Long path lemma concerning connectivity and independence number

Shinya Fujita[∗] Alexander Halperin† Colton Magnant‡

Submitted: May 10, 2010; Accepted: Nov 26, 2011; Published: Jul 22, 2011 Mathematics Subject Classification: 05C35

Abstract

We show that, in a k-connected graph G of order n with $\alpha(G) = \alpha$, between any pair of vertices, there exists a path P joining them with $|P| \ge \min\left\{n, \frac{(k-1)(n-k)}{\alpha} + k\right\}$. This implies that, for any edge $e \in E(G)$, there is a cycle containing e of length at least min $\left\{n, \frac{(k-1)(n-k)}{\alpha} + k\right\}$. Moreover, we generalize our result as follows: for any choice S of $s \leq k$ vertices in G, there exists a tree T whose set of leaves is S with $|T| \ge \min\left\{n, \frac{(k-s+1)(n-k)}{\alpha} + k\right\}.$

1 Introduction

In this work, we present a tool which we believe will be useful in many applications. Much work has been devoted to finding long paths and cycles in graphs. In particular, in [4], O, West and Wu recently proved a conjecture by Fouquet and Jolivet [3] stated as follows.

Theorem 1 ([4]) Let $k \geq 2$ and let G be a k-connected graph of order n with $\alpha(G) = \alpha$. Then there is a cycle in G of length at least $\min\{n, \frac{k(n+\alpha-k)}{\alpha}\}$ $\frac{(-\alpha - \kappa)}{\alpha}$.

In various situations including this work, it often becomes necessary to find a long path between a chosen pair of vertices. For this reason, O, West and Wu proved the following theorem which they used in their proof of the conjecture.

Theorem 2 ([4]) Let G be a k-connected graph for $k \geq 1$. If $H \subseteq G$ and u and v are distinct vertices in G, then G contains a u, v-path P such that $V(H) \subseteq V(P)$ or $\alpha(H - P) \leq \alpha(H) - (k - 1).$

[∗]Department of Mathematics, Gunma National College of Technology. 580 Toriba, Maebashi, Gunma, Japan 371-8530. Supported by JSPS Grant No. 20740068

[†]Department of Mathematics, Lehigh University, Bethlehem, PA 18015 USA

[‡]Department of Mathematical Sciences, Georgia Southern University, Statesboro, GA 30460 USA

We also use this theorem and, following the proofs presented in [4], we prove the following lemma which is our main result.

Lemma 1 Let $k > 1$ be an integer and let G be a graph of order n with $\kappa(G) = k$ and $\alpha(G) = \alpha$. Then for any pair of vertices u, v in G, there exists a u, v-path of order at $least \min\{n, \frac{(k-1)(n-k)}{\alpha}+k\}.$

Our hope is that this lemma may be applied to produce other results like Theorem 3, which follows immediately from Lemma 1 by choosing u and v to be the ends of e .

Theorem 3 Let $k \geq 2$ be an integer and let G be a k-connected graph of order n with $\alpha(G) = \alpha$. Then for any edge $e \in E(G)$, there exists a cycle of length at least $\min\left\{n, \frac{(k-1)(n-k)}{\alpha}+k\right\}$ in G containing the edge e.

Lemma 1 can be generalized to the following result concerning large trees with specified sets of leaves. Let $\ell(T)$ denote the set of leaves in a tree T.

Theorem 4 Let k and s be integers with $2 \leq s \leq k$ and let G be a k-connected graph of order n with $\alpha(G) = \alpha$. Then for any set of s vertices $V_s = \{v_1, \ldots, v_s\} \subseteq G$, there exists a tree $T \subseteq G$ with $V_s = \ell(T)$ and $|T| \ge \min\left\{n, \frac{(k-s+1)(n-k)}{\alpha} + k\right\}.$

The proofs of Lemma 1 and Theorem 4 are presented in Section 3. As we will observe in Section 4, our results are all best possible.

2 Preliminaries

In our proof, we use the following corollary to break the problem into cases. We also state and prove a path version of Theorem 6. Both of these results come from [4].

Corollary 5 ([4]) If a graph G admits no vertex partition (V_1, V_2) such that $\alpha(G)$ $\alpha(G[V_1]) + \alpha(G[V_2])$, then G is 2-connected or $G \in \{K_1, K_2\}$. Also, for distinct vertices $u, v \in G$, there is a u, v-path P such that $\alpha(G - P) < \alpha(G)$.

Theorem 6 ([4]) Let k be an integer greater than 1. If C is a cycle with size at least k in a k-connected graph G, then for any non-empty subgraph $H \subseteq G - C$, there exists a cycle C' in G such that $|C - C'| \leq \frac{|C|}{k} - 1$ and $\alpha(H - C') \leq \alpha(H) - 1$.

We will also make use of the following classical result of Chvátal and Erdős [2]. A graph is said to be hamiltonian connected if, between any pair of vertices, there exists a path covering the entire graph.

Theorem 7 ([2]) For any graph G, if $\kappa(G) > \alpha(G)$, then G is hamiltonian connected.

Following the notation of [4], let P be a path and u and v be vertices in P. Define $P(u, v)$ to be the subpath of P strictly between (not including) u and v. Also, for a vertex v and a set of vertices or subgraph A, define a (v, A) k-fan to be a set of k paths from v to A which are all pairwise vertex disjoint except at v. All other standard notation comes from $|1|$.

3 Proofs of our Main Results

We begin by proving a key lemma used to obtain our main result. The main idea of the proof is based on that of Theorem 6.

Lemma 2 Let $k \geq 2$ be an integer, and suppose G is a k-connected graph containing vertices u, v . If P is a u, v -path of order at least k in G , then for any non-empty subgraph $H \subseteq G \backslash P$, there is a u, v-path P' in G such that $|P \backslash P'| \leq \frac{|P| - k}{k-1}$ and $\alpha(H \backslash P') \leq \alpha(H) - 1$.

Proof: Suppose there exists a subgraph H for which there is no desired path P' and choose H to be the smallest such subgraph. By Corollary 5, either

- (1) H can be bipartitioned into non-empty subgraphs H_1 and H_2 so that $\alpha(H) = \alpha(H_1) + \alpha(H_2)$ $\alpha(H_2)$, or
- (2) H is 2-connected or $H \in \{K_1, K_2\}$. Also, for any distinct vertices $x, y \in H$, there exists an x, y-path P_{xy} in H such that $\alpha(H \setminus P_{xy}) < \alpha(H)$.

If (1) holds, we simply apply Lemma 2 on H_1 (since H was the smallest counterexample) and obtain a path P' satisfying the desired conditions. Hence we may assume (2) holds.

Let B be the block of $G \setminus P$ containing H. First we assume $|B| \geq k$. By Menger's Theorem, there exist k vertex-disjoint paths from P to B . Choose the shortest such set of paths, meaning that each path contains exactly one vertex of B and one vertex of P . This means that there must exist a pair of these paths, say $P_1 = p_1 \dots b_1$ and $P_2 = p_2 \dots b_2$ for $p_i \in V(P)$ and $b_i \in V(B)$ such that there are at most $\frac{|P|-k}{k-1}$ vertices between p_1 and p_2 on P. Since B is 2-connected, there exist vertex-disjoint paths P_{b_i} in B from b_i to $h_i \in V(H)$ for $i = 1, 2$. Note that $h_1 = h_2$ is only possible if $|H| = 1$. (Suppose $P_{b_i} \cap H = h_i$.) By (2), there is a path P_H in H from h_1 to h_2 for which $\alpha(H \setminus P_H) < \alpha(H)$. Then $P' = (P \setminus P(p_1, p_2)) \cup (P_1 \cup P_{b_1} \cup P_{b_2} \cup P_{b_2})$ is the desired path. Hence, we may assume $|B| < k$.

Let $V(B) = \{b_1, \ldots, b_\ell\}$, where we have assumed $\ell < k$. Note that we may possibly have $\ell = 1$. Let C be the component of $G \setminus P$ containing B. Let $S = \{p_1, \ldots, p_m\}$ be the set of vertices of P (in order along P) with at least one neighbor in C . Note that, by Menger's Theorem, $m \geq k$.

For each edge e from p_i to C, there exists a unique vertex $b_j \in B$ such that there is a unique path $Q_{i,j}$ from b_j to p_i containing e with all interior vertices in $C \setminus B$. Let X_j be the set of vertices p_i for which such a path $Q_{i,j}$ exists. Note that the sets $\{X_j\}$ are not necessarily disjoint. Also note that, since B is a block, $Q_{i,j}$ and $Q_{i',j'}$ are internally disjoint when $j \neq j'$. Call a segment $P(p_i, p_j)$ for $i < j$ large if $p_i \in X_{i'}$ and $p_j \in X_{j'}$ for some $i' \neq j'$. Otherwise, as long as the segment $P(p_i, p_j)$ is not contained in a large segment, it will be called *small*.

Using the same argument as above, the following fact is immediate.

Fact 1 For any large segment $P(p_i, p_j)$, we have

$$
|P(p_i, p_j)| > \frac{|P| - k}{k - 1}.
$$

Let t be the number of segments $P(p_i, p_{i+1})$ for $1 \le i \le m$ which are large. Since large segments contain at least $\frac{|P|-k+1}{k-1}$ vertices, we see that

$$
|P| \ge t\left(\frac{|P| - k + 1}{k - 1}\right) + k,
$$

which implies that $t < k - 1$. For each $b_i \in B$, there exists a $(b_i - P)$ k-fan. Choose such a fan so that each path intersects P in exactly one vertex. Let v_1, \ldots, v_k (in this order on P) be the vertices of P at the ends of this fan. For each pair v_j, v_{j+1} , we already know that $v_j, v_{j+1} \in X_i$, but if one of these is also in $X_{i'}$ for some $i' \neq i$, then $P(v_j, v_{j+1})$ must be a large segment of P . This means that, for each vertex in B , there are at least $k-1-t$ corresponding small segments of P. Since the ends of these small segments corresponding to b_i are all in X_i , these segments must then be disjoint from all small segments corresponding to b_j for $j \neq i$ since the ends of those segments would be in X_j . Therefore there are $(k - 1 - t)\ell$ small segments all pairwise disjoint. This implies that the average order of small segments is at most

$$
\frac{|P|-t\left(\frac{|P|-k+1}{k-1}\right)-k}{(k-1-t)\ell}.
$$

By the pigeonhole principle, if we choose the shortest small segment corresponding to each vertex $b_i \in B$, then the sum of the orders of these shortest segments is at most

$$
\frac{|P| - t\left(\frac{|P| - k + 1}{k - 1}\right) - k}{(k - 1 - t)} \le \frac{|P| - k}{k - 1}.
$$

We now replace each of these small segments with the corresponding b_i using the paths $Q_{i,j}$ and $Q_{i,j+1}$ for the appropriate choice of j. This creates a new u, v-path P' such that $H \subseteq B \subseteq P'$ and $|P \setminus P'| \leq \frac{|P|-k}{k-1}$. В последните поставите на селото на се
Селото на селото на

Before our next lemma, we observe an easy fact without proof.

Fact 2 Let G be a k-connected graph for $k \geq 2$ and let u and v be two distinct vertices in G. Then for any u, v-path P with $|P| < k$, there is another u, v-path P' with $|P'| \geq k$ such that $P \subseteq P'$.

Lemma 3 Let G be a graph with $\kappa(G) = k$ and $\alpha(G) = \alpha$. If u, v are two vertices in G, l is an integer satisfying $0 \leq \ell \leq \alpha - k + 1$, then there exists a set of u, v-paths P_0, \ldots, P_ℓ satisfying:

$$
1. \ \alpha \left(G \setminus \bigcup_{i=0}^{\ell} P_i \right) \leq \alpha - k + 1 - \ell
$$

THE ELECTRONIC JOURNAL OF COMBINATORICS 18 (2011), $\#P149$ 4

$$
\mathcal{Z}.\left| P_i \setminus \bigcup_{j=0}^{j-1} P_j \right| \le \frac{|P_0| - k}{k - 1} \text{ for } 1 \le i \le \ell
$$

Proof: Induct on ℓ . If $\ell = 0$, Theorem 2 gives a u, v-path P_0 with $\alpha(G\backslash P_0) \leq \alpha - k + 1$. Now suppose we have u, v-paths $P_0, \ldots, P_{\ell-1}$ satisfying Properties 1 and 2 for $\ell - 1$.

Let $H = G \setminus \bigcup_{i=0}^{\ell-1} P_i$ be so that $\alpha(H) \leq \alpha - k + 1 - (\ell - 1)$. Assume $\alpha(H) \geq 1$ since otherwise we could simply set $P_{\ell} = P_0$. By Lemma 2 with $P_0 = P$ (note that Fact 2) implies we may assume $|P_0| \ge k$, there is a u, v-path P' such that $|P_0 \setminus P'| \le \frac{|P_0| - k}{k-1}$ and $\alpha(H \setminus P') \leq \alpha(H) - 1 \leq \alpha - k + 1 - \ell.$

Case 1 $|P'| \leq |P_0|$

Then $|P' \setminus \bigcup_{i=0}^{\ell-1} P_i| \leq |P' \setminus P_0| \leq |P_0 \setminus P'| \leq \frac{|P_0| - k}{k-1}$, so we can set $P' = P_\ell$ to satisfy the desired properties.

Case 2 $|P'| > |P_0|$

Relabel the paths as follows: $P'_0 = P'$ and $P'_i = P_{i-1}$ for $1 \le i \le \ell$. This new labelling gives $\alpha(G \setminus \cup_{i=0}^{\ell} P'_i) \leq \alpha - k + 1 - \ell$ so Property 1 is satisfied. For Property 2, first consider the case $i = 1$. $|P'_i \setminus P'_0| = |P_0 \setminus P'| \leq \frac{|P'| - k}{k-1}$ $\frac{p_i - k}{k-1}$ as desired. For $2 \leq i \leq \ell$, we have

$$
\left| P_i' \setminus \bigcup_{j=0}^{i-1} P_j' \right| \le \left| P_{i-1} \setminus \bigcup_{j=0}^{i-2} P_j \right| \le \frac{|P_0| - k}{k - 1} \le \frac{|P_0'| - k}{k - 1}
$$

so this labelling satisfies Properties 1 and 2, and we have our desired result. \Box

Using these lemmas, the proof of our main result is easy.

Proof of Lemma 1: For $k = 1$, the result is trivial so we will assume $k \geq 2$. When $k > \alpha$, the assertion holds by Theorem 7. Thus, we may also assume $\alpha \geq k$.

Set $\ell = \alpha - k + 1$ and apply Lemma 3. By Property 1, the set of paths P_0, \ldots, P_ℓ must cover all of $V(G)$. Using Property 2, this implies

$$
n = |P_0| + \sum_{i=1}^{\ell} \left| P_i \setminus \bigcup_{j=0}^{i-1} P_j \right| \le |P_0| + (\alpha - k + 1) \left(\frac{|P_0| - k}{k - 1} \right).
$$

Solving for $|P_0|$, we get get the desired result $|P_0| \geq \frac{(k-1)(n-k)}{\alpha} + k$.

Proof of Theorem 4: This proof is by induction on s. If $s = 2$, the result follows immediately from Lemma 1. Now suppose $s > 3$ and consider $G \setminus v_s$. This graph has $\kappa(G \setminus v_s) \geq k-1$ and we will assume $\alpha(G \setminus v_s) = \alpha(G)$ (otherwise a stronger result is possible). By induction on s, there exists a tree $T_{s-1} \subseteq G$ with $\ell(T_{s-1}) = \{v_1, \ldots, v_{s-1}\}\$ and

$$
|T_{s-1}| \ge \min\left\{n-1, \frac{(k-s+1)(n-k)}{\alpha} + k - 1, \frac{(k-s+2)(n-k-1)}{\alpha} + k\right\}
$$

$$
\ge \min\left\{n-1, \frac{(k-s+1)(n-k)}{\alpha} + k - 1\right\}
$$

as long as $n \geq 2k + 2 - s - \alpha$. Otherwise, if we assume $n < 2k + 2 - s - \alpha$, then since $n \geq k+1$, if we let $H = G \setminus \{v_3, v_4, \ldots, v_s\}$, we have $\kappa(H) \geq \alpha+1$. By Theorem 7, this means that H is hamiltonian connected so we can find a path P from v_1 to v_2 using all of H. Since G is k-connected, each vertex v_i for $3 \leq i \leq s$ has at least k paths to P. Since $k \geq s$, there is an edge from each v_i to $P \setminus \{v_1, v_2\}$, forming the desired tree of order n. Hence, we may suppose the above inequality holds.

In G, there are k disjoint (except at v_s) paths from v_s to T_{s-1} so there is at least one such path Q which avoids the set $\{v_1, \ldots, v_{s-1}\}$. Hence, the tree $T = T_{s-1} \cup Q$ is the desired tree with $|T| \ge |T_{s-1}| + 1$.

4 Conclusion

The results contained in this work are all sharp by the following example. Let $C = K_k$ and let $H_i = K_{\frac{n-k}{\alpha}}$ for $1 \leq i \leq \alpha$ where we assume α divides $n-k$. Let $G = C + (\cup H_i)$ where + is the standard join operation such that $V(A + B) = V(A) \cup V(B)$ and $E(A + B) =$ $E(A) \cup E(B) \cup \{u, v : u \in A, v \in B\}.$ Choose $u, v \in C$ and let P be a u, v -path that uses all vertices of C and all of H_1, \ldots, H_{k-1} . This is the longest u, v-path in G, which shows that Lemma 1 is sharp. The same example, with the inclusion of the edge uv to complete a cycle, shows that Theorem 3 is sharp.

For Theorem 4, choose v_1, \ldots, v_s from C to obtain the desired bound. In this situation, because these vertices must be leaves of the constructed tree, we may use the vertices of at most $k - s + 1$ components H_i in building T. Note also that if $s > k$, a similar result cannot hold because, if we choose all of C and at least one vertex of $G \setminus C$, at least one vertex of C must not be a leaf of a tree including these vertices.

The authors hope that the results contained in this work may be applied in other works. Like Theorems 3 and 4 we believe that many results will follow from this work and perhaps other proofs may be simplified through use of Lemma 1.

Acknowledgement

The authors would like to thank Garth Isaak for help on this and related projects.

References

- [1] G. Chartrand and L. Lesniak. Graphs & Digraphs. Chapman & Hall/CRC, Boca Raton, FL, fourth edition, 2005.
- [2] V. Chvátal and P. Erdős, A note on Hamiltonian circuits, Discrete Math 2, (1972). 111-113.
- [3] J.L. Fouquet and J.L. Jolivet. Problèmes combinatoires et théorie des graphes Orsay, Problèmes. 1976.
- [4] S. O, D. B. West, and H. Wu. *Longest cycles in k-connected graphs with given inde*pendence number. J. Combin. Th. (B), In Press.