dominated vertices rather than sets of
dominating vertices. Recall that s(S) denotes the lexicographically smallest undominated
vertex (Definition 2.1).

Theorem 2.3. Consider an m× n grid graph G = (V, E) and let S ⊆ V . When consid-
ering vertices for dominating vi,j = s(S), the candidates vi−1,j and vi,j−1 can be ignored
(whenever such vertices exist, that is, i > 2 and j > 2, respectively).
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Proof. By the definition of s(S), vi,j is the only undominated vertex that can be domi-
nated by vi−1,j. Similarly, the only undominated vertices that can be dominated by vi,j−1

(assuming j > 2) are vi,j and vi+1,j−1 (if i 6 m − 1). However, when i 6 m − 1, vi+1,j

dominates the same vertices, and when i = m, vi,j+1 (or vi,j, if j = n) dominates them.
The result now follows from Theorem 2.2.

Further reductions of candidates are possible in special cases.

Theorem 2.4. Consider an m× n grid graph G = (V, E) and let S ⊆ V . When consid-
ering vertices for dominating vi,j = s(S) when vi,j+1 ∈ S, j 6 n − 1, the candidate vi,j

can be ignored.

Proof. If vi,j+1 ∈ S, the only undominated vertices that can be dominated by vi,j are vi,j

and, if i 6 m − 1, vi+1,j. For i 6 m − 1, vi+1,j dominates both of these vertices. For
i = m, vi,j+1 dominates vi,j, and the result now follows from Theorem 2.2.

In the final special case, there is only one candidate left.

Theorem 2.5. Consider an m× n grid graph G = (V, E) and let S ⊆ V . When consid-
ering vertices for dominating vi,j = s(S) when vi,j+1, vi,j+2 ∈ S, i 6 m− 1, j 6 n− 2, the
candidate vi,j+1 can be ignored.

Proof. If vi,j+1, vi,j+2 ∈ S, the only undominated vertices that can be dominated by vi,j+1

are vi,j and, if i 6 m− 1, vi+1,j+1. However, for i 6 m− 1, vi+1,j dominates both of these
vertices. The result then follows from Theorem 2.2.

Notice that the requirement that i 6 m − 1 is not necessary in Theorem 2.5, but we
need it to avoid a conflict with Theorem 2.4 (if i = m, vi,j = s(S), and vi,j+1, vi,j+2 ∈ S,
then it suffices to consider only one vertex to dominate vi,j, but we need to decide which
one). The three cases in Theorems 2.3 to 2.5 are shown in Figure 2, where the dominated
vertices are black (the indices of the vertices increase when going down and to the right).

Figure 2: The three possible situations

The automorphism (symmetry) group Aut(G) of an m × n grid graph has order 4 if
m 6= n and order 8 if m = n. However, due to the way the search proceeds, we find
only the subgroup of order 2 generated by the mapping of vi,j to vi,n+1−j useful. This
symmetry—the term mirror images is used in [12]—should be taken into account for
improved performance.

Theorem 2.6. Consider an m × n grid graph G = (V, E) and a mapping f : V → V
such that f(vi,j) = vi,n+1−j for all i, j. Let V1 ⊆ V and V2 ⊆ V such that f maps the set
V1 to V2. To find a minimum dominating set of G, one may ignore V1 and only consider
dominating sets that extend V2.
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Proof. We denote f(V ′) = ∪v∈V ′{f(v)}. For any dominating set V1∪V3 of G, f(V1∪V3) =
f(V1) ∪ f(V3) = V2 ∪ f(V3) is a dominating set of G. Hence, as |V1| = |V2|, it suffices to
consider V2 in the search for a minimum dominating set.

3 The Algorithm

Our exhaustive search algorithm, the input parameters of which are the size parameters
m and n of the considered grid graph, is a breadth-first search (BFS) algorithm with the
features of dynamic programming [8, Chapter 15]. During the search, we maintain sets of
dominated (rather than dominating) vertices.

On each level of the BFS, we have a collection S of sets (starting from the empty set),
and for each S ∈ S we consider all vertices that dominate s(S), except for those vertices
that can be excluded by Theorems 2.3 to 2.5. The algorithm terminates when the entire
grid graph has been dominated.

When we form a new collection S of dominated vertices from an old collection S ′, we
use Theorem 2.2 whenever possible to reject solutions. Also a combination of Theorems 2.2
and 2.6 can be used to reject solutions. This rejection criterion is similar to the one used
by Hare and Fisher in [12] to speed up the algorithm introduced by Hare in [11]. Using
Theorem 2.2 takes up most of the CPU time, but is essential for minimizing the total
cpu time for the search. An efficient implementation of this part is crucial; we shall now
briefly elaborate on this issue.

In a collection S of sets that we maintain, we may store a set S either as S or as
f(S) (cf. Theorem 2.6). This choice is made based on the maximum of s(S) and s(f(S)).
Moreover, the collection S is kept sorted so that if S comes before T , then s(S) > s(T ).
The fact that all vertices vi,j up to some value of i have been dominated in a set S ∈ S
can be used to encode S efficiently.

Consider the situation when a new set S—if necessary, we first apply the mapping f
to get a pair S, f(S) that fulfills s(S) > s(f(S))—is to be considered for inclusion in a
collection S. Now we start comparing S and f(S) with the elements of S, starting from
the beginning of the collection.

As long as s(S) is smaller than s(S ′) (S ′ ∈ S, also in the sequel), we test whether
S ⊆ S ′ or f(S) ⊆ S ′, and reject S if this happens (and stop the search). When s(S)
equals s(S ′), we need to test both whether S ⊆ S ′ or f(S) ⊆ S ′ and whether S ′ ⊆ S
or S ′ ⊆ f(S), and if one of these situations occurs reject S or S ′, respectively. If S has
survived to the point where s(S) becomes larger than s(S ′), or sooner if some element in
S is rejected, we know that S is to be inserted in the list, but we also need to test whether
S ′ ⊆ S or S ′ ⊆ f(S) (which would lead to deletion of old sets) for all sets S ′ ∈ S to the
end of the collection. Implementing a linked list for S and data structures for the sets in
the list are standard tasks.

Whenever we encounter a situation where the entire grid graph is dominated, we may
terminate the search, and the level of the BFS gives the size of the smallest dominating
set. When we determine γm,n in this way, we also get γm′,n for all m′ < m as a by-product
by checking when the first set S is created for which s(S) is larger than vm′,n. Observe that
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we only get the size of a minimum dominating set, not the dominating set itself (but such
sets can be found relatively easily, for example, by local search [1]). As a final comment,
all experiments with branch-and-bound type arguments—based on bounds regarding the
domination of undominated vertices—led to a deterioration of the current approach.

4 Results

The values of γm,n for m, n 6 29 can be found in Table 1, and minimum dominating sets
attaining γn,n for n 6 29 are shown in Figures 3 to 10. As for the case of determining γn,n,
the computing time grows by a factor of roughly 4 for consecutive instances, whereas the
memory requirement grows by a factor of just under 2. For the largest square case solved,
γ29,29, 31 CPU-days (using a 3-GHz Intel Core2 Duo CPU E8400) and 75MB of memory
were needed. It is not clear to the authors how to implement a distributed version of the
developed algorithm (cf. [19]); such an implementation would be necessary for pushing
the range of calculated values of γm,n several steps further.

Practical experiments show that the computing time grows approximately linearly
in one of the parameters when the other parameter is fixed; we were able to apply the
algorithm to determine all values of γm,n for m 6 27 and n 6 1000. The following
observation gives a concise description of these values.

In [2] the upper bound

γm,n 6

⌊
(m + 2)(n + 2)

5

⌋
− 4

is proved for m, n > 8. It is also conjectured [2] that this upper bound gives the exact
value for m, n > 16. The current work shows that this conjecture holds for m, n 6 29 as
well as for 16 6 m 6 27, 16 6 n 6 1000. The intermediate data from the computations
can be used to develop exact formulas for γm,n with one of the parameters fixed (cf. [17]);
this issue will be studied further in subsequent work.

Further issues that can be addressed with variants of the current algorithm include
the study of possible components in the subgraph induced by a minimum dominating
set. In particular, the independent domination number—where the components are single
vertices—can be studied to determine when this number and the domination number
coincide. One could also study the domination number for graphs that are products of
other graphs than paths as well as other similar graphs [5, 9, 13, 15].
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Table 1: Domination numbers γm,n for m, n 6 29
m�n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

1 1
2 1 2
3 1 2 3
4 2 3 4 4
5 2 3 4 6 7
6 2 4 5 7 8 10
7 3 4 6 7 9 11 12
8 3 5 7 8 11 12 14 16
9 3 5 7 10 12 14 16 18 20
10 4 6 8 10 13 16 17 20 22 24
11 4 6 9 11 14 17 19 22 24 27 29
12 4 7 10 12 16 18 21 24 26 29 32 35
13 5 7 10 13 17 20 22 26 29 31 35 38 40
14 5 8 11 14 18 21 24 28 31 34 37 40 44 47
15 5 8 12 15 19 22 26 29 33 36 40 43 47 50 53
16 6 9 13 16 20 24 27 31 35 38 42 46 49 53 57 60
17 6 9 13 17 22 26 29 33 37 41 45 49 53 56 60 64 68
18 6 10 14 18 23 27 31 35 39 43 47 51 55 60 64 68 72 76
19 7 10 15 19 24 28 32 37 41 45 50 54 58 63 67 71 75 80 84
20 7 11 16 20 25 30 34 39 43 48 52 57 62 66 70 75 79 84 88 92
21 7 11 16 21 26 31 36 41 45 50 55 60 64 69 74 78 83 88 92 97 101
22 8 12 17 22 28 32 37 43 47 52 57 62 67 72 77 82 87 92 96 101 106 111
23 8 12 18 23 29 34 39 44 49 54 60 65 70 75 80 86 91 96 101 106 111 116 121
24 8 13 19 24 30 36 41 46 52 57 63 68 73 79 84 89 94 100 105 110 115 120 126 131
25 9 13 19 25 31 37 42 48 54 59 65 71 76 82 87 93 98 104 109 114 120 125 131 136 141
26 9 14 20 26 32 38 44 50 56 62 68 74 79 85 91 96 102 108 113 119 124 130 136 141 146 152
27 9 14 21 27 34 40 46 52 58 64 70 76 82 88 94 100 106 112 117 123 129 135 141 146 152 158 164
28 10 15 22 28 35 41 47 54 60 66 73 79 85 91 97 104 110 116 122 128 134 140 146 152 158 164 170 176
29 10 15 22 29 36 42 49 56 62 69 75 82 88 94 101 107 113 120 126 132 138 144 151 157 163 169 175 182 188
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Figure 3: Minimum dominating sets of square grid graphs for 1 6 n 6 14

the electronic journal of combinatorics 18 (2011), #P141 9



Figure 4: Minimum dominating sets of square grid graphs for 15 6 n 6 17
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Figure 5: Minimum dominating sets of square grid graphs for 18 6 n 6 19
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Figure 6: Minimum dominating sets of square grid graphs for 20 6 n 6 21
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Figure 7: Minimum dominating sets of square grid graphs for 22 6 n 6 23
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Figure 8: Minimum dominating sets of square grid graphs for 24 6 n 6 25
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Figure 9: Minimum dominating sets of square grid graphs for 26 6 n 6 27
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Figure 10: Minimum dominating sets of square grid graphs for 28 6 n 6 29
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