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Abstract

Using ultrafilter techniques we show that in any partition of N into 2 cells there
is one cell containing infinitely many exponential triples, i.e. triples of the kind
a, b, ab (with a, b > 1). Also, we will show that any multiplicative IP ∗ set is an
“exponential IP set”, the analogue of an IP set with respect to exponentiation.

Introduction

A well-known theorem by Hindman states that given any finite partition of N, there exists
an infinite sets X and one cell of the partition containing the finite sums of X (and also
the finite products of some infinite set Y ), see [Hi]. Ultrafilters can be used to give a
simpler proof than the original one, see [Be]1, [HS].

We will be interested in similar results involving exponentiation instead of addition
and multiplication, and our methods of proof will involve ultrafilter arguments. The first
main result of this paper is the following.

Theorem 1. Consider a partition of the natural numbers N = A ∪ B. Either A or B
contains infinitely many triples a, b, ab, with a, b > 1.

Next, we will provide results (Theorems 14 and 15) which allow to find larger structures
than the triples as above inside multiplicative IP ∗ sets (see Definition 12). A corollary of
those theorems (Corollary 16) is given below.

Definition 2. Consider an infinite set X ⊆ N and write X = {xi}i∈N, with xj < xj+1 for
each j. Define inductively

FEI
n+1(X) = {yxn+1|y ∈ FEI

n(X)} ∪ FEI
n(X) ∪ {xn+1},

FEII
n+1(X) = {(xn+1)

y|y ∈ FEII
n (X)} ∪ FEII

n (X) ∪ {xn+1},

1This is available on Bergelson’s webpage http://www.math.osu.edu/∼vitaly/
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with FEI
0(X) = FEII

0 (X) = {x0}. Set

FEI(X) =
⋃

n∈N

FEI
n(X),

FEII(X) =
⋃

n∈N

FEII
n (X).

We will say that C ⊆ N is an exponential IP set of type I (resp. II) if it contains a set
FEI(X) (resp. FEII(X)) for some infinite X.

As usual, FS(C) and FP (C) denote the set of finite sums and finite products of C ⊆ N

(see definition 4).

Theorem 3. Given any multiplicative IP ∗ set A there exist some infinite X, Y ⊆ N such
that FS(X), FEI(X), FP (Y ), FEII(Y ) ⊆ A.
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1 Preliminaries

This section contains all the results about ultrafilters we will need. The reader is referred
to [Be] and [HS] for further details.

An ultrafilter U on N is a collection of subsets of N such that

1. N ∈ U ,

2. A, B ∈ U ⇒ A ∩ B ∈ U ,

3. A ∈ U , B ⊇ A ⇒ B ∈ U ,

4. ∀A ⊆ N either A ∈ U or Ac ∈ U .

The set of all ultrafilters on N is denoted by βN. Notice that it contains a copy of N:
given any n ∈ N the collection of subsets of N containing n is an ultrafilter. The sum and
product on N can be extended2 to βN to operations that we will still denote by + and ·
(they are not commutative). We have that (βN, +) and (βN, ·) are semigroups.

Given a semigroup (S, ∗), an idempotent in (S, ∗) is s ∈ S such that s ∗ s = s.
Idempotent ultrafilters are of interest to us because of the result stated below.

2Indeed, there are two ways to do this, and the one used in [Be] is not the same as the one used in
[HS]. This will not affect what follows.
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Definition 4. Let X be a subset of N. Denote

FS(X) =

{

n
∑

i=0

xi|n ∈ N, xi ∈ X, x0 < · · · < xn

}

and

FP (X) =

{

n
∏

i=0

xi|n ∈ N, xi ∈ X, x0 < · · · < xn

}

.

We will say that C ⊆ N is an additive (resp. multiplicative) IP set if it contains a set
FS(X) (resp. FP (X)) for some infinite X.

Theorem 5 ([HS], Theorem 5.8, Lemma 5.11). (βN, +) and (βN, ·) contain idempotent
ultrafilters. Also, if U is idempotent in (βN, +) (resp. (βN, ·)) then any U ∈ U is an
additive (resp. multiplicative) IP set. What is more, given any sequence {xn}n∈N there
exists an ultrafilter idempotent in (βN, +) (resp. (βN, ·)) such that for each m ∈ N,
FS({xn}n≥m) ∈ U (resp. FP ({xn}n≥m) ∈ U).

We will also need the following.

Theorem 6. There exists U ∈ βN such that each U ∈ U contains arbitrarily long (non-
trivial) geometric progressions.

Proof. The theorem follows from [HS, Theorem 5.7] together with (a corollary of) van
der Waerden’s Theorem that given any finite partition of N there is one cell containing
arbitrarily long geometric progressions. (The usual van der Waerden’s Theorem gives a
cell containing arbitrarily long arithmetic progressions, but one can deduce the stated
result considering the restriction of the partition to {2n : n ∈ N}.)

(The theorem can also be proven considering minimal idempotent ultrafilters.)
We will use the following notation.

Definition 7. If A ⊆ N and n ∈ N denote

1. −n + A = {m ∈ N : m + n ∈ A},

2. if n ≥ 1, (n−1)A = {m ∈ N : m · n ∈ A},

3. if n ≥ 2, logn[A] = {m ∈ N : nm ∈ A},

4. if n ≥ 1, A1/n = {m ∈ N : mn ∈ A}.

Definition 8. Fix an ultrafilter U on N and let A ⊆ N. Set

A⋆
+ = {x ∈ A : −x + A ∈ U},

A⋆
• = {x ∈ A : (x−1)A ∈ U}.

Lemma 9 ([HS], Lemma 4.14). If U +U = U (resp. U ·U = U) and A ∈ U , then A⋆
+ ∈ U

(resp. A⋆
• ∈ U).
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2 Exponential triples and exponential IP sets

2.1 Exponential triples

Definition 10. An exponential triple is an ordered triple of natural numbers (a, b, c)
such that ab = c and a, b > 1, to avoid trivialities. We will say that C ⊆ N contains the
exponential triple (a, b, c) if a, b, c ∈ C.

Theorem 11. Consider a partition of the natural numbers N = A ∪ B. Either A or B
contains infinitely many exponential triples.

Proof. Let U be an ultrafilter as in Theorem 6. Up to exchanging A and B, we can
assume A ∈ U . Set, for each n ≥ 2, An = logn[A] ∩ A and Bn = logn[B] ∩ A. If An ∈ U
for each n > 1, then clearly A contains infinitely many exponential triples (if a ∈ A and
b ∈ A ∩ loga[A] then {a, b, ab} ⊆ A).

If this is not the case, consider some n > 1 such that Bn ∈ U . Consider a geometric
progression a, ah, . . . , ahk contained in Bn (with a > 0, h > 1). If hi ∈ B for some
i ∈ {1, . . . , k}, we have that the exponential triple (na, hi, nahi

) is contained in B. If there
are infinitely many geometric progressions a, ah, . . . , ahk (a > 0, h > 1) contained in Bn

and such that hi ∈ B for some i ∈ {1, . . . , k}, by the argument above it is readily seen
that B contains infinitely many exponential triples.

Finally, if this does not hold we have that A contains arbitrarily long progressions of
the kind h, h2, . . . , hk. It is clear in this case that A contains infinitely many exponential
triples.

2.2 Exponential IP sets

Definition 12. An additive (resp. multiplicative) IP ∗ set is a set whose complement is
not an additive (resp. multiplicative) IP set.

Lemma 13. Let A be a multiplicative IP ∗ set and let n ∈ N.

1. If n ≥ 2 then logn[A] is an additive IP ∗ set.

2. If n ≥ 1, A1/n is a multiplicative IP ∗ set.

Proof. 1) Consider FS(X) for some infinite X. We have to show logn[A] ∩ FS(X) 6=
∅. As A is a multiplicative IP ∗ set we have FP (nX) ∩ A 6= ∅, which clearly implies
logn[A] ∩ FS(X) 6= ∅.

2) Consider FP (X) for some infinite X. As FP (Xn)∩A 6= ∅, we have A1/n∩FP (X) 6=
∅.

The following theorem is inspired by [HS, Theorem 16.20], and the proof closely follows
the proof of that theorem. (A simpler proof of a simpler fact will be given in Remark 17.)
We will denote the collection of finite subsets of N by Pf (N).
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Theorem 14. Let S be the set of finite sequences in N (including the empty sequence) and
let f : S → N. Let {yn}n∈N ⊆ N be a sequence and let A be a multiplicative IP ∗ set. Then
there exists {xn}n∈N such that FS({xn}n∈N) ⊆ FS({yn}n∈N) and whenever F ∈ Pf(N),
l = f((x0, . . . , xminF−1)) and t ∈ {2, . . . , l} we have t

P

j∈F xj ∈ A.

Proof. In this proof we set C⋆ = C⋆
+ for each C ⊆ N. Let U be an ultrafilter idempotent

in (βN, +) such that FS({yn}n≥m) ∈ U for each m ∈ N; see Theorem 5. By the previous
lemma, for each t ∈ N with t ≥ 2 we have that logt[A] is an additive IP ∗ set, and therefore
logt[A] ∈ U . In particular, we have B0 ∈ U , where

B0 = FS({yn}n∈N) ∩

f(∅)
⋂

t=2

logt[A].

Pick any x0 ∈ B⋆
0 and H0 ∈ Pf(N) such that x0 =

∑

t∈H0
yt.

We will choose inductively xi, Hi and Bi satisfying the following properties.

1. xi =
∑

t∈Hi
yt,

2. if i ≥ 1 then min Hi > max Hi−1,

3. Bi ∈ U ,

4. for each ∅ 6= F ⊆ {0, . . . , i} and m = min F we have
∑

j∈F xj ∈ B⋆
m,

5. if i ≥ 1, then Bi ⊆
⋂f((x0,...,xi−1))

t=2 logt[A].

Those properties are satisfied for x0, H0, B0 chosen as above. Let us now perform
the inductive step: suppose that we have xi, Hi and Bi for i ≤ n satisfying the required
properties.

Set k = maxHn + 1. By our choice of U , we have FS({yt}t≥k) ∈ U . Set, for m ≤ n,

Em =

{

∑

j∈F

xj : ∅ 6= F ⊆ {0, . . . , n} and m = min F

}

.

By (4), Em ⊆ B⋆
m for each m ≤ n, so that for every a ∈ Em we have −a + B⋆

m ∈ U by
Lemma 13. We can then set

Bn+1 = FS({yt}t≥k) ∩

f((x0,...,xn))
⋂

t=2

logt[A] ∩
⋂

m≤n

⋂

a∈Em

(−a + B⋆
m),

and we have Bn+1 ∈ U . Pick any xn+1 ∈ B⋆
n+1 and choose Hn+1 ∈ Pf(N) with min Hn+1 ≥

k and xn+1 =
∑

t∈Hn+1
yt.

We only need to check (4).
Let ∅ 6= F ⊆ {0, . . . , n+1} and set m = min F . We have to show that

∑

j∈F xj ∈ B⋆
m.

If n + 1 /∈ F , the conclusion holds by the inductive hypothesis. Also, if F = {n + 1}
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then m = n + 1 and
∑

j∈F xj = xn+1 ∈ B⋆
n+1 = B⋆

m. So, we can assume n + 1 ∈ F and
G = F\{n + 1} 6= ∅. Set a =

∑

j∈G xj . As G is non-empty, we have a ∈ Em. Hence (as
Bn+1 ⊆ −a + B⋆

m) xn+1 ∈ −a + B⋆
m, that is to say

∑

j∈F xj = a + xn+1 ∈ B⋆
m.

We are now ready to complete the proof. Let F, l, t be as in the statement. By (4)
and (5) we get

∑

j∈F xj ∈ BminF ⊆ logt[A], which by definition means t
P

j∈F xj ∈ A. Also,
(1) and (2) guarantee that FS({xn}) ⊆ FS({yn}).

The following theorem can be proven in the same way, using a suitable ultrafilter
idempotent in (N, ·) and C⋆

• instead of C⋆
+.

Theorem 15. Let S be the set of finite sequences in N and let f : S → N. Let {yn}n∈N ⊆
N be a sequence and let A be a multiplicative IP ∗ set. Then there exists {xn}n∈N such
that FP ({xn}n∈N) ⊆ FP ({yn}n∈N) and whenever F ∈ Pf (N), l = f((x0, . . . , xminF−1))
and t ∈ {1, . . . , l} we have (

∏

j∈F xj)
t ∈ A.

We now give an application of the theorems above. One can define similar notions of
exponential IP set and obtain the corollary below using the same argument. Recall that
we defined exponential IP sets in the Introduction.

Corollary 16. For any multiplicative IP ∗ set A there exists some infinite X, Y ⊆ N such
that FS(X), FEI(X), FP (Y ), FEII(Y ) ⊆ A.

Proof. Let B = Ac. The main result of [Hi] ([HS, Corollary 5.22]) gives that one between
A and B is both an additive and a multiplicative IP set. But B is not a multiplicative
IP set, hence A is an additive IP set. Let {yi} be such that FS({yi}i∈N) ⊆ A, and
define f : S → N as f((x0, . . . , xn)) = maxFEI

n({x0, . . . , xn}). Let X = {xn}n∈N be as
in Theorem 14 (we can assume that each xi is greater than 1). Clearly, FS(X) ⊆ A. We
will show inductively FEI

i (X) ⊆ A. Notice that X ⊆ A (in particular FEI
0(X) ⊆ A).

Suppose FEI
n(X) ⊆ A and consider yxn+1 ∈ FEI

n+1(X). As 2 ≤ y ≤ f((x0, . . . , xn)),
Theorem 14 gives yxn+1 ∈ A.

The set Y can be found applying Theorem 15 in a similar way.

Remark 17. We now give a simpler proof that any multiplicative IP ∗ set is an exponen-
tial IP set of type I (a similar proof can be given for type II).

Let A be a multiplicative IP ∗ set and let B = Ac. As shown in the proof of the
corollary, A is an additive IP set. Let U be an idempotent ultrafilter in (βN, +) such
that A ∈ U (see Theorem 5).

For each n ∈ N, n > 1, we have that Bn = logn[B] ∩ A /∈ U , for otherwise Bn

would be an additive IP set and nBn ⊆ B would be a multiplicative IP set. Therefore
An = logn[A] ∩ A ∈ U , for each n > 1. We are ready to construct a set X such that
FEI(X) ⊆ A. Just set X = {xi}i∈N, for any sequence {xi} which satisfies:







x0 ∈ A, x0 > 1,
Ni = maxFEI

i ({xj}j≤i),

xi+1 ∈
⋂Ni

j=2 Aj ∩ A.
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2.3 Open questions

There are several natural questions which arise at this point. For example, is there an
elementary proof of Theorem 11? Does it hold for partitions of N into finitely many cells?
How about just 3 cells? Is it true that given any partition of N into 2 cells, one of the
cells is an exponential IP set (of type I and/or II)? How about finitely many cells?
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