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Abstract

We prove that, for sufficiently large n, the first player can win the strong perfect

matching and Hamilton cycle games. For both games, explicit winning strategies of

the first player are given. In devising these strategies we make use of the fact that

explicit fast winning strategies are known for the corresponding weak games.

1 Introduction

Let X be a finite set and let F ⊆ 2X be a family of subsets of X. In the strong game
(X,F), two players, called Red and Blue, take turns in claiming one previously unclaimed
element of X, with Red going first. The winner of the game is the first player to fully
claim some F ∈ F . If neither player is able to fully claim some F ∈ F by the time every
element of X has been claimed by either player, the game ends in a draw. The set X will
be referred to as the board of the game and the elements of F will be referred to as the
winning sets.

It is well known from classic Game Theory that, for every strong game (X,F), either
Red has a winning strategy (that is, he is able to win the game against any strategy of
Blue) or Blue has a drawing strategy (that is, he is able to avoid losing the game against
any strategy of Red; a strategy stealing argument shows that Blue cannot win the game).
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For certain games, a hypergraph coloring argument can be used to prove that draw is
impossible and thus these game are won by Red. Unfortunately, not much more is known
about strong games. In particular, an explicit winning (or drawing) strategy is known
only in rare cases. We illustrate this with the following example. In the strong game
RG(n, q) the board is E(Kn) and the winning sets are all edge sets of copies of Kq. It is
well known that R(3) = 6, R(4) = 18 and R(5) ≤ 49, where R(q) is the diagonal Ramsey
number (see, e.g., [5]). Hence, the games RG(6, 3), RG(18, 4) and RG(49, 5) cannot end
in a draw and are thus a first player’s win by strategy stealing. An explicit winning
strategy of the first player is known for RG(6, 3), but not for RG(18, 4) or RG(49, 5).
Finding such a strategy for RG(18, 4) or RG(49, 5) is an open problem in [1], where the
latter is expected there to be “hopeless”.

Partly due to the great difficulty of studying strong games, weak games were intro-
duced. In the weak game (X,F) (more commonly known as a Maker-Breaker game) two
players, called Maker and Breaker, take turns in claiming one previously unclaimed el-
ement of X, with Maker going first (sometimes we will assume that Breaker starts the
game; whenever we do, it will be stated explicitly). The game ends as soon as every
element of X is claimed by either player. Maker wins the game (X,F) if, by the end of
the game, he is able to fully claim some F ∈ F ; otherwise Breaker wins this game. Note
that draw is impossible by definition. If Maker has a strategy to win this game against
any strategy of Breaker, then we say the game is Maker’s win; otherwise we say it is
Breaker’s win. It turns out that weak games are much easier to study than strong games.
Indeed, the theory of weak games is highly developed (the reader is referred to [1] for
further details).

Nonetheless, this paper deals with strong games. The starting point of our study of
strong games is the following simple observation.

Observation 1.1 Let X be a finite set, let F ⊆ 2X be a family of subsets of X and let
n := min{|F | : F ∈ F} denote the minimum cardinality of a winning set of F . If Maker
(as either first or second player) has a strategy to win the weak game (X,F) in n moves,
then Red has a strategy to win the strong game (X,F) in n moves.

Indeed, since Red is the first player, Blue has no time to fully claim a winning set.
Red can focus on building rather than be worried with blocking Blue’s building attempts.

For example, Maker can build a connected graph in n−1 moves (this is easy to see and
also follows from [4]) and thus Red has a winning strategy for the corresponding strong
game by Observation 1.1.

Surprisingly, this trivial observation is, in some sense, best possible. Indeed, con-
sider the following game. Let n ≥ 3 be an integer. Let A = {a1, . . . , a9} and let
FA = {{a1, a2, a3}, {a4, a5, a6}, {a7, a8, a9}, {a1, a4, a7}, {a2, a5, a8}, {a3, a6, a9},
{a1, a5, a9}, {a3, a5, a7}}. That is, (A,FA) is just the game Tic-Tac-Toe. Let B =
{b1, . . . , b2n−6} and let FB = {F ⊆ B : |F | = n − 3}. Finally, let X = A ∪ B and
let F = {Fa ∪ Fb : Fa ∈ FA, Fb ∈ FB}. Note that F is n-uniform. It is well known (see,
e.g., [1]) and easy to prove that strong Tic-Tac-Toe is a draw whereas weak Tic-Tac-Toe
is won by Maker (as the first player) in 4 moves. It follows that, by playing the games
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FA and FB in parallel, using his 4-move winning strategy in the former and playing ar-
bitrarily in the latter, Maker can win the weak game (X,F) in n + 1 moves (as the first
player) by playing his first move in FA and then responding in the same game in which
Breaker plays. On the other hand, Blue can force a draw in the strong game (X,F) by
following Breaker’s winning strategy (as the second player) for the game (A,FA) (Blue
cannot prevent Red from fully claiming a winning set of FB, but a draw in (A,FA) entails
a draw in (X,F)).

Nonetheless, in this paper we consider two natural games which are known to be won
very quickly by Maker (within t + 1 moves, where t denotes the minimum cardinality
of a winning set) and transform Maker’s winning strategy for these games to a winning
strategy of Red in the corresponding strong games. Let n be a positive integer. The
board of both games is E(Kn), the edge set of the complete graph on n vertices. Hence,
from now on we identify a game only by its family of winning sets.

In the perfect matching game Mn the winning sets are all sets of ⌊n/2⌋ independent
edges of Kn. Note that if n is odd, then such a matching covers all vertices of Kn but
one.

The following result was proved in [3]:

Theorem 1.2 (Theorem 1.2 in [3]) For sufficiently large n, Maker has a winning
strategy for the weak game Mn, even if Breaker is the first player. Moreover, if n is
odd, then Maker can win this game within ⌊n/2⌋ moves, and if n is even, then Maker can
win within n/2 + 1 moves.

Using this result we can prove the following:

Theorem 1.3 For sufficiently large n, Red has a winning strategy for the strong game
Mn. Moreover, he can win this game within ⌊n/2⌋ moves if n is odd and within n/2 + 2
moves if n is even.

In the Hamilton cycle game Hn the winning sets are all edge sets of Hamilton cycles
of Kn.

It was proved in [2] that Maker can win the weak game Hn within n + 1 moves. Here
however, we will use the following slightly weaker result from [3]:

Theorem 1.4 (Theorem 1.1 in [3]) For sufficiently large n, Maker has a winning
strategy for the weak game Hn, even if Breaker is the first player. Moreover, Maker
can win this game within n + 2 moves.

Using this result we can prove the following:

Theorem 1.5 For sufficiently large n, Red has a winning strategy for the strong game
Hn. Moreover, he can win this game within n + 2 moves.
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Note that in both games Mn and Hn our strategy for Red requires one more move
than the fastest strategies for Maker. We discuss this point further in Section 4.
The rest of this paper is organized as follows: in Subsection 1.1 we introduce some no-
tation and terminology that will be used throughout this paper. In Section 2 we prove
Theorem 1.3 and in Section 3 we prove Theorem 1.5. Finally, in Section 4 we present
some open problems.

1.1 Notation and terminology

Our graph-theoretic notation is standard and follows that of [5]. In particular, we use the
following.

For a graph G, let V (G) and E(G) denote its sets of vertices and edges respectively.
Let ∆(G) denote the maximum degree of G. For a set S ⊆ V (G), let G[S] denote the
subgraph of G, induced on the vertices of S. For an edge e ∈ E(G) we denote by G \ e
the graph with vertex set V (G) and edge set E(G) \ {e}. A graph is called a linear forest
if each of its connected components is a path.

Assume that some strong game, played on the edge set of some graph G, is in progress.
At any given moment during this game, we denote the graph spanned by Red’s edges by
R, and the graph spanned by Blue’s edges by B. At any point during the game, the edges
of G \ (R ∪ B) are called free. We also denote by dR(v) and dB(v) the degree of a given
vertex v ∈ V (G) in R and in B respectively.

2 The Perfect Matching Game

Proof of Theorem 1.3
Let n be sufficiently large. Assume first that n is odd. Following Maker’s strategy

whose existence is guaranteed by Theorem 1.2, Red can build an almost perfect matching
of Kn in ⌊n/2⌋ moves. It follows from Observation 1.1 that Red wins the strong game
Mn in ⌊n/2⌋ moves as claimed.

Assume then that n is even. Let k = n − 2⌊n/4⌋ and let SM be a winning strategy
for Maker in the weak Mk game. Before describing Red’s strategy we prove the following
simple lemma.

Lemma 2.1 Assume that just before Red’s (n/2)th move in the strong game Mn the
following properties hold:

(i) Red’s current graph consists of n/2 − 1 independent edges and two isolated vertices x
and y.

(ii) There exist two edges uv and wz in Red’s graph such that the subgraph of Blue’s graph
induced on the vertices of {u, v, w, z, x, y} consists solely of the edge xy.

(iii) There are at least 3 isolated vertices in B[V (Kn) \ {v}].
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Then, for sufficiently large n, Red wins the strong game Mn within at most 3 additional
moves.

Proof In his (n/2)th move Red claims the edge xu. Blue must respond by claiming the
edge yv, as otherwise Red will claim it in his next move and thus win. Note that, since
Blue has previously claimed xy, it follows from property (iii) above that, after claiming
yv, there are still at least 3 isolated vertices in Blue’s graph. Hence, Blue cannot win the
game in his (n/2 + 1)st move. In his (n/2 + 1)st move, Red claims the edge wy. Since
Blue cannot win or claim both zx and zv in his (n/2+1)st move, Red claims one of them
in his (n/2 + 2)nd move and thus wins. 2

In what follows, we present a strategy for Red in the strong game Mn and then prove
that, by following it, Red wins the game within n/2 + 2 moves against any strategy of
Blue.

At any point during the game, a vertex v is called distinct if it is isolated in Red’s
graph but not in Blue’s graph. For every 1 ≤ i ≤ n/2, let Di denote the set of all distinct
vertices immediately after Red’s ith move and let D′

i denote the set of all distinct vertices
immediately after Blue’s ith move. Red’s strategy consists of several stages.
Stage 1: In his first move, Red claims an arbitrary edge e1 = uv. Let f1 = u′v′ denote
the edge claimed by Blue in his first move. In his second move, Red plays as follows. If
e1 and f1 share a vertex, then Red claims an arbitrary free edge e2 which is independent
of both e1 and f1; otherwise, he claims a free edge e2 = u′w, for some w ∈ V (Kn)\{u, v}.
Red then proceeds to Stage 2.
Stage 2: For every 3 ≤ i ≤ ⌊n/4⌋, in his ith move Red claims an edge ei which is
independent of his previously claimed edges while making sure that |Di| = 1 (we will
prove later that this is indeed possible). If ∆(B) > 1 holds immediately after Blue’s
⌊n/4⌋th move, then Red skips to Stage M. Otherwise, for every ⌊n/4⌋+ 1 ≤ i ≤ n/2− 1,
in his ith move Red claims an edge ei which is independent of his previously claimed edges
while making sure that |Di| = 1. He then proceeds to Stage 3.
Stage 3: Red completes his matching by claiming at most 3 additional edges as outlined
in Lemma 2.1 (an explanation of why this can be done will follow shortly).
Stage M: Let VR denote the set of isolated vertices in Red’s graph; note that |VR| =
n − 2⌊n/4⌋ = k is even. Playing on Kn[VR], Red follows SM and thus builds a perfect
matching of Kn[VR] in k/2 + 1 moves.

It remains to prove that Red can indeed follow all parts of his strategy and that this
ensures his win in the strong game Mn within n/2 + 2 moves. It is obvious that Red can
follow Stage 1 of his strategy. The following lemma asserts that he can follow Stage 2 of
his strategy (either for ⌊n/4⌋ − 2 or n/2 − 3 moves).

Lemma 2.2 For every 2 ≤ i ≤ n/2 − 1, Red can ensure that, immediately after his ith
move (assuming it is played during Stage 2), his graph is a matching consisting of i edges
and |Di| = 1.

Proof We prove the lemma by induction on i. Red’s strategy for Stage 1 yields |D2| = 1;
this settles the case i = 2. Assume that Di = {z} holds for some 2 ≤ i ≤ n/2 − 2. We
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prove that, in his (i + 1)st move, Red can claim an edge which is independent of all of
his previously claimed edges while ensuring |Di+1| = 1. In his ith move Blue claims some
edge f = xy; clearly 1 ≤ |D′

i| ≤ 3 must hold. We distinguish between the three possible
cases:

Case 1: |D′
i| = 1. It follows that dR(x) = 1 = dR(y) and D′

i = {z}. Red claims any free
edge uv which is independent of all of his previously claimed edges and such that
z /∈ {u, v}.

Case 2: |D′
i| = 2. It follows that D′

i = {x, z} (the case D′
i = {y, z} can be handled simi-

larly). Red claims a free edge xw, for some w ∈ V (Kn) \ {z}, which is independent
of all of his previously claimed edges.

Case 3: |D′
i| = 3. It follows that D′

i = {x, y, z}. Red claims the edge xz.

In either case Red’s graph consists of i + 1 independent edges and |Di+1| = 1; hence the
assertion of the lemma follows. 2

Red’s last moves are played either in Stage 3 or in Stage M. First assume the latter,
that is, assume that ∆(B) > 1 holds immediately after Blue’s ⌊n/4⌋th move. It follows
that Blue cannot build a perfect matching within n/2 moves. At the moment, Red’s graph
is a matching M1 consisting of ⌊n/4⌋ edges. By Lemma 2.2, just before Blue’s ⌊n/4⌋th
move there was exactly one distinct vertex. Hence, immediately after Blue’s ⌊n/4⌋th
move, there is at most one edge in B[VR]. It follows that, assuming the role of Maker (as
the second player) in the weak perfect matching game on Kn[VR], Red can build a perfect
matching M2 of Kn[VR] within k/2 + 1 moves. Note that M1 ∪ M2 is a perfect matching
of Kn. Moreover, Red built this matching within ⌊n/4⌋ + (k/2 + 1) = n/2 + 1 moves.
Since, as previously noted, Blue cannot build a perfect matching in n/2 moves, it follows
that Red wins the strong game.

Next, assume the former, that is, assume that ∆(B) = 1 holds immediately after
Blue’s ⌊n/4⌋th move. It follows that the following properties hold immediately after
Red’s (n/2 − 1)th move (that is, at the end of Stage 2):

(a) Red’s graph is a matching consisting of n/2 − 1 edges.

(b) |Dn/2−1| = 1.

(c) |E(B)| = n/2 − 2.

(d) ∆(B) ≤ ⌈n/4⌉ − 1.

It follows by property (a) above that there are exactly two isolated vertices in Red’s
graph, say x and y. It follows by property (b) above that exactly one of the vertices of
{x, y} is distinct. Assume without loss of generality that Dn/2−1 = {x}. In his (n/2−1)th
move, Blue must claim the edge xy as otherwise Red will claim it in his (n/2)th move
and thus win. Immediately after Blue’s (n/2 − 1)th move there are at least 3 isolated
vertices in his graph and, moreover, dB(y) = 1 and dB(x) ≤ ⌈n/4⌉. It follows that there
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exist edges uv and wz in Red’s graph such that xy is the only edge of B[{u, v, w, z, x, y}].
Moreover, if there are exactly 3 isolated vertices in Blue’s graph, then clearly one can
choose v such that dB(v) ≥ 1. Hence, all the conditions of Lemma 2.1 are satisfied and
therefore Red wins the game within at most 3 additional moves.

This concludes the proof of Theorem 1.3. 2

3 The Hamilton Cycle Game

In our proof of Theorem 1.5 we will make use of Theorem 1.4 and of the specific strategy
SH that was used in its proof in [3]. Therefore, we begin by providing a rough outline of
this strategy (for simplicity of presentation we only consider the case where n is even, the
complementary case is similar).

Maker’s strategy SH consists of the following three stages:
Stage 1: Maker builds a perfect matching with one additional edge, that is, he builds

a linear forest which consists of one path of length 3 and n/2 − 2 paths of length 1 each.
This stage lasts exactly n/2 + 1 moves.

Stage 2: For every 0 ≤ i ≤ n/2 − 3, let B′
i be the subgraph of Breaker’s graph

induced on the endpoints of Maker’s paths immediately after Breaker’s ith move in Stage
2. Let Bi be the graph obtained from B′

i by removing all edges xy such that x and
y are endpoints of the same path in Maker’s graph. The free edges xy ∈

(

V (Bi)
2

)

, for
which x and y are endpoints of different paths of Maker are called available. For every
1 ≤ j ≤ n/2−3, in his jth move in Stage 2, Maker claims an available edge while making
sure that |E(Bj)| ≤ |V (Bj)| − 1 will hold immediately after Breaker’s jth move in Stage
2. In his (n/2 − 2)th move in Stage 2, Maker connects his two paths to form a Hamilton
path. This stage lasts exactly n/2 − 2 moves.

Stage 3: Maker closes the Hamilton path he has built by the end of Stage 2 into a
Hamilton cycle within at most 3 additional moves. This can be done if the maximum
degree in Breaker’s graph does not exceed n/2.

Note that, in some of his moves in Stage 2, Maker has certain freedom in choosing an
edge to claim. This results in the following useful observation.

Observation 3.1 For every 0 ≤ i ≤ n/2 − 3, if immediately after Breaker’s ith move in
Stage 2, Maker’s graph is a linear forest consisting of n/2 − i − 1 non-empty paths and
|E(Bi)| ≤ |V (Bi)| − 1, then Maker can follow SH from this point on and win Hn in n + 2
moves.

Note that, by following Maker’s strategy SH, Red can build a Hamilton cycle within
at most n + 2 moves. This entails the following simple observation.

Observation 3.2 In the strong game Hn, if Red follows SH and Blue does not build a
Hamilton cycle within n + 1 moves, then Red wins the game. In particular, if Blue does
not build a Hamilton path within n moves, then Red wins the game.

the electronic journal of combinatorics 18 (2011), #P144 7



The following two lemmas show that, in order to stand a chance at winning, Blue
must in fact build a Hamilton path within n − 1 moves.

Lemma 3.3 Assume that immediately before Red’s nth move in Hn the following prop-
erties hold:

(i) Red’s graph is a Hamilton path x1x2 . . . xn.

(ii) Blue’s graph is not a Hamilton path.

(iii) ∆(B) ≤ 10.

(iv) There are at most 10 free edges which, if claimed by Blue in his nth move, would
form a Hamilton path in his graph.

Then, for sufficiently large n, Red wins the strong game Hn within at most 3 additional
moves.

Proof In his nth move, Red claims a free edge x1xk such that k ≥ n/2, the edge xk−1xn

is free and its addition to Blue’s graph does not form a Hamilton path in it. Such an edge
x1xk exists by properties (iii) and (iv) above and since n is assumed to be sufficiently
large. It follows by property (ii) that Blue cannot win the game in his nth move. Hence,
we can assume that Blue claims xk−1xn in his nth move as otherwise Red will claim this
edge in his (n + 1)st move and thus win. Note that, by our choice of x1xk, immediately
after Blue’s nth move his graph still does not admit a Hamilton path. It follows that
Blue will not win the game in his next move either. In his (n + 1)st move, Red claims an
edge xtxn such that t < k − 2 and both edges x1xt+1 and xt+1xk+1 are free. Again this is
possible by property (iii) above and since n is assumed to be sufficiently large. Since, as
previously noted, Blue cannot win the game in his (n + 1)st move, and since he cannot
claim both x1xt+1 and xt+1xk+1 in this move, it follows that Red wins (by claiming one
of these edges) in his (n + 2)nd move as claimed. 2

Lemma 3.4 Assume that immediately before Red’s nth move in Hn the following prop-
erties hold:

(i) Red’s graph is a Hamilton path x1x2 . . . xn.

(ii) There exists a vertex x ∈ V (Kn) such that dB(x) ≥ 3.

(iii) ∆(B) ≤ 10.

Then, for sufficiently large n, Red wins the strong game Hn within at most 3 additional
moves.
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Proof If there are strictly more than two connected components in Blue’s graph, then,
by Observation 3.2, Red wins the game within 3 additional moves. It remains to consider
the following two cases.

Case 1: Blue’s graph is connected. Since |E(B)| = n − 1 it must be a tree.
Moreover, by property (ii) above, this tree has at least 3 leaves. If it has strictly more
than 4 leaves, then Blue cannot build a Hamilton path by his nth move. Hence, by
Observation 3.2, Red wins the game within at most 3 additional moves as claimed. If this
tree has exactly 4 leaves, then if it is possible for Blue to build a Hamilton path in his nth
move, then it is by claiming a free edge which connects two such leaves. Clearly there are
at most

(

4
2

)

= 6 such edges. Hence, the conditions of Lemma 3.3 are satisfied and thus
Red wins within at most 3 additional moves as claimed. Assume then that the tree B has
exactly 3 leaves. Let a, b, c denote these leaves and note that dB(x) = 3 and dB(u) = 2 for
every u ∈ V (Kn) \ {x, a, b, c}. Let Pa, Pb and Pc denote the unique paths in B between x
and a, b and c respectively. For every i ∈ {a, b, c}, let x(i) denote the unique neighbor of
x in Pi. Note that if it is possible for Blue to build a Hamilton path in his nth move, then
it is by claiming one of the following 9 edges: ab, ac, bc, ax(b), ax(c), bx(a), bx(c), cx(a), cx(b).
Hence, the conditions of Lemma 3.3 are satisfied and thus Red wins within at most 3
additional moves as claimed.

Case 2: Blue’s graph admits exactly 2 connected components. Let C1 and
C2 be these two components, where x ∈ V (C1). If there exists some y ∈ V (C2) such that
dB(y) ≥ 3, then, by Observation 3.2, Red wins the game within 3 additional moves. Hence,
we can assume that dB(u) ≤ 2 for every u ∈ V (C2). It follows that C2 is either a path or
a cycle. If C2 is a cycle, then Blue has “wasted” at least two edges in his previous moves
(one for closing this cycle and the other since dB(x) ≥ 3). Hence, by Observation 3.2, Red
wins the game within at most 3 additional moves as claimed. Assume then that C2 is a
path; it follows that C1 is a tree with one additional edge. Note that C1 is not a cycle as
it admits a vertex of degree at least 3. By Observation 3.2 we can assume that dB(x) = 3
and that there exists a vertex z ∈ C1 such that C1 \ xz is a tree with maximum degree
2, that is, a path. It follows that there are at most 6 free edges whose addition to Blue’s
graph creates a Hamilton path in it. Hence, the conditions of Lemma 3.3 are satisfied
and thus Red wins the game within at most 3 additional moves as claimed. 2

Proof of Theorem 1.5: Assume first that n is even. We start by describing Red’s
strategy; it consists of several stages.

Stage 1: In his first n/2 + 1 moves, Red follows SH.
Stage 2: For every 0 ≤ i ≤ n/2−3, let B′

i be the subgraph of Blue’s graph induced on
the endpoints of Red’s paths immediately after Blue’s ith move in Stage 2. Let Bi be the
graph obtained from B′

i by removing all edges xy such that x and y are endpoints of the
same path in Red’s graph. The free edges xy ∈

(

V (Bi)
2

)

, for which x and y are endpoints
of different paths of Red are called available. For every 1 ≤ i ≤ n/2 − 2, in his ith move
of Stage 2, Red claims some available edge. Before each of his moves in this stage, Red
checks if the following conditions hold:

(i) ∆(B) ≥ 3.
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(ii) There are at least two cycles in Blue’s graph.

If at least one of these two conditions is satisfied, then Red proceeds to Stage M, otherwise
he plays another move in Stage 2.

Stage 2 is divided into the following three sub-stages:
(2.1) In at most 3 moves, Red makes sure that there exists a vertex x ∈ V (Kn) with

the following properties:

(a1) dR(x) = 1.

(a2) dB(x) = 2.

(a3) Both neighbors of x in Blue’s graph have degree 2 in Red’s graph.

(2.2) Let Px denote Red’s path with x as an endpoint. Let y denote the other endpoint
of Px. For as long as Red’s graph consists of at least 3 connected components, he plays
as follows. In his ith move of Stage 2, Red claims an available edge uv while making sure
that the following properties hold immediately after Blue’s ith move:

(b1) |E(Bi)| ≤ |V (Bi)| − 1.

(b2) {x, y} ∩ {u, v} = ∅.

(b3) If in his (i − 1)th move of Stage 2, Blue claims an available edge yw for some
w ∈ V (Bi−1), then Red claims an available edge uw while maintaining properties
(b1) and (b2) above.

(2.3) Red connects his two paths to form a Hamilton path, while making sure that
the conditions of Lemma 3.4 are satisfied.

Stage 3: Red closes the Hamilton path he has built by the end of Stage 2 into a
Hamilton cycle within at most 3 additional moves.

Stage M: From this point on, Red follows SH until his graph is a Hamilton path.
Then, if ∆(B) > 3, Red continues playing according to SH, otherwise he plays as outlined
in Lemma 3.4.

It remains to prove that Red can indeed follow all parts of his strategy and that this
ensures his win in the strong game Hn within n + 2 moves.

Stage 1: This follows immediately from the proof of Theorem 1.4 in [3]. It follows
that, by the end of this stage, Red’s graph is a linear forest which consists of n/2 − 1
vertex disjoint paths, where one path is of length 3 and the rest are of length 1 each.

Stage 2: We consider each sub-case separately.
(2.1) We know that ∆(B) ≤ 2 holds throughout this sub-stage, since we are diverted

to Stage M as soon as ∆(B) ≥ 3. Assume first that there exists a vertex x ∈ V (B0)
such that dB(x) = 2. Let u and v be the two neighbors of x in Blue’s graph. For every
w ∈ {u, v}, if dR(w) = 1, then Red claims some available edge which is incident with w.
This takes at most 2 moves. Next, assume that no such vertex x exists in V (B0). Let
z1 and z2 denote the only two vertices of degree 2 in Red’s graph. Since Blue has also
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claimed n/2 + 1 edges, his graph must admit at least two vertices of degree 2 as well. We
can assume that there are exactly two such vertices and that they are in fact z1 and z2,
as otherwise we are in the previous case. It follows that Blue’s graph is a linear forest
consisting of two paths of length 2 each and n/2−3 paths of length 1 each. It follows that
there are no isolated vertices in Blue’s graph. In his first move in Stage 2, Red claims an
arbitrary available edge w1w2. Note that dR(w1) = dR(w2) = 2 holds after this move. In
his first move in Stage 2, Blue clearly cannot claim an edge which is incident with both w1

and w2. Hence, after this move, there must exist a vertex x ∈ V (B1) such that dB(x) = 2.
Red now “takes care” of the neighbors of x in Blue’s graph, as in the previous case. This
takes Red at most 3 moves.

(2.2) Assume that we are just before Red’s ith move in Stage 2 and that so far Red
was able to maintain Properties (b1), (b2) and (b3); note that, assuming n is sufficiently
large, these properties hold at the beginning of this stage. Since we are not in Stage
M we know that ∆(B) ≤ 2. In his ith move, Red claims some available edge wz while
ensuring that Properties (b2) and (b3) are maintained; this is clearly possible. In his ith
move, Blue claims an arbitrary edge e; again we know that ∆(B) ≤ 2 still holds after
this move as otherwise we are diverted to Stage M. Note that, regardless of Blue’s ith
move, V (Bi) = V (Bi−1) \ {w, z}. Since Red maintained Property (b2), it follows that
{x, y} ⊆ V (Bi). Since Red maintained Property (b3), it follows that, immediately before
Blue’s ith move, both x and y are isolated in Bi \ e. Since ∆(B) ≤ 2, it follows that
|E(Bi \ e)| ≤ |V (Bi)| − 2. Hence, immediately after Blue’s ith move, Property (b1) will
be satisfied as well.

(2.3) Let u and v denote the endpoints of Red’s only path other than Px. If, in his
(n − 2)th move, Blue claims an edge xw for some w ∈ V (Kn), then dB(x) ≥ 3 and thus
Red proceeds to Stage M. Hence, assume that Blue does not claim such an edge in his
(n − 2)th move. Note that, by Red’s strategy, just before his (n − 1)th move both edges
xu and xv are free. Moreover, at least one of the edges yu and yv is free. Assume without
loss of generality that yu is free. In his (n− 1)th move, Red claims yu thus completing a
Hamilton path. In his (n− 1)th move, Blue must claim xv as otherwise Red will claim it
in his nth move and thus win. It follows that just before Red’s nth move, the conditions
of Lemma 3.4 are satisfied.

Stage 3: Red plays as outlined in Lemma 3.4 and thus wins within at most 3 addi-
tional moves.

Stage M: If Red skipped to this stage before making any move in Stage 2, then it is
clear he can continue playing according to SH. Assume then that Red skipped to Stage
M immediately after Blue’s ith move in Stage 2, for some i ≥ 1. It follows by Stage (2.2)
of Red’s strategy that |E(Bi)| ≤ |V (Bi)| − 1 was true immediately after Blue’s ith move
in Stage 2. Hence, by Observation 3.1, Red can continue playing according to SH until
his graph is a Hamilton path. Since ∆(B) ≥ 3, he can then win by either Lemma 3.4 or
Observation 3.2 in at most 3 additional moves.

If n is odd, then the proof is essentially the same. We list below the main differences
from the case of even n.

(1) As in [3], during Stage 1 Red builds a linear forest which consists of one path of length

the electronic journal of combinatorics 18 (2011), #P144 11



2 and ⌊n/2⌋ − 1 paths of length 1 each. This stage lasts exactly ⌊n/2⌋ + 1 moves.

(2) At the beginning of Stage (2.1), there is exactly one vertex of degree 2 in Red’s graph
(the rest are of degree exactly 1) and at least one vertex of degree 2 in Blue’s graph.
Hence, as in the case of even n, either there exists a vertex x ∈ V (B0) such that
dB(x) = 2, or Red makes sure there will be such a vertex in V (B1).

This concludes the proof of Theorem 1.5. 2

4 Concluding remarks and open problems

Strong wins via fast weak wins for more games. We have seen how known fast
winning strategies for Maker in the perfect matching game Mn and the Hamilton
cycle game Hn can be used to devise winning strategies for Red in the correspond-
ing strong games. It seems plausible that the same idea could be used for other
games as well. A natural candidate is the k-vertex-connectivity game, played on
E(Kn). Indeed, as noted in the introduction, Maker can build a connected graph
in n − 1 moves and thus Red has a winning strategy for the corresponding strong
game by Observation 1.1. Moreover, it is not hard to see that, by following his
strategy for the Hamilton cycle game (given in the proof of Theorem 1.5), Red
builds a 2-connected graph within n + 1 moves. Since a cycle on n vertices is the
only 2-connected subgraph of Kn with n edges, and since Blue cannot build one
in just n moves by Theorem 1.5, it follows that Red wins this game as well. For
k ≥ 3 it was proved in [3] that Maker can build a k-vertex-connected graph within
kn/2 + (k + 4)(

√
n + 2n2/3 ln n) moves. It was also asked there whether there exists

a function f such that Maker can in fact win this game within kn/2 + f(k) moves.
Answering the latter question in the affirmative might help in devising a winning
strategy for Red in the strong k-vertex-connectivity game.

Quickness vs. Initiative. As noted in the introduction, while the known strategies for
Maker allow him to win Mn within ⌊n/2⌋ moves if n is odd and within n/2 + 1
moves if n is even, and to win Hn within n + 1 moves (all of these results are best
possible), our strategies for Red require n/2 + 2 moves to win Mn if n is even and
n + 2 moves to win Hn (we do not know if these bounds are best possible or not).
One reason for this discrepancy is that the fastest strategies for Maker force him
to “waste” a move early on (in the strategy for Mn given in [3], either the first
or second edge Maker claims will not be part of his matching; in the strategy for
Hn given in [2], it is not so clear when Maker will claim an edge which will not be
part of his Hamilton cycle, but this could happen very early in the game). While
this proves useful for Maker, it might be dangerous for Red as it makes him lose
the initiative and allows Blue to create threats. Hence, while we are using in this
paper the fact that Maker wins quickly, the crux of the matter is that our strategies
for Red preserve his initiative throughout the game. It might be possible (though
seems hard) to find such strategies even for games Red cannot win very quickly.
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