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Abstract

We prove that if G is the line graph of a multigraph, then the chromatic number

χ(G) of G is at most max
{

ω(G), 7∆(G)+10
8

}

where ω(G) and ∆(G) are the clique

number and the maximum degree of G, respectively. Thus Brooks’ Theorem holds
for line graphs of multigraphs in much stronger form. Using similar methods we
then prove that if G is the line graph of a multigraph with χ(G) ≥ ∆(G) ≥ 9, then G

contains a clique on ∆(G) vertices. Thus the Borodin-Kostochka Conjecture holds
for line graphs of multigraphs.

1 Introduction

We define nonstandard notation when it is first used. For standard notation and termi-
nology see [2]. The clique number of a graph is a trivial lower bound on the chromatic
number. Brooks’ Theorem gives a sufficient condition for this lower bound to be achieved.

Theorem 1 (Brooks [4]). If G is a graph with ∆(G) ≥ 3 and χ(G) ≥ ∆(G) + 1, then

ω(G) = χ(G).

We give a much weaker condition for the lower bound to be achieved when G is the
line graph of a multigraph.

Theorem 2. If G is the line graph of a multigraph with χ(G) >
7∆(G)+10

8
, then ω(G) =

χ(G).

Combining this with an upper bound of Molloy and Reed [16] on the fractional chro-
matic number and partial results on the Goldberg Conjecture [8] yields yet another proof
of the following result (see [14] for the original proof and [17] for further remarks and a
different proof).

Theorem 3 (King, Reed and Vetta [14]). If G is the line graph of a multigraph, then

χ(G) ≤
⌈

ω(G)+∆(G)+1
2

⌉

.
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Reed [18] conjectures that the bound χ(G) ≤
⌈

ω(G)+∆(G)+1
2

⌉

holds for all graphs G.

For further information about Reed’s conjecture, see King’s thesis [11] and King and
Reed’s proof of the conjecture for quasi-line graphs [13]. Back in the 1970’s Borodin and
Kostochka [3] conjectured the following.

Conjecture 4 (Borodin and Kostochka [3]). If G is a graph with χ(G) ≥ ∆(G) ≥ 9, then

G contains a K∆(G).

In [19] Reed proved this conjecture for ∆(G) ≥ 1014. The only known connected
counterexample for the ∆(G) = 8 case is the line graph of a 5-cycle where each edge
has multiplicity 3 (that is, G = L(3 · C5)). We prove that there are no counterexamples
that are the line graph of a multigraph for ∆(G) ≥ 9. This is tight since the above
counterexample for ∆(G) = 8 is a line graph of a multigraph.

Theorem 5. If G is the line graph of a multigraph with χ(G) ≥ ∆(G) ≥ 9, then G

contains a K∆(G).

In [7], Dhurandhar proved the Borodin-Kostochka Conjecture for a superset of line
graphs of simple graphs defined by excluding the claw, K5 − e and another graph D as
induced subgraphs. Kierstead and Schmerl [10] improved this by removing the need to
exclude D. We note that there is no containment relation between the line graphs of
multigraphs and the class of graphs containing no induced claw and no induced K5 − e.

2 The proofs

Lemma 6. Fix k ≥ 0. Let H be a multigraph and put G = L(H). Suppose χ(G) =
∆(G) + 1 − k. If xy ∈ E(H) is critical and µ(xy) ≥ 2k + 2, then xy is contained in a

χ(G)-clique in G.

Proof. Let xy ∈ E(H) be a critical edge with µ(xy) ≥ 2k + 2. Let A be the set of all
edges incident with both x and y. Let B be the set of edges incident with either x or
y but not both. Then, in G, A is a clique joined to B and B is the complement of a
bipartite graph. Put F = G[A ∪ B]. Since xy is critical, we have a χ(G) − 1 coloring of
G − F . Viewed as a partial χ(G) − 1 coloring of G this leaves a list assignment L on F

with |L(v)| = χ(G)− 1− (dG(v)− dF (v)) = dF (v)− k +∆(G)− dG(v) for each v ∈ V (F ).
Put j = k + dG(xy) − ∆(G).

Let M be a maximum matching in the complement of B. First suppose |M | ≤ j.
Then, since B is perfect, ω(B) = χ(B) and we have

ω(F ) = ω(A) + ω(B) = |A| + χ(B)

≥ |A| + |B| − j = dG(xy) + 1 − j

= ∆(G) + 1 − k = χ(G).

Thus xy is contained in a χ(G)-clique in G.
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Hence we may assume that |M | ≥ j+1. Let {{x1, y1}, . . . , {xj+1, yj+1}} be a matching
in the complement of B. Then, for each 1 ≤ i ≤ j + 1 we have

|L(xi)| + |L(yi)| ≥ dF (xi) + dF (yi) − 2k

≥ |B| − 2 + 2|A| − 2k

= dG(xy) + |A| − 2k − 1

≥ dG(xy) + 1.

Here the second inequality follows since α(B) ≤ 2 and the last since |A| = µ(xy) ≥ 2k+2.
Since the lists together contain at most χ(G) − 1 = ∆(G) − k colors we see that for each
i,

|L(xi) ∩ L(yi)| ≥ |L(xi)| + |L(yi)| − (∆(G) − k)

≥ dG(xy) + 1 − ∆(G) + k

= j + 1.

Thus we may color the vertices in the pairs {x1, y1}, . . . , {xj+1, yj+1} from L using one
color for each pair. Since |A| ≥ k + 1 we can extend this to a coloring of B from L by
coloring greedily. But each vertex in A has j+1 colors used twice on its neighborhood, thus
each vertex in A is left with a list of size at least dA(v)−k+∆(G)−dG(v)+j+1 = dA(v)+1.
Hence we can complete the (χ(G) − 1)-coloring to all of F by coloring greedily. This
contradiction completes the proof.

Theorem 7. If G is the line graph of a multigraph H and G is vertex critical, then

χ(G) ≤ max

{

ω(G), ∆(G) + 1 −
µ(H) − 1

2

}

.

Proof. Let G be the line graph of a multigraph H such that G is vertex critical. Say
χ(G) = ∆(G) + 1− k. Suppose χ(G) > ω(G). Since G is vertex critical, every edge in H

is critical. Hence, by Lemma 6, µ(H) ≤ 2k +1. That is, µ(H) ≤ 2(∆(G)+ 1−χ(G))+ 1.
The theorem follows.

This upper bound is tight. To see this, let Ht = t · C5 (i.e. C5 where each edge has
multiplicity t) and put Gt = L(Ht). As Catlin [6] showed, for odd t we have χ(Gt) = 5t+1

2
,

∆(Gt) = 3t − 1, and ω(Gt) = 2t. Since µ(Ht) = t, the upper bound is achieved.

We need the following lemma which is a consequence of the fan equation (see [1, 5, 8, 9]).

Lemma 8. Let G be the line graph of a multigraph H. Suppose G is vertex critical with

χ(G) > ∆(H). Then, for any x ∈ V (H) there exist z1, z2 ∈ NH(x) such that z1 6= z2 and

• χ(G) ≤ dH(z1) + µ(xz1),

• 2χ(G) ≤ dH(z1) + µ(xz1) + dH(z2) + µ(xz2).
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Lemma 9. Let G be the line graph of a multigraph H. If G is vertex critical with

χ(G) > ∆(H), then

χ(G) ≤
3µ(H) + ∆(G) + 1

2
.

Proof. Let x ∈ V (H) with dH(x) = ∆(H). By Lemma 8 we have z ∈ NH(x) such that
χ(G) ≤ dH(z) + µ(xz). Hence

∆(G) + 1 ≥ dH(x) + dH(z) − µ(xz) ≥ dH(x) + χ(G) − 2µ(xz).

Which gives
χ(G) ≤ ∆(G) + 1 − ∆(H) + 2µ(H).

Adding Vizing’s inequality χ(G) ≤ ∆(H) + µ(H) gives the desired result.

Combining this with Theorem 7 we get the following upper bound.

Theorem 10. If G is the line graph of a multigraph, then

χ(G) ≤ max

{

ω(G),
7∆(G) + 10

8

}

.

Proof. Suppose not and choose a counterexample G with the minimum number of vertices.
Say G = L(H). Plainly, G is vertex critical. Suppose χ(G) > ω(G). By Theorem 7 we
have

χ(G) ≤ ∆(G) + 1 −
µ(H) − 1

2
.

By Lemma 9 we have

χ(G) ≤
3µ(H) + ∆(G) + 1

2
.

Adding three times the first inequality to the second gives

4χ(G) ≤
7

2
(∆(G) + 1) +

3

2
.

The theorem follows.

Corollary 11. If G is the line graph of a multigraph with χ(G) ≥ ∆(G) ≥ 11, then G

contains a K∆(G).

With a little more care we can get the 11 down to 9. Our analysis will be simpler
if we can inductively reduce to the ∆(G) = 9 case. This reduction is easy using the
following lemma from [17] (it also follows from a lemma of Kostochka in [15]). Recently,
King [12] improved the ω(G) ≥ 3

4
(∆(G) + 1) condition to the weakest possible condition

ω(G) > 2
3
(∆(G) + 1).

Lemma 12. If G is a graph with ω(G) ≥ 3
4
(∆(G) + 1), then G has an independent set I

such that ω(G − I) < ω(G).
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Proof of Theorem 5. Suppose the theorem is false and choose a counterexample F mini-
mizing ∆(F ). By Brooks’ Theorem we must have χ(F ) = ∆(F ). Suppose ∆(F ) ≥ 10. By
Lemma 12, we have an independent set I in F such that ω(F − I) < ω(F ). Expand I to
a maximal independent set M and put T = F −M . Then χ(T ) ≥ ∆(F )− 1 and ∆(T ) ≤
∆(F )−1. Hence, by minimality of ∆(F ) and Brooks’ Theorem, ω(F ) ≥ ω(T )+1 ≥ ∆(F ).
This is a contradiction, hence χ(F ) = ∆(F ) = 9.

Let G be a 9-critical subgraph of F . Then G is a line graph of a multigraph. If
∆(G) ≤ 8, then G is K9 by Brooks’ Theorem giving a contradiction. Hence ∆(G) ≥ 9.
Since G is critical, it is also connected.

Let H be such that G = L(H). Then by Lemma 6 and Lemma 9 we know that
µ(H) = 3. Let x ∈ V (H) with dH(x) = ∆(H). Then we have z1, z2 ∈ NH(x) as in
Lemma 8. This gives

9 ≤ dH(z1) + µ(xz1), (1)

18 ≤ dH(z1) + µ(xz1) + dH(z2) + µ(xz2). (2)

In addition, we have for i = 1, 2,

9 ≥ dH(x) + dH(zi) − µ(xzi) − 1 = ∆(H) + dH(zi) − µ(xzi) − 1.

Thus,

∆(H) ≤ 2µ(xz1) + 1 ≤ 7, (3)

∆(H) ≤ µ(xz1) + µ(xz2) + 1. (4)

Now, let ab ∈ E(H) with µ(ab) = 3. Then, since G is vertex critical, we have
8 = ∆(G) − 1 ≤ dH(a) + dH(b) − µ(ab) − 1 ≤ 2∆(H) − 4. Thus ∆(H) ≥ 6. Hence we
have 6 ≤ ∆(H) ≤ 7. Thus, by (3), we must have µ(xz1) = 3.

First, suppose ∆(H) = 7. Then, by (4) we have µ(xz2) = 3. Let y be the other
neighbor of x. Then µ(xy) = 1 and thus dH(x) + dH(y) − 2 ≤ 9. That gives dH(y) ≤ 4.
Then we have vertices w1, w2 ∈ NH(y) guaranteed by Lemma 8. Note that x 6∈ {w1, w2}.
Now 4 ≥ dH(y) ≥ 1 + µ(yw1) + µ(yw2). Thus µ(yw1) + µ(yw2) ≤ 3. This gives dH(w1) +
dH(w2) ≥ 2∆(G) − 3 = 15 contradicting ∆(H) ≤ 7.

Thus we must have ∆(H) = 6. By (1) we have dH(z1) = 6. Then, applying (2) gives
µ(xz2) = 3 and dH(z2) = 6. Since x was an arbitrary vertex of maximum degree and
H is connected we conclude that G = L(3 · Cn) for some n ≥ 4. But no such graph is
9-chromatic by Brooks’ Theorem.

3 Some conjectures

The graphs Gt = L(t · C5) discussed above show that the following upper bounds would
be tight. Creating a counterexample would require some new construction technique that
might lead to more counterexamples to Borodin-Kostochka for ∆ = 8.
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Conjecture 13. If G is the line graph of a multigraph, then

χ(G) ≤ max

{

ω(G),
5∆(G) + 8

6

}

.

This would follow if the 3µ(H) in Lemma 9 could be improved to 2µ(H)+1. The following
weaker statement would imply Conjecture 13 in a similar fashion.

Conjecture 14. If G is the line graph of a multigraph H, then

χ(G) ≤ max

{

ω(G),
∆(G) + 2

2
+ µ(H)

}

.

Since we always have ∆(H) ≥ ∆(G)+2
2

, this can be seen as an improvement of Vizing’s
Theorem for graphs with ω(G) < χ(G).
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