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Abstract

We give asymptotic expressions for the number of words containing a given num-

ber of occurrences of a pattern for two families of patterns with two parameters each.

One is the family of classical patterns in the form 22 · · · 212 · · · 22 and the other is

a family of partially ordered patterns. The asymptotic expressions are in terms of

the number of solutions to an equation, and for one subfamily this quantity is the

number of integer partitions into qth order binomial coefficients.
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tern

This paper is dedicated to the memory of Philippe Flajolet (1948–2011).

1 Introduction

Let [k] = {1, 2, ..., k} be a totally ordered alphabet on k letters. A k-ary word of length
n is an element of [k]n. Given a word w = w1 · · ·wn ∈ [k]n, the reduction of w, denoted
η(w), is the word obtained by replacing the ith smallest letters of w with i’s, for all i. For
example, η(46632) = 34421.

Given words σ of length n and τ = η(τ) of length l (τ is called the pattern), an
occurrence of τ in σ is a sequence of indices 1 ≤ i1 < · · · < il ≤ n and the corresponding
letter subsequence σi1 · · ·σil that satisfy certain conditions related to τ ; classical patterns
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require η(σi1 · · ·σil) = τ , and subword patterns are classical patterns that require i1 + l −
1 = il. If there are no occurrences of τ in σ, then σ is said to avoid the pattern τ .

As in [12], a partially ordered pattern (POP) is one in which not all letters are compa-
rable. The letters in a POP are from a partially ordered alphabet; letters shown with the
same number of primes are comparable to each other (e.g. 1′′ and 2′′), while letters shown
without primes are comparable to all letters of the alphabet. An occurrence of a classical
POP in a word σ is a distinguished subsequence of entries of σ such that the relative order
of two entries in the subsequence need be the same as that of the corresponding letters
in the pattern only if the corresponding letters in the pattern are comparable; e.g. the
classical POP 1′1′′2 is found in the word 42213 three times as 42213, 42213 and 42213
(the subsequences of length three in which the third letter is larger than the first two).
In this paper, the patterns are all classical POPs, although not all have noncomparable
letters.

Let W
[k]
n (τ ; r) = {σ ∈ [k]n | σ contains exactly r occurrences of τ}. For a classical

POP τ of length l and greatest entry m, it is easy to see that there are maps ϕ such
that |W

[k]
n (ϕ(τ); r)| = |W

[k]
n (τ ; r)| for all n, k, r. One is left-right reversal, r : τi 7→ τl+1−i

(primes move with the entries), and another is complement, or “vertical reflection”, c :
τi 7→ m + 1 − τi (primes do not move). For example, if τ = 1′1′′2, then r(τ) = 21′′1′

and c(τ) = 2′2′′1. We get one more equivalent pattern by composing complement and
reversal (c ◦ r = r ◦ c). The patterns studied in this paper are therefore representatives of
equivalence classes of patterns for which the same results hold.

The number of k-ary words of length n avoiding a given classical pattern has been
studied for a number of different patterns [2, 3, 8, 11, 14, 15, 16]. Specifically, exact results
for the avoidance of a number of classical patterns with at most 2 distinct letters were
found in [5]. As far as we know nothing has been studied for the general case of counting
words with r occurrences of a classical pattern. For subword patterns some results are
known for r occurrences [6, 7]. For POP-based enumeration for words and other objects,
see [4, 10, 12, 13].

Notation 1. If j is a letter, we use jp to represent

jj · · · j
︸ ︷︷ ︸

p copies of j

.

For example, 23132 = 222133.

In [9], Flajolet et al. studied in detail some properties of the random variable X(τ ′),
the number of occurrences of a hidden word τ ′ in a random k-ary word of length n,
including the mean and variance of its distribution. A hidden word is simply a word that
must be found as an exact subsequence of another word, e.g. 132 is found in 1432 once
as 1432. For a classical pattern τ , and fixed k, let T (τ) = {w ∈ [k]|τ | | η(w) = τ}. In
a random word σ ∈ [k]n, if Y (τ) is the number of occurrences of τ as a classical pattern
and X(τ ′) is the number of occurrences of τ ′ as a hidden word, then

Y (τ) =
∑

τ ′∈T (τ)

X(τ ′). (1)
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We note that the distribution of X(τ ′) is the same for all τ ′ ∈ T (τ). Thus (1) implies
EY (τ) = |T (τ)|EX(τ). However, the random variables {X(jp) | 1 ≤ j ≤ k} are not
asymptotically independent since, for example

P

[

Y (1p) =

(
i

p

)

, Y (2p) =

(
j

p

)]

=

(
n

i

)(
n − i

j

)

(1/k)i (1/k)j (1 − 2/k)n−i−j

≁

(
n

i

)

(1/k)i (1 − 1/k)n−i

(
n

j

)

(1/k)j (1 − 1/k)n−j

= P

[

Y (1p) =

(
i

p

)]

· P

[

Y (2p) =

(
j

p

)]

,

which means that known results for hidden words are not directly transformed into results
for classical POPs.

The structure of the paper is as follows. In Section 2 we find a recursion for |W
[k]
n (τ ; r)|

where τ = 1′1′′ · · · 1(p)2q and obtain an asymptotic expression. In Section 2.1 we simplify
the asymptotic expression for the case of τ = 12q and establish a connection to integer
partitions. In Section 3 we derive a recursion for |W

[k]
n (τ ; r)| where τ = 2p12q and also ob-

tain an asymptotic expression. We conclude in Section 4, mentioning possible extensions
to this work.

2 The pattern 1
′
1
′′ · · · 1(p)

2
q

For p, q ≥ 1, we let 1′2p,q represent the partially ordered pattern 1′1′′ · · ·1(p)2q, where
1(p) means 1 with p primes. An occurrence of 1′2p,q is formed by a subsequence φ =
(φ1, . . . , φp, φp+1, . . . , φp+q) where

φi < φp+1 = φp+2 = · · · = φp+q, 1 ≤ i ≤ p.

Let fr(n, k) = |W
[k]
n (1′2p,q; r)|, and let Fr,k(x) =

∑

n≥0 fr(n, k)xn.

Notation 2. We use
[x]n = x(x − 1) · · · (x − (n − 1))

to denote the nth falling factorial of x, and

[x]n = x(x + 1) · · · (x + (n − 1))

to denote the nth rising factorial of x.

Notation 3. For a proposition S, the notation [S] stands for 1 if S is true, 0 otherwise.

Notation 4. We say that
f(x) = O

(
(1 − x)−a

)
,

where a > 0, if

f(x) =
p(x)

(1 − x)a

for some polynomial p(x).
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Theorem 1. For k ≥ 1, Fr,k(x) is a rational function of the form

pr,k(x)

(1 − x)αr,k
,

where pr,k(x) is either 0 or a polynomial such that pr,k(1) 6= 0, and αr,k > 0.

Proof. We begin by deriving a recursion for fr(n, k). We comment that this extends the
work in [5], that deals with avoidance of classical patterns with at most two distinct
letters. For the initial values we have, for 0 ≤ n < p + q,

fr(n, k) = [r=0] kn.

For the general case n ≥ p + q, we recursively count σ ∈ W
[k]
n (1′2p,q; r) by first counting

σ such that at least one of the first p letters is k. By the principle of inclusion-exclusion,
the number of such σ is

p
∑

m=1

Nm(−1)m+1,

where Nm is the sum, over all m-subsets of the first p positions, of the number of words
σ with k’s in the positions given by the subset. The quantity Nm is given by

Nm =

(
p

m

)

fr(n − m, k),

since inserting m copies of k into any of the first p positions of words from the set
W

[k]
n−m(1′2p,q; r) is reversible and does not affect the number of occurrences of 1′2p,q.
Now we count the σ’s that have no k’s in their first p positions. Let b be the number

of k’s in σ. If b ≤ q − 1, then there are not enough k’s to be part of a pattern, so there
are

q−1
∑

b=0

(
n − p

b

)

fr(n − b, k − 1),

words of this kind. But if b ≥ q then there will be at least one occurrence of the pattern,
and we count in the following manner: We use the position vector aaab = (a1, . . . , ab−(q−1))
to denote the positions in σ of the 1st through (b − (q − 1))th copies of k (the positions
of the last q − 1 copies of k do not affect the number of occurrences of the pattern), and
we let A = ab−(q−1). The number of occurrences of 1′2p,q that the k’s of σ are part of is
seen to be

ā =

b−(q−1)
∑

i=1

(
b − i

q − 1

)(
ai − i

p

)

. (2)

Once aaab is known, the number of ways of placing the remaining q− 1 copies of k is
(

n−A

q−1

)
.

Thus we have, for n ≥ p + q, k ≥ 1,
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fr(n, k) =

p
∑

m=1

(
p

m

)

fr(n − m, k)(−1)m+1 +

q−1
∑

b=0

(
n − p

b

)

fr(n − b, k − 1)

+
∑

q≤b≤n−p

∑

aaab
A≤n−q+1

1≤ā≤r

(
n − A

q − 1

)

fr−ā(n − b, k − 1), (3)

where ā depends on aaab and is given in (2).
After multiplying (3) by xn and summing, we have

Fr,k(x) =
1

(1 − x)p






q−1
∑

b=0

b∑

i=0

λb,ix
i+b di

dxi
Fr,k−1(x)

+
∑

b≥q

∑

aaab
1≤ā≤r

q−1
∑

i=0

λb,i,Axi+b di

dxi
Fr−ā,k−1(x) + P (x)




 , (4)

for rational λ’s, where P (x) is the polynomial

P (x) =

p
∑

m=0

(
p

m

)

(−1)m

p+q−m−1
∑

n=0

fr(n, k)xn+m −

q−1
∑

b=0

p+q−b−1
∑

n=0

(
n + b − p

b

)

fr(n, k − 1)xn+b

−
∑

b≥q

∑

aaab
1≤ā≤r

A+q−1−b
∑

n=0

(
n + b − A

q − 1

)

fr−ā(n, k − 1)xn+b.

We observe that Fr,k(x) can never be a nonzero polynomial. Indeed, from its combi-
natorial definition we have that

σ ∈ W [k]
n (1′2p,q; r) implies kσ ∈ W

[k]
n+1(1

′2p,q; r).

Hence, the theorem can now be proved by induction on k, starting with k = 1 from the
initial values:

Fr,0(x) = [r=0] , Fr,1(x) = [r=0]
1

1 − x
.

For j ≥ 1, we let cj be the number of solutions aaab = (a1, a2, . . . , ab−(q−1)), 1 ≤ a1 <
· · · < ab−(q−1), to

j =

b−(q−1)
∑

i=1

(
b − i

q − 1

)(
ai − i

p

)

,

for any b. We take c0 = 1, and we let C(x) =
∑

j≥0 cjx
j .
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Corollary 1. The function Fr,k(x) has the following asymptotic form:

Fr,k(x) = Dr,k (1 − x)−αk + O
(
(1 − x)−αk+1

)
, k ≥ 1

where

αk = (k − 1)(q + p − 1) + 1, Dk(x) =
∑

r≥0

Dr,kx
r = Ck−1(x)

k−1∏

i=1

(
αi + q − 2

q − 1

)

.

Proof. We proceed by induction on k. For the base case

Fr,1(x) = [r=0]
1

1 − x
,

we have αk = 1 = (1 − 1)(q + p − 1) + 1, and D1(x) = 1 = C1−1(x)
∏1−1

i=1

(
αi+q−2

q−1

)
.

For the inductive step, we assume Corollary 1 holds for all k, 1 ≤ k < K. Theorem
1 allows us to turn (4) (where λq−1,q−1 = λb,q−1,A = 1

(q−1)!
) into the following asymptotic

relation:

Fr,K(x) =
1

(1 − x)p

(
∑

0≤j≤r

cj

1

(q − 1)!

dq−1

dxq−1
Fr−j,K−1(x) + P (x)

)

+ O
(
(1 − x)−αK+1

)
.

(5)

By the inductive hypothesis, the terms in the sum on j dominate P (x) unless they are 0.
However, we show that if the sum in (5) is 0, then P (x) is 0 as follows: Since F0,K−1(x)
is nonzero and c0 = 1, if the sum is 0, then r > 0. In this case,

P (x) = −
∑

q≥b

∑

aaab
1≤ā≤r

A+q−1−b
∑

n=0

(
n + b − A

q − 1

)

fr−ā(n, K − 1)xn+b.

Let us assume the sum is 0, and pick a j, 1 ≤ j ≤ r. If cj = 0, then there are no fr−j(n, K−
1) terms in P (x). If cj 6= 0, then Fr−j,K−1(x) = 0, in which case all fr−j(n, K − 1) terms
in P (x) are 0. This shows that P (x) = 0.

This means that we have

Fr,K(x) =
1

(1 − x)p

(
∑

0≤j≤r

cj

1

(q − 1)!

dq−1

dxq−1
Fr−j,K−1(x)

)

+ O
(
(1 − x)−αK+1

)
.
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By the inductive hypothesis:

Fr,K(x) =
1

(1 − x)p

(
r∑

j=0

cj

(q − 1)!
Dr−j,K−1[αK−1]

q−1(1 − x)−αK−1−(q−1)

)

+ O
(
(1 − x)−αK+1

)

=

((
αK−1 + q − 2

q − 1

) r∑

j=0

cjDr−j,K−1

)

(1 − x)−((K−2+1)(q+p−1)+1)

+ O
(
(1 − x)−αK+1

)

=

((
αK−1 + q − 2

q − 1

) r∑

j=0

cjDr−j,K−1

)

(1 − x)−αK + O
(
(1 − x)−αK+1

)
.

This means that

DK(x) =

(
αK−1 + q − 2

q − 1

)

C(x)DK−1(x),

which, along with the inductive hypothesis gives

DK(x) = CK−1(x)
K−1∏

i=1

(
αi + q − 2

q − 1

)

.

So the theorem is proved.

Corollary 2. We have that as n → ∞

fr(n, k) =
Dr,k

((k − 1)(q + p − 1))!
n(k−1)(q+p−1) + O

(
n(k−1)(q+p−1)−1

)
.

Proof. We note that

[xn](1 − x)−a =

(
n + a − 1

a − 1

)

= na−1 + O
(
na−2

)

and the result is seen directly.

2.1 The pattern 12q

In this subsection p is set to 1 and we look at the pattern 1′21,q, which is the (classical)
pattern 12q = 122 · · ·2. This is a particular case of interest for which we can produce more
precise estimates. For q fixed, let f̃r(n, k) = |W

[k]
n (12q; r)|, and F̃r,k(x) =

∑

n≥0 f̃r(n, k)xn.
If instead of using aaab for the positions of the k’s we use it for the spacing in between

them, we can get an expression for C(x), and a simpler asymptotic expression for f̃r(n, k).
Thus we now let aaab = (a1, a2, . . . , ab−(q−1)) where a1 is the number of entries before the
first k, minus 1 (there is at least one non-k entry at the beginning of σ), and, for i > 1,
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ai is the number of non-k entries between the (i − 1)th and ith k. Thus for all i, ai ≥ 0.
We let ā be the number of occurrences of 12q that the k’s are part of. It can be seen that

ā =

(
b

q

)

+

b−(q−1)
∑

i=1

ai

(
b − i + 1

q

)

=

(
b

q

)

+
b∑

i=q

ab−i+1

(
i

q

)

where the
(

b

q

)
is correcting for the 1 subtracted from a1.

The definition of cj is now the (finite) number of solutions aaab (for any b, b ≥ q) to

j −

(
b

q

)

=

b∑

i=q

ai

(
i

q

)

,

and c0 = 1. Thus for p = 1 we can define C(x) as

∑

j≥0

cjx
j = C(x) = 1 +

∑

b≥q

x(b

q)
b∏

i=q

1

1 − x(i

q)
, (6)

since [x0]C(x) = 1 and for j ≥ 1,

[xj ]C(x) =
∑

b≥q

[xj−(b

q)]
b∏

i=q

1

1 − x(i

q)

= cj.

Remark 1. We have that C(x) =
∏

i≥q
1

1−x
(i

q)
is the ordinary generating function for

the number of partitions of n into qth order binomial coefficients. This can be easily seen
since the terms of C(x) in (6) correspond to such a partition either being empty, or having
largest part

(
b

q

)
.

The new expression for C(x) allows us to supply the following computational recursion
for cn:

c0 = 1, cn =
1

n

n∑

j=1

∑

(i

q)|j
i≥q

(
i

q

)

cn−j , n ≥ 1.

The sequences cn for q = 1, 2 and 3 are found as EIS A000041, EIS A007294 and EIS
A068980, respectively, in [17]. We note that C(x) is also the ordinary generating function
for the number of partitions of n with non-negative q-th differences [1].

Now if we let

D̃r,k =
Dr,k

(qk − q)!
,

then we have

D̃k(x) =
∑

r≥0

D̃r,kx
r =

1

(qk − q)!
Ck−1(x)

k−1∏

i=1

(
iq − 1

q − 1

)

=
Ck−1(x)

(q!)k−1(k − 1)!
.

the electronic journal of combinatorics 18 (2011), #p143 8



H
H

H
H

H
H

r
k

1 2 3 4

0 1.0 0.50 0.13 0.021
1 0 0.50 0.25 0.063
2 0 0.50 0.38 0.13
3 0 1.0 0.75 0.27
4 0 1.0 1.1 0.50
5 0 1.0 1.5 0.81
6 0 2.0 2.5 1.4
7 0 2.0 3.5 2.3
8 0 2.0 4.5 3.4
9 0 3.0 6.5 5.2
10 0 3.5 8.8 7.7
11 0 3.5 11 11
12 0 5.0 15 16

Table 1: Rounded values of D̃r,k for the pattern 122.

By Corollary 1 we have, for k ≥ 1,

F̃r,k(x) = (qk − q)!D̃r,k(1 − x)−qk+q−1 + O
(
(1 − x)−qk+q

)
.

In addition, from Corollary 2 we have that as n → ∞

f̃r(n, k) = D̃r,kn
qk−q + O

(
nqk−q−1

)
.

The magnitudes and growth of some initial values of D̃r,k are provided in Table 1 for
the pattern 122.

3 The pattern 2
p
12

q

We now turn to the pattern 2 · · ·212 · · ·2 = 2p12q. An occurrence of 2p12q is formed by
a subsequence φ = (φ1, φ2, . . . , φp+q+1) where

φp+1 < φ1 = · · · = φp = φp+2 = · · · = φp+q+1.

If we set p = 0, we have the pattern 12q from Section 2.1 and the following recursion is
valid for this case. However, the asymptotic results derived in this section only apply for
p, q ≥ 1. We let hr(n, k) = |W

[k]
n (2p12q; r)| and Hr,k(x) =

∑

n≥0 hr(n, k)xn.

Theorem 2. For k ≥ 1, Hr,k(x) is a rational function of the form

qr,k(x)

(1 − x)αr,k
,

where qr,k(x) is either 0 or a polynomial such that qr,k(1) 6= 0, and αr,k > 0.
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Proof. We derive a recursion for hr(n, k), in a different manner from Section 2, but again

with reference to [5]. Given a word σ ∈ W
[k]
n (2p12q; r), we again let b represent the number

of letters k in σ.
This time we immediately split into two cases: whether or not the b letters k are part

of an occurrence of 2p12q.
In the case that they are not, our counting depends on b. If b ≤ p + q − 1, their

positions do not matter, so there are
(

n

b

)
hr(n − b, k − 1) such words σ. If b ≥ p + q,

then the pth k from the left through to the qth k from the right must be consecutive in
σ, and there are

(
n−b+p+q−1

p+q−1

)
hr(n − b, k − 1) such words. This comes from the following

procedure: Let the number of k’s between the pth k from the left and the qth k from the
right (inclusive) be

m = b − (p − 1) − (q − 1).

Let us say we are given n − m + 1 slots in which we place the (p − 1) and (q − 1) letters
k and one extra k. Then the extra k is replaced with all m copies of k. The remaining
slots are filled with a (k − 1)-ary word of length n − b with r occurrences of the pattern,
giving

(
n − m + 1

(p − 1) + (q − 1) + 1

)

hr(n − b, k − 1) =

(
n − b + p + q − 1

p + q − 1

)

hr(n − b, k − 1)

words.
Finally, for the case in which the k’s in σ are involved in at least one occurrence

of the 2p12q pattern, we need only know the positions of the k’s within the subword
α between the pth k from the left in σ and the qth k from the right, exclusive. If α
contains at least one non-k letter, the k’s are part of an occurrence of 2p12q in σ. Let
aaab = (a1, a2, . . . , ab−p−q+1) be the spacing in between the k’s in α, where a1 is the number
of non-k entries in α before its first k, ab−p−q+1 is the number of non-k entries in α after
its last k, and for 2 ≤ i ≤ b− p− q, ai is the number of non-k entries between the ith and
(i + 1)th k in α (in the particular case aaab = (a1), a1 is the length of α). It can be seen
that in σ, the k’s are part of

ā =

b−p−q+1
∑

i=1

ai

(
p + i − 1

p

)(
b − p + 1 − i

q

)

occurrences of 2p12q.
To see that the number of σ with a given aaab is

(
n−|α|−1
p+q−1

)
hr−ā(n− b, k − 1), we note the

following. Let |α| = ‖aaab‖1 + b−p− q be the length of α, where ‖aaab‖1 is the sum of entries
in aaab. Given n − |α| slots there are

(
n−|α|−1
p+q−1

)
ways to place p + q letters k such that the

pth and (p + 1)th k are adjacent. For each of these ways, we insert |α| slots between the
pth and (p + 1)th k for α, place k’s in the inserted slots according to aaab and fill the rest

with some σ′ ∈ W
[k]
n−b(2

p12q; r − ā).
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Putting all the pieces together, we get for n ≥ 0 and k ≥ 1

hr(n, k) =

p+q−1
∑

b=0

(
n

b

)

hr(n − b, k − 1) +
n∑

b=p+q

(
n − b + p + q − 1

p + q − 1

)

hr(n − b, k − 1)

+
∑

b≥p+q

∑

aaab�0
1≤ā≤r

b+‖aaab‖1≤n

(
n − |α| − 1

p + q − 1

)

hr−ā(n − b, k − 1), (7)

We also have hr(n, 0) = [n=r=0]. We take hr(n, k) = 0 for negative n. Similarly to what
we have seen in Theorem 1, when we multiply (7) by xn and sum on n ≥ 0 we have

Hr,k(x) =

p+q−1
∑

b=0

b∑

i=0

λi,bx
i+b di

dxi
Hr,k−1(x) +

xp+q

1 − x

p+q−1
∑

i=0

λix
i di

dxi
Hr,k−1(x)

+
∑

b≥p+q

∑

aaab�0
1≤ā≤r

(
p+q−1
∑

i=0

λ|α|,i,bx
i+b di

dxi
Hr−ā,k−1(x) − P (x)

)

, (8)

where P (x) is the polynomial
∑‖a‖1−1

n=0

(
n+b−|α|−1

p+q−1

)
hr−ā(n, k−1)xn+b. Now using the initial

value

Hr,1(x) = [r=0]
1

1 − x
,

and the fact that Hr,k(x) cannot be a nonzero polynomial, the theorem can be seen directly
by induction.

We let cj be the number of solutions aaab to

j =

b−p−q+1
∑

i=1

ai

(
p + i − 1

p

)(
b − p + 1 − i

q

)

.

We observe that cj is only guaranteed to be finite if we require p, q ≥ 1; because of this,
the asymptotics that follow assume these conditions. We remark that this means the
following results are not a generalization of Section 2.1.

Let t = p + q − 1 and consider (8). Since λt = λt,t = λ|α|,t,b = 1
t!
, setting x factors

to 1 and keeping only the highest derivative for each Hj,k(x), 0 ≤ j ≤ r, since the other
derivatives are of smaller order, yields, for k ≥ 2

Hr,k(x) =
1

t!

(

1

1 − x

dt

dxt
Hr,k−1(x) +

r∑

j=1

cj

dt

dxt
Hr−j,k−1(x)

)

+ O
(
(1 − x)−αr,k+1

)
. (9)
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Corollary 3. The function Hr,k(x) has the following asymptotic form:

Hr,k(x) = Dr,k(1 − x)−αr,k + O
(
(1 − x)−αr,k+1

)
,

where

αr,k =

{

k(t + 1) − t − 1 if r > 0,

k(t + 1) − t if r = 0,

and

Dr,1 = [r=0], D0,k =
((k − 1)(t + 1) − 1)!

((t + 1)!)k−1(k − 2)!
, k ≥ 2,

and for r > 0 and k ≥ 2

Dr,k =
k∑

i=2

yixi+1xi+2 · · ·xk, (10)

where

xi =
1

t!
[αr,i−1]

t, yi = crD0,i−1[α0,i−1]
t 1

t!
.

Proof. We first prove the value of αr,k. We begin with the case r = 0, using induction on
k. The base case is k = 1, for which we have

H0,1(x) =
1

1 − x
,

giving α0,1 = 1(t + 1) − t = 1.
We assume the theorem holds for k, 1 ≤ k < K. From (9) we have

H0,K(x) =
1

t!

1

1 − x

dt

dxt
Hr,K−1(x) + O

(
(1 − x)−α0,K+1

)
.

By the inductive hypothesis:

H0,K(x) =
1

t!

1

1 − x
D0,K−1[α0,K−1]

t(1 − x)−α0,K−1−t + O
(
(1 − x)−α0,K+1

)

=
1

t!
D0,K−1[α0,K−1]

t(1 − x)−((K−1)(t+1)−t)−t−1 + O
(
(1 − x)−α0,K+1

)

=
1

t!
D0,K−1[α0,K−1]

t(1 − x)−K(t+1)+t + O
(
(1 − x)−α0,K+1

)
.

Now we consider the case r > 0. For the base case k = 1, Hr,1(x) = 0, and we take
αr,1 = 0 = 1(t + 1) − t − 1.

For the inductive step we assume the theorem holds for k, 1 ≤ k < K. We have

Hr,K(x) =
1

t!

(

1

1 − x

dt

dxt
Hr,K−1(x) +

r∑

j=1

cj

dt

dxt
Hr−j,K−1(x)

)

+ O
(
(1 − x)−αr,K+1

)
.
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Using the inductive hypothesis,

Hr,K(x) =
1

t!

(

1

1 − x
Dr,K−1[αr,K−1]

t(1 − x)−(K−2)(t+1)−t

+

r−1∑

j=1

cjDr−j,K−1[αr−j,K−1]
t(1 − x)−(K−2)(t+1)−t

+ crD0,K−1[α0,K−1]
t(1 − x)−(K−1)(t+1)

)

+ O
(
(1 − x)−αr,K+1

)
.

The dominating terms are the first and the third, as long as they are nonzero. The third
term is nonzero because we know cr, D0,K−1, and α0,K−1 are positive, so we can say:

Hr,K(x) =
1

t!

(
Dr,K−1[αr,K−1]

t(1 − x)−(K−2)(t+1)−t−1

+ crD0,K−1[α0,K−1]
t(1 − x)−(K−1)(t+1)

)
+ O

(
(1 − x)−αr,K+1

)

=
1

t!

(
Dr,K−1[αr,K−1]

t + crD0,K−1[α0,K−1]
t
)
(1 − x)−(K(t+1)−t−1)

+ O
(
(1 − x)−αr,K+1

)
.

Next we consider the value of Dr,k. From what we have shown so far, it is clear that

D0,1 = 1 D0,k =
1

t!
[α0,k−1]

tD0,k−1, k ≥ 2.

This gives for k ≥ 2

D0,k =
((k − 1)(t + 1) − 1)!

((t + 1)!)k−1(k − 2)!
.

For r > 0, we have the first-order linear recursion

Dr,1 = 0 Dr,k =
1

t!

(
Dr,k−1[αr,k−1]

t + crD0,k−1[α0,k−1]
t
)
, k ≥ 2.

Its solution is given in (10).

The following corollary has a proof similar to the one in Corollary 2.

Corollary 4. We have that as n → ∞

h0(n, k) =
Dr,k

((k − 1)(t + 1))!
n(k−1)(t+1) + O

(
n(k−1)(t+1)−1

)
,

and for r > 0, as n → ∞

hr(n, k) =
Dr,k

((k − 1)(t + 1) − 1)!
n(k−1)(t+1)−1 + O

(
n(k−1)(t+1)−2

)
.
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4 Conclusion

In the previous sections we have shown how the asymptotic form of |W
[k]
n (τ ; r)| as n → ∞

may be computed, for two families of patterns with two parameters each. Whether these
expressions can be simplified further remains open, as well as the asymptotic form of
the distribution of occurrences of a given classical pattern or classical POP. For a hidden
word, the number of occurrences is asymptotically normal [9].

One area of possible further work is an extension of the recursions and generating
functions in this paper to the following scenario. Consider a weight function w defined on
letters, and additively on words, i.e. for a word σ of length n, w(σ) = w(σ1)+ · · ·+w(σn).
If w(j) = 1 for all j, then the weight of a word is its length; if w(j) = j for all j, then the
weight of a word is its order as an integer composition. Instead of counting k-ary words
of length n as this paper does, consider counting k-ary words with weight m.

For example, the ordinary generating function for k-ary words with occurrences of 1p

marked by u and weight marked by x is

Gk(x, u) =
k∏

i=1

∑

n≥0

u(n

p)xn w(i)

n!
.

Using a general weight function seems to complicate the analysis substantially, but it may
be possible to treat some particular weight functions.
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