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A ring of cliques is a graph whose vertex set is the disjoint union of cliques, arranged in a
cyclic order, such that the vertices of each clique are joined to all the vertices in the two
neighbouring cliques. If the cliques have size aq, as, ..
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Abstract

For any positive integers a,b,c,d, let Ryp..q be the graph obtained from the
complete graphs K, K, K. and K4 by adding edges joining every vertex in K, and
K. to every vertex in K; and Ky. This paper shows that for arbitrary positive
integers a,b,c and d, every root of the chromatic polynomial of R, .4 is either a
real number or a non-real number with its real part equal to (a +b+c+d—1)/2.
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Introduction

Ra, as....a,- Figure 1 shows the graph Ry 3 3.

*Corresponding author.
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., a, then we denote this graph by



Figure 1: The graph Ry 233

Graphs with this structure have occurred several times previously in the study of
chromatic polynomials and their roots. In particular, in proving that there are non-
chordal graphs with integer chromatic roots, Read [6] considered the graphs in this family
with a; = 1 (and he also used slightly different notation). Rings of cliques cropped up
again recently in a preliminary investigation of the algebraic properties of chromatic roots
(Cameron [1]) and in the course of this investigation, the chromatic roots of many of
these graphs were computed. When the chromatic roots of the ring-of-clique graphs with
exactly four cliques and a fixed number of vertices were plotted, an intriguing pattern was
observed — all the non-real chromatic roots lie on a single vertical line. Figure 2 shows
the union of the chromatic roots of the 12-vertex graphs of the form R, 4.

Faced with such a striking empirically-observed pattern, we were led to explain it
theoretically. This appears to require a surprisingly intricate argument, but eventually
we obtain the following result:

Theorem 1 For arbitrary non-negative integers a, b, ¢ and d the chromatic roots of
Ropca are either real, or non-real with real part equal to (a +b+c+d—1)/2.

The overall structure of the argument is as follows: P(Rup.c.q, A), the chromatic poly-
nomial of Ry 4, is first expressed as the product of linear factors and a factor Qup.c.a(A).
It then suffices to show that the non-real roots of Qup..q4(A) all lie on the vertical line
R(A) = (a+b+c+d—1)/2 in the complex A-plane. Next the polynomial F, ,, () is
defined to be Qupca(z+ (a+b+c+d—1)/2) thus translating the vertical line supposed
to contain the roots to the imaginary axis and also reparameterizing the problem (in a
somewhat counterintuitive way). Then F,, ,, is shown to be an even polynomial and we
define a fourth polynomial W, ,, , » by Wapgn(2?) = Fupen(2). The proof is completed by
demonstrating that W, , ., is real-rooted using polynomial interleaving techniques, and
therefore I, , ,, has only real or pure imaginary roots as required.
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Figure 2: Chromatic roots of the graphs R, .q where a +b+c+d = 12.

2 Basics

For any graph G and any positive integer A, let P(G, \) be the number of mappings ¢
from V(G) to {1,2,..., A} such that ¢(u) # ¢(v) for every two adjacent vertices u and v
in G. It is well-known that P(G, \) is a polynomial in A, called the chromatic polynomial
of G.

The chromatic polynomial of a graph G has the following properties (see, for instance,
13, 5, 7, 9]), which we will apply later.

Proposition 1 Let G be a simple graph of order at least 2.
(i) If u and v are two non-adjacent vertices in G, then
P(G,\) = P(G 4 uv,\) + P(G/uv, \), (1)

where G +uv is the graph obtained from G by adding the edge joining u and v, and
G /uv is the graph obtained from G by identifying u and v and removing all parallel
edges but one.

(ii) If u is a vertex in G which is adjacent to all other vertices in G, then

P(G,\) = AP(G —u, A — 1), (2)
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where G — u s the graph obtained from G by removing u.

If a =0, Ryp.cais achordal graph and its chromatic polynomial is

()‘)b-i-c()‘)c—i-d
(Ne

and if @ > 1 and ¢ > 1, then applying Proposition 1 repeatedly yields that

P(RO,b,c,d> )‘) = (3)

P(Ra,b,c,d> )\) = )\P(Ra—l,b,c,da A — 1) + C)\P(Ra—l,b,c—l,cb A — 1). (4)

For a non-negative integer a and real numbers b, ¢ and d, define a polynomial Qg p ¢ 4(2)
in z as follows: Qopca(z) =1 and for a > 1,

Qa7b7c,d(z) = (Z —b— C) (Z —C— d)Qa—l,b,c,d(Z — 1) —+ C(Z —a—c+ 1)Qa_1,b,c_17d(z — 1) (5)
It is clear that Qup.c.q4(#) is a polynomial of order 2a in z.

Proposition 2 Let a,b,c and d be any non-negative integers. Then

P(Bypea \) — %@mww (6)

Proof. 1f a = 0, then (6) follows from (3) and the definition of Qg pcq4(A). Now assume
that @ > 1. By (4) and induction, we have

P(Ra,b,c,dv >\) = AP(Ra—l,b,c,du A — 1) + CAP(Ra—l,b,c—l,dv A— 1)
A= 1Dprc(A=1)

A a1 pedA — 1
O Dary erted =)
()\ - 1)b+c—1(>\ - 1)c+d—1
+cA a1be1.dA—1
A Qe nah = 1)
Npte(A)e
Woreerd ;34 33 = e d)Qu 1pealr—1)
()‘)a—i-c
‘l‘C()\ —a—c+ 1)@@—1,b,c—1,d()\ — 1)] . (7)
The result then follows. |

Define ({) =1 and (?) = z(z—1)...(z —r+1)/r! for any positive integer r and any
complex number x.

Proposition 3  For any non-negative integer a and real numbers b, c and d,

QapealN) = algﬂ(a _i)!(j) <A ;E; c) (A ;: d) (A - ai—cﬂ) ®
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Proof. 1t is trivial if a = 0 as Qopca(z) = 1. Now assume that ¢ > 1. By (5) and
induction,

Qa,b,c,d()\)
= ()\ —b— C)( — C— )Qa lbcd()\ — 1) + C()\ —a—c+ 1)Qa—1,b,c—1,d(>\ — 1)

- or-an-e-ape- oS foe-i-n() (17)

1=0

(A;i;le)(“;”i)}
O [y
Gy
- wenSa-ae-a () ()L ()
o= {wam o () (3707
GOy
- wone-atea (), (L) 00

1=

“a‘”é“—1>!<a—i>!*(f-> ([ [
- afueo()0)LSNCTTT) e

The result then follows. O
For any non-negative integer a and real numbers p, ¢, n, define

F,

a+p+q—1\/z+n+i—1 P\ [z—q
= ql l_ 1
) = a3 ato= (O (T T (T o

Then (8) and (10) implies that Qupca(z + (@ +b+c+d—1)/2) = F,, 4n(2), where

p=0b+c—a—d+1)/2
¢q=(c+d—a—-0b+1)/2 (11)

n=0b+d—a—c+1)/2.
In the next section, we shall show that F,,,,(z) is an even polynomial in z, and
the polynomial obtained from F,,,.(z) by replacing z* by z (i.e., W, ,n(2) defined
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on Page 9) has only real roots for an arbitrary positive integer a and arbitrary real
numbers p, ¢, n satisfying the condition that p + ¢,p +n and ¢ 4+ n are all non-negative
(see Proposition 10). This result implies that every root of F,,,.(2) is either a real
number or a non-real number with its real part equal to 0 if a is a positive integer and
p+q,p+n and ¢ + n are all non-negative real numbers. For arbitrary positive integers
a,b,c,d, if @ < min{b, c,d} and p,q and n are given in (11), then p+g=c—a+1 >0,
p+n=b—a+1>0andg+n=d—a+1>0. Since Qupa(z+(a+b+c+d—1)/2) =
Fopqn(2), where p, ¢ and n are given in (11), the following result is obtained.

Proposition 4  For arbitrary positive integers a,b,c and d, if a < min{b,c,d}, then
every 1oot of Qupc.a(z) is either a real number or a non-real number with its real part
equal to (a+b+c+d—1)/2. Therefore, for arbitrary non-negative integers a,b,c and d,
every oot of P(Rapc.d, A) s either a real number or a non-real number with its real part
equal to (a+b+c+d—1)/2. O
3 The polynomial F,,,(2)

From the definition of F, , , »(z), we have Fy, ,n(2) =1 and Fy , 4. (2) = 22+ pg+pn+qn.
We shall show that F,,,,(z) has a recursive expression in terms of F,_1,,,(2) and
Fo—2p4n(2). We first prove two properties of F, ,, ,.(2).

Proposition 5  For any integer a > 1 and arbitrary real numbers p,q,n, if p+q =0,
then

Fopan(2) = (2=0)(z = @) Fa-1prigr1n(2). (12)

Proof. For a > 1,

-~ wfa—1\[(z4+n+1—=1\[z2—p\ [z —q
F, = al (a —1)!
wpan(z) = ,.zoz(a Z)< i )( i )(a—z’) (a—z’)

= (z-p)z - q)a—1)!

S0 () (I

P Q) e pergrin() (13)

Proposition 6  For any integer a > 1 and arbitrary real numbers p,q,n,

Fa7p+17q7n(z) - Fa,p,q,n(z) = ala+n+q— 1)Fa—1,p+l,q,n(z)- (14)
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Proof Fora>1,
Fopsiqn(2) = Fapgn(2)
)
() )
=
() ()
AN il(a — i) (ZJF”;“_l)(Z:g)<a+z;jf—1)<z;;i;1)

1=

! z4n+i—1\[(z—q\(a+p+qg—1\[z—p—1
—aly il(a —1)! : , ,
— 1 a—1 i a—1i—1

7

= mgf@+1ﬂm—¢—1y6é::fg(ai;gl)(a+qu—1>(ziﬁ:i)

i=0
! z24n+i—1\[(z—q\[(a+p+q—1\[z—p—1
— 7 a—1 7 a—1—1
= (n+q¢+a—1)
- (z+n+i—1)( z—q )<a+p+q—1)(z—p—1)
Zz'a—l—z . . . .
— 7 a—1—1 ) a—1—1
= ala+n+q—1)F,_1p4149n(2). (15)

O
Now we can prove that F,,,.(z) can be expressed in terms of F, ;,,.(z) and

Fa—lp,q,n('z)'

Proposition 7 Let p,q,n be arbitrary real numbers. For any integer a > 2,

Fopan(z) = (224 (a=1)(2p+2q+2n+ 2a — 3) + pq + pn+ qn) Fu_1pgn(2)
—(a—1)(p+qg+a—2)g+n+a—-2)p+n+a—2)F,_2,,n(2)(16)

Proof. By the definition of F, ,, ;,(2), we have F, 4.0 (2) = 1, Fipqn(2) = 22+pg+pn+qn
and

Foypan(z) = 2"+ (294 2pg+ 1+ 2pn + 2p + 2qn + 2n)2* + pg® + pq
+qn + ¢*n + p*¢® + p*n® + p*q + dpgn + pn® + 2p%qn
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+pn + 2pg*n + 2pgn® + qn® + ¢*n’® + pn. (17)

Thus it can be verified that (16) holds when a = 2.

Assume that (16) holds for every integer 2 < a < k, where k > 3. Now consider the
case that a = k.

By the definition of F,, ,.(2), Fapqn(2) is also a polynomial of order a in p. Let
q,n,z be any fixed real numbers. If (16) holds for all numbers p in the set {—¢+ 7 :7r =
0,1,2,...}, then the result is proven.

By assumption on a, (16) holds for F,_; _;11,4+1.,(2) and thus

Fa—l,—q+17q+1,n(z)
= (2 =ba+2an+2a*>+3 —2n— ¢*)Fuo_gi1411.0(2)
—(a=2)(a—1)(—¢—2+n+a)(g—2+n+a)Fu3_gi1.4+1.0(2).

By Proposition 5, for any integer m > 1,

Hence

Fo_gqn(z) = (22 —5a + 2an + 2a> + 3 — 2n — q2)Fa_1,_q7q7n(z)

—(a—=2)(a—1)(—¢—2+n+a)lg—24+n+a)Fo_o_gq4n(2),

implying that (16) holds for F, _, ,n(2).
In the remaining part of this proof, we shall show that if (16) holds for F, , ,.(2), then
(16) holds for F, ,11,4x(%). Assume (16) holds for F, ,,,(2), and so

Fopan(2) = (P4 (a—1)2p+2¢+2n+2a—3)+pg+pn—+qn)Fu1pen(2)
—(a—1)p+qg+a—2)(g+n+a—-2)(p+n+a—2)F, 5,4n(2)(18)

By assumption on a, (16) holds for F,_; ,41,4(2) and so

Fa—l,p+l,q,n(z)
= (Z2+(a—2)2p+2¢+2n+2a—3)+ (p+1)(n+q) + qn)Fuopi14n(2)
—(a—=2)(p+q+a—-2)g+n+a—3)(p+n+a—2)Fuspi14n(2). (19)

By Proposition 6, (19) and (19), we have

Fopi1gn(2)

= Fapgn(2) +ala+q+n—1)F,1pi14n(2)
(Z2+(a—1)(2p+2¢+2n+2a—3) +pg+pn+qn)Fu_1pqan(2)
—(a—1)p+qg+a—2)g+n+a—-2)p+n+a—2)F,_2,,n(2)
+ala+q+n—1)F,_1p4149n0(2)

= (Z2+(a—1)(2p+2¢+2n+2a—3)+pg+pn+qn)
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(Faciprign(2) —(@=1)(a+q+n—2)F 2p114a(2))
—(a—D(p+qg+a—2)(g+n+a—-2)(p+n+a—2)
(Fa2piign(2) = (@=2)(a+q+n—3)Fy3p114n(2))
+ala+q+n—1)F,_1p4149n0(2)

= (Z2+(a—1)(2p+2¢+2n+2a—3)+pg+pn+qn)
(Faciprign(z) —(@=1)(a+q+n—2)F 2,414a(2))
—(a—1D)(p+q+a—2)(g+n+a—-2)p+n+a—2)Fy spi1qn(2)
+a—1)(a+qg+n—2)(—Fo1pt1.9n(2) +
(Z2+(a—2)2p+2¢+2n+2a—3)+ (p+1)(n+q) +qn)Fuopi1qn(2))
+ala+q+n—1)F,_1,p414n0(2)

= (P+@—-1)2p+2¢+2n+2a—1)+ P+ 1)+ q) +qn)Faipi1qn(z)
—(a=1Dp+g+ta—-1)(gtn+a—-2)p+n+a—1)F2pi14a(2)

Thus (16) holds for F, p+14,(%). Hence (16) holds for F,, ,.(2) for all numbers p in the
set {g+7r:r=20,1,2,...} and therefore the result is proved. O

Since Fypan(z) = 1 and Fipgn(2) = 22 + pg + pn + gn, Proposition 7 implies that
Fopgn(2) is an even polynomial in z. For any non-negative integer a and real num-
bers p,q,n, let W, ,,n(2) be the polynomial in z defined as follows: Wy, ,n(2) = 1,
Wi pan(2) = 2+ pg + pn + qn and for a > 2,

Wapan(2) = (z+(a—=1)2p+2¢+2n+2a —3) 4+ pg + pn+ qn)Wy_1 5 ¢n(2)
—(a=1Dp+g+a—2)(g+n+a—-2)(p+n+a—2)Weopen(2). (20)

Thus it is clear that F, ,,.(2) = Wapen(2?).

For two non-increasing sequences (aq, ag, . . ., ay) and (by,be, ..., b,) of real numbers,
we say the first interleaves the second if m = n + 1 and (aq, by, as,ba, ..., ap, by, api) is
an non-increasing sequence, or m = n and (ay, by, as, b, ..., ay,,b,) is an non-increasing

sequence. If both polynomials f(z) and g(x) in x with real coefficients have only real
roots and the non-increasing sequence formed by all roots of f(x) interleaves the non-
increasing sequence formed by all roots of g(z), then we say f(x) interleaves g(x). We
need to apply the following result (Proposition 8) given in Section 1.3 of [4]. Note that
paper [8] has a result (Theorem 2.3 in that paper) stronger than Proposition 8. More
details on polynomials with only real roots can be found in [2, 4, 8].

Proposition 8 ([4]) Let f(x) and g(x) be polynomials with real coefficients and with
positive leading coefficients and u and v be any real numbers. If f(x) interleaves g(x) and
v <0, then (x — u) f(x) + vg(z) interleaves f(x). O

Applying Proposition 8 or Theorem 2.3 in [8], we can get the following result.
Proposition 9  Let a be any positive integer and p, q,n be any real numbers.

(i) If (p+q@)(n+q)(n+p) >0, then Wa,, 4n(2) interleaves Wi p 4 n(2).
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(i) Ifa>3, (p+q+a—2)(g+n+a—2)(p+n+a—2)> 0 and Wy_1,4n(2) interleaves
Wa—apgn(2), then W, o n(2) interleaves Wo_1 pgn(2).

Proof. By the definition of W, 4.(2), Wip4n(2) = 2+ pg + pn + gn and

Wapan(2) = (24 2p+2¢+2n+ 1+ pg+pn+qn)(z+ pg+ pn+ qn)
—(p+q9)(g+n)(p+n). (21)

As the only root of Wy, ,n(2) is —pg — pn — qn and Wy, o n(—pg — pn — qn) = —(p +
Q)(n+q)(n+p) <0, Wa,,n(2) interleaves Wy, ,,(2). So (i) holds.
By Proposition 7,

Fopan(2) = (P4 (a—1)2p+2¢+2n+2a—3)+pg+pn—+qn)Fu1pen(2)
—(a—1)p+qg+a—-2)(g+n+a—-2)p+n+a—2)F, 5,.n(2)(22)

Since —(a—1)(p+q¢+a—2)(¢g+n+a—2)(p+n+a—2) <0and W,_1,,.(2) interleaves
Wa—2p.qn(2), Proposition 8 implies that W, , ,.(2) interleaves W,_1,,.(2). Hence (ii)
holds. O

Notice that W p4n(2) = Wagpn(2) = Wangep(2) holds for arbitrary real numbers
P, q,n and non-negative integer a, we assume that p < ¢ < n in the following.

Proposition 10  Let p,q,n be arbitrary real numbers with p < q < n and p+ q > 0.
Then, for every integer a > 2, W, 4n(2) interleaves Wo_1 4 4n(2). Therefore, for every
positive integer a, Wy, 4n(2) has only real roots and every root of F,,,n(2) is either a
real number or a non-real number with its real part equal to 0.

Proof. Since p+qg >0 and p < g <n, we have ¢ +n > p+n > 0 and so Proposition 9
(i) implies that Wy, ,,(2) interleaves W1, ,,(2). Then, by Proposition 9 (ii), We . 4.n(2)
interleaves W,_1 , 4 (%) for every integer a > 3. O

By the discussion immediately preceding Proposition 4, it follows that for all positive
integers a, b, ¢, d with a < min{b, ¢, d}, the hypotheses of Proposition 10 are satisfied and
hence we have proved Theorem 1.

Remark: There is another way to obtain the result of Proposition 10 by showing that
all roots of W, ,n(2) are actually the eigenvalues of a symmetric matrix with real entries
only. Assume that p,q,n are arbitrary real numbers with p < ¢ < n and p+ ¢ > 0.
For any positive integer a, let B, = (b; ;) be the a X a symmetric matrix whose non-zero
entries are b; ;,b;;_1,b;_1; given below:

bii=—((1 —1)(2p +2q + 2n + 2i — 3) + pq + pn + qn)
foralli=1,2,---,a and
bi—1i =biio1 = ((1 — 1)(p+q+z’—2)(q+n+i—2)(p+n+z’—2))1/2

for all i = 2,---,a. It is not difficult to show that det(zl, — B,) = Wy qn(2) for all
a > 1, where I, is the identity matrix of size a. Since B, is a symmetric matrix with real
entries only, all roots of det(zI, — B,) are real and thus Proposition 10 follows.
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4 Further properties of F,,,, and W,, .,

Even if p+¢ < 0, there are still some situations in which W, , »(2) has only real roots. In
this section we consider these, although they do not correspond to values of the parameters
a, p, ¢ and n that arise from rings of cliques. We need to apply the following result on
the factorization of F,,,,(2) when a+p+n=1ora+p+n=2.

Proposition 11 Let a be an integer with a > 1 and p,q,n be arbitrary real numbers.
(i) Ifa+p+n=1, then

a—1
Fopan(z) = H(22 — (n+j)%). (23)
=0
(it) If a +p+n =2, then
a—2
Fapan(2) = (% + (0= D)(n—1) +aq) [[(z* = (n +4)). (24)
7=0

Proof. (i) Ifa+p+mn =1, then

i!(a—i)!(Z:Z) (“”Z“_l) :ﬁ(z+n+j).

J=0

Thus

at+p+q—1 P\ (z—a\(+n+ti=l
Fopan(2) a: ZZ a ( 1 )(a—z) (a—i)( i )

_ a!ﬁ<z+n+j>i(qu—l)(;:j)

=0 =0
a—1
~fa+tpt+qg—1+2z2—
(T
j=0 “
a—1 s
= | ]
a.H(z+n+])( " )
]—0
= Hz — (n+)%). (25)
7=0

Thus (i) holds.

(ii) Now let a+p+n = 2. Since Fy,,.(2) = 2% +pg+pn+qn, it is easy to verify that
(ii) holds when a = 1. Assume that (ii) holds for any integer 1 < a < k, where k£ > 2.
Now let a = k.
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Since a + p +n = 2, by Proposition 7,
Fopan(2) = (224 (a—1)(2p+2q+2n+2a—3) +pg+ pn + qn)Fy_1,4n(2).

Asa—14p+n=1, by (i) of this result, we have

a—2

Fotpan(z) = [[(Z* = (n +5)%).

=0

Since p +n + a = 2, it can be verified that
(a—1)2p+2¢+2n+2a—-3)+pg+pn+qn=(p—1)(n—1)+aq.

Hence (ii) also holds. O
Proposition 12 Let p,q,n be arbitrary real numbers with p < q < n.

(1) If p+q is a negative integer, then for every integer a with a > 2 —p—q, Wapqn(2)
interleaves Wo_1 p qn(2).

(ii) If g+n is an integer, then for every integer a with max{2,2—q—n} <a <2—p—n,
Wapan(z) interleaves Wy _1 5 4n(2).

Proof. (i) First consider the case that @ =2 — p — ¢. Since p+ ¢ < —1, we have a > 3.
Proposition 11 implies that W, , ,.(2) interleaves W,_1 , 4 n(2).

Now assume that a > 2 — p — ¢ and W,_1,4.(2) interleaves W, 2, ,n,(2). Since
a>2—p—q,we have a+p+q—2 > 1landsoa+qg+n—2 > a+p+n—2> a+p+q—2> 1.
Thus Proposition 9 (ii) implies that Wy, .. (2) interleaves W,_;,,.(2). Therefore (i)
holds.

(ii) The result is trivial if max{2,2 —¢—n} > 2 —p—n. Now assume that max{2,2 —
q—n}y<2—p—n.

Let a = max{2,2 — ¢ —n}. Then a > 2 — ¢ — n, implying that a + ¢+ n —2 > 0.
We also have a < 2 — p —n, implying that a + p+n—-2<0andsoa+p+qg—2 <0.
If @ = max{2,2 — g —n} = 2, then Proposition 9 (i) implies that W5, ,,(z) interleaves
Wi pgn(2), 1e., Wop o n(2) interleaves W,_1,4,(2). If @ = max{2,2 —¢—n} =2—q—n,
then Proposition 11 implies that W, ,,,(2) interleaves W,_1 , 4.n(2).

Now assume that max{2,2 — ¢ —n} < a <2 —p—n and W,_;,,,(2) interleaves
Wa—2p.gn(2). Note that max{2,2—q¢—n} <a <2—p—n implies that a+g+n—2>0
anda+p+q—2<a+p+n—2<0. Thus Proposition 9 (ii) implies that W, ;. (2)
interleaves W,_1 , 4.n(2). Therefore (ii) holds. O

By Proposition 12, the following result is obtained.

Proposition 13  Let a be a positive integer and p,q,n be arbitrary real numbers with
p < q < n. If one of the following conditions holds, then We 41 (2) has only real roots
and therefore every root of Fyp, qn(2) is either a real number or a non-real number with
its real part equal to 0:

(i) p+ q is a negative integer and a > 1 —p — q; and

(ii) g +n is an integer and max{1,1 —g—n} <a<2—p—n. O
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