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Abstract

We show that, in a k-connected graph G of order n with α(G) = α, between any

pair of vertices, there exists a path P joining them with |P | ≥ min
{

n,
(k−1)(n−k)

α
+ k
}

.

This implies that, for any edge e ∈ E(G), there is a cycle containing e of length

at least min
{

n,
(k−1)(n−k)

α
+ k
}

. Moreover, we generalize our result as follows: for

any choice S of s ≤ k vertices in G, there exists a tree T whose set of leaves is S

with |T | ≥ min
{

n,
(k−s+1)(n−k)

α
+ k
}

.

1 Introduction

In this work, we present a tool which we believe will be useful in many applications. Much
work has been devoted to finding long paths and cycles in graphs. In particular, in [4], O,
West and Wu recently proved a conjecture by Fouquet and Jolivet [3] stated as follows.

Theorem 1 ([4]) Let k ≥ 2 and let G be a k-connected graph of order n with α(G) = α.

Then there is a cycle in G of length at least min{n,
k(n+α−k)

α
}.

In various situations including this work, it often becomes necessary to find a long
path between a chosen pair of vertices. For this reason, O, West and Wu proved the
following theorem which they used in their proof of the conjecture.

Theorem 2 ([4]) Let G be a k-connected graph for k ≥ 1. If H ⊆ G and u and v

are distinct vertices in G, then G contains a u, v-path P such that V (H) ⊆ V (P ) or

α(H − P ) ≤ α(H) − (k − 1).
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We also use this theorem and, following the proofs presented in [4], we prove the
following lemma which is our main result.

Lemma 1 Let k ≥ 1 be an integer and let G be a graph of order n with κ(G) = k and

α(G) = α. Then for any pair of vertices u, v in G, there exists a u, v-path of order at

least min{n,
(k−1)(n−k)

α
+ k}.

Our hope is that this lemma may be applied to produce other results like Theorem 3,
which follows immediately from Lemma 1 by choosing u and v to be the ends of e.

Theorem 3 Let k ≥ 2 be an integer and let G be a k-connected graph of order n

with α(G) = α. Then for any edge e ∈ E(G), there exists a cycle of length at least

min
{

n,
(k−1)(n−k)

α
+ k
}

in G containing the edge e.

Lemma 1 can be generalized to the following result concerning large trees with specified
sets of leaves. Let ℓ(T ) denote the set of leaves in a tree T .

Theorem 4 Let k and s be integers with 2 ≤ s ≤ k and let G be a k-connected graph of

order n with α(G) = α. Then for any set of s vertices Vs = {v1, . . . , vs} ⊆ G, there exists

a tree T ⊆ G with Vs = ℓ(T ) and |T | ≥ min
{

n,
(k−s+1)(n−k)

α
+ k
}

.

The proofs of Lemma 1 and Theorem 4 are presented in Section 3. As we will observe
in Section 4, our results are all best possible.

2 Preliminaries

In our proof, we use the following corollary to break the problem into cases. We also state
and prove a path version of Theorem 6. Both of these results come from [4].

Corollary 5 ([4]) If a graph G admits no vertex partition (V1, V2) such that α(G) =
α(G[V1]) + α(G[V2]), then G is 2-connected or G ∈ {K1, K2}. Also, for distinct vertices

u, v ∈ G, there is a u, v-path P such that α(G − P ) < α(G).

Theorem 6 ([4]) Let k be an integer greater than 1. If C is a cycle with size at least k

in a k-connected graph G, then for any non-empty subgraph H ⊆ G − C, there exists a

cycle C ′ in G such that |C − C ′| ≤ |C|
k
− 1 and α(H − C ′) ≤ α(H) − 1.

We will also make use of the following classical result of Chvátal and Erdős [2]. A
graph is said to be hamiltonian connected if, between any pair of vertices, there exists a
path covering the entire graph.

Theorem 7 ([2]) For any graph G, if κ(G) > α(G), then G is hamiltonian connected.

Following the notation of [4], let P be a path and u and v be vertices in P . Define
P (u, v) to be the subpath of P strictly between (not including) u and v. Also, for a vertex
v and a set of vertices or subgraph A, define a (v, A) k-fan to be a set of k paths from v

to A which are all pairwise vertex disjoint except at v. All other standard notation comes
from [1].
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3 Proofs of our Main Results

We begin by proving a key lemma used to obtain our main result. The main idea of the
proof is based on that of Theorem 6.

Lemma 2 Let k ≥ 2 be an integer, and suppose G is a k-connected graph containing

vertices u, v. If P is a u, v-path of order at least k in G, then for any non-empty subgraph

H ⊆ G\P , there is a u, v-path P ′ in G such that |P \P ′| ≤ |P |−k

k−1
and α(H\P ′) ≤ α(H)−1.

Proof: Suppose there exists a subgraph H for which there is no desired path P ′ and
choose H to be the smallest such subgraph. By Corollary 5, either

(1) H can be bipartitioned into non-empty subgraphs H1 and H2 so that α(H) = α(H1)+
α(H2), or

(2) H is 2-connected or H ∈ {K1, K2}. Also, for any distinct vertices x, y ∈ H , there
exists an x, y-path Pxy in H such that α(H \ Pxy) < α(H).

If (1) holds, we simply apply Lemma 2 on H1 (since H was the smallest counterex-
ample) and obtain a path P ′ satisfying the desired conditions. Hence we may assume (2)
holds.

Let B be the block of G \ P containing H . First we assume |B| ≥ k. By Menger’s
Theorem, there exist k vertex-disjoint paths from P to B. Choose the shortest such set of
paths, meaning that each path contains exactly one vertex of B and one vertex of P . This
means that there must exist a pair of these paths, say P1 = p1 . . . b1 and P2 = p2 . . . b2 for
pi ∈ V (P ) and bi ∈ V (B) such that there are at most |P |−k

k−1
vertices between p1 and p2 on

P . Since B is 2-connected, there exist vertex-disjoint paths Pbi
in B from bi to hi ∈ V (H)

for i = 1, 2. Note that h1 = h2 is only possible if |H| = 1. (Suppose Pbi
∩ H = hi.)

By (2), there is a path PH in H from h1 to h2 for which α(H \ PH) < α(H). Then
P ′ = (P \P (p1, p2))∪(P1∪Pb1 ∪PH ∪Pb2 ∪P2) is the desired path. Hence, we may assume
|B| < k.

Let V (B) = {b1, . . . , bℓ}, where we have assumed ℓ < k. Note that we may possibly
have ℓ = 1. Let C be the component of G \ P containing B. Let S = {p1, . . . , pm} be
the set of vertices of P (in order along P ) with at least one neighbor in C. Note that, by
Menger’s Theorem, m ≥ k.

For each edge e from pi to C, there exists a unique vertex bj ∈ B such that there is
a unique path Qi,j from bj to pi containing e with all interior vertices in C \ B. Let Xj

be the set of vertices pi for which such a path Qi,j exists. Note that the sets {Xj} are
not necessarily disjoint. Also note that, since B is a block, Qi,j and Qi′,j′ are internally
disjoint when j 6= j′. Call a segment P (pi, pj) for i < j large if pi ∈ Xi′ and pj ∈ Xj′

for some i′ 6= j′. Otherwise, as long as the segment P (pi, pj) is not contained in a large
segment, it will be called small.

Using the same argument as above, the following fact is immediate.

Fact 1 For any large segment P (pi, pj), we have
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|P (pi, pj)| >
|P | − k

k − 1
.

Let t be the number of segments P (pi, pi+1) for 1 ≤ i ≤ m which are large. Since large

segments contain at least |P |−k+1
k−1

vertices, we see that

|P | ≥ t

(

|P | − k + 1

k − 1

)

+ k,

which implies that t < k − 1. For each bi ∈ B, there exists a (bi − P ) k-fan. Choose
such a fan so that each path intersects P in exactly one vertex. Let v1, . . . , vk (in this
order on P ) be the vertices of P at the ends of this fan. For each pair vj , vj+1, we already
know that vj , vj+1 ∈ Xi, but if one of these is also in Xi′ for some i′ 6= i, then P (vj , vj+1)
must be a large segment of P . This means that, for each vertex in B, there are at least
k − 1 − t corresponding small segments of P . Since the ends of these small segments
corresponding to bi are all in Xi, these segments must then be disjoint from all small
segments corresponding to bj for j 6= i since the ends of those segments would be in Xj .
Therefore there are (k − 1 − t)ℓ small segments all pairwise disjoint. This implies that
the average order of small segments is at most

|P | − t
(

|P |−k+1
k−1

)

− k

(k − 1 − t)ℓ
.

By the pigeonhole principle, if we choose the shortest small segment corresponding to
each vertex bi ∈ B, then the sum of the orders of these shortest segments is at most

|P | − t
(

|P |−k+1
k−1

)

− k

(k − 1 − t)
≤

|P | − k

k − 1
.

We now replace each of these small segments with the corresponding bi using the paths
Qi,j and Qi,j+1 for the appropriate choice of j. This creates a new u, v-path P ′ such that

H ⊆ B ⊆ P ′ and |P \ P ′| ≤ |P |−k

k−1
. �

Before our next lemma, we observe an easy fact without proof.

Fact 2 Let G be a k-connected graph for k ≥ 2 and let u and v be two distinct vertices

in G. Then for any u, v-path P with |P | < k, there is another u, v-path P ′ with |P ′| ≥ k

such that P ⊆ P ′.

Lemma 3 Let G be a graph with κ(G) = k and α(G) = α. If u, v are two vertices in G,

ℓ is an integer satisfying 0 ≤ ℓ ≤ α− k +1, then there exists a set of u, v-paths P0, . . . , Pℓ

satisfying:

1. α

(

G \

ℓ
⋃

i=0

Pi

)

≤ α − k + 1 − ℓ
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2.

∣

∣

∣

∣

∣

Pi \

j−1
⋃

j=0

Pj

∣

∣

∣

∣

∣

≤ |P0|−k

k−1
for 1 ≤ i ≤ ℓ

Proof: Induct on ℓ. If ℓ = 0, Theorem 2 gives a u, v-path P0 with α(G\P0) ≤ α−k+1.
Now suppose we have u, v-paths P0, . . . , Pℓ−1 satisfying Properties 1 and 2 for ℓ − 1.

Let H = G \ ∪ℓ−1
i=0Pi be so that α(H) ≤ α − k + 1 − (ℓ − 1). Assume α(H) ≥ 1 since

otherwise we could simply set Pℓ = P0. By Lemma 2 with P0 = P (note that Fact 2

implies we may assume |P0| ≥ k), there is a u, v-path P ′ such that |P0 \ P ′| ≤ |P0|−k

k−1
and

α(H \ P ′) ≤ α(H) − 1 ≤ α − k + 1 − ℓ.

Case 1 |P ′| ≤ |P0|

Then
∣

∣P ′ \ ∪ℓ−1
i=0Pi

∣

∣ ≤ |P ′ \ P0| ≤ |P0 \ P ′| ≤ |P0|−k

k−1
, so we can set P ′ = Pℓ to satisfy

the desired properties.

Case 2 |P ′| > |P0|

Relabel the paths as follows: P ′
0 = P ′ and P ′

i = Pi−1 for 1 ≤ i ≤ ℓ. This new labelling
gives α

(

G \ ∪ℓ
i=0P

′
i

)

≤ α − k + 1 − ℓ so Property 1 is satisfied. For Property 2, first

consider the case i = 1. |P ′
i \ P ′

0| = |P0 \ P ′| ≤ |P ′|−k

k−1
as desired. For 2 ≤ i ≤ ℓ, we have

∣

∣

∣

∣

∣

P ′
i \

i−1
⋃

j=0

P ′
j

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

Pi−1 \

i−2
⋃

j=0

Pj

∣

∣

∣

∣

∣

≤
|P0| − k

k − 1
≤

|P ′
0| − k

k − 1

so this labelling satisfies Properties 1 and 2, and we have our desired result. �

Using these lemmas, the proof of our main result is easy.
Proof of Lemma 1: For k = 1, the result is trivial so we will assume k ≥ 2. When

k > α, the assertion holds by Theorem 7. Thus, we may also assume α ≥ k.
Set ℓ = α − k + 1 and apply Lemma 3. By Property 1, the set of paths P0, . . . , Pℓ

must cover all of V (G). Using Property 2, this implies

n = |P0| +

ℓ
∑

i=1

∣

∣

∣

∣

∣

Pi \

i−1
⋃

j=0

Pj

∣

∣

∣

∣

∣

≤ |P0| + (α − k + 1)

(

|P0| − k

k − 1

)

.

Solving for |P0|, we get get the desired result |P0| ≥
(k−1)(n−k)

α
+ k. �

Proof of Theorem 4: This proof is by induction on s. If s = 2, the result follows
immediately from Lemma 1. Now suppose s > 3 and consider G \ vs. This graph has
κ(G \ vs) ≥ k − 1 and we will assume α(G \ vs) = α(G) (otherwise a stronger result is
possible). By induction on s, there exists a tree Ts−1 ⊆ G with ℓ(Ts−1) = {v1, . . . , vs−1}
and
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|Ts−1| ≥ min

{

n − 1,
(k − s + 1)(n − k)

α
+ k − 1,

(k − s + 2)(n − k − 1)

α
+ k

}

≥ min

{

n − 1,
(k − s + 1)(n − k)

α
+ k − 1

}

as long as n ≥ 2k + 2 − s − α. Otherwise, if we assume n < 2k + 2 − s − α, then since
n ≥ k + 1, if we let H = G \ {v3, v4, . . . , vs}, we have κ(H) ≥ α + 1. By Theorem 7, this
means that H is hamiltonian connected so we can find a path P from v1 to v2 using all of
H . Since G is k-connected, each vertex vi for 3 ≤ i ≤ s has at least k paths to P . Since
k ≥ s, there is an edge from each vi to P \ {v1, v2}, forming the desired tree of order n.
Hence, we may suppose the above inequality holds.

In G, there are k disjoint (except at vs) paths from vs to Ts−1 so there is at least one
such path Q which avoids the set {v1, . . . , vs−1}. Hence, the tree T = Ts−1 ∪ Q is the
desired tree with |T | ≥ |Ts−1| + 1. �

4 Conclusion

The results contained in this work are all sharp by the following example. Let C = Kk and
let Hi = Kn−k

α

for 1 ≤ i ≤ α where we assume α divides n− k. Let G = C +(∪Hi) where

+ is the standard join operation such that V (A + B) = V (A) ∪ V (B) and E(A + B) =
E(A) ∪E(B) ∪ {u, v : u ∈ A, v ∈ B}. Choose u, v ∈ C and let P be a u, v-path that uses
all vertices of C and all of H1, . . . , Hk−1. This is the longest u, v-path in G, which shows
that Lemma 1 is sharp. The same example, with the inclusion of the edge uv to complete
a cycle, shows that Theorem 3 is sharp.

For Theorem 4, choose v1, . . . , vs from C to obtain the desired bound. In this situation,
because these vertices must be leaves of the constructed tree, we may use the vertices of
at most k − s + 1 components Hi in building T . Note also that if s > k, a similar result
cannot hold because, if we choose all of C and at least one vertex of G \ C, at least one
vertex of C must not be a leaf of a tree including these vertices.

The authors hope that the results contained in this work may be applied in other
works. Like Theorems 3 and 4 we believe that many results will follow from this work
and perhaps other proofs may be simplified through use of Lemma 1.
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