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ETH Zürich, Switzerland

hoffmann@inf.ethz.ch
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Abstract

In graph pebbling games, one considers a distribution of pebbles on the vertices
of a graph, and a pebbling move consists of taking two pebbles off one vertex and
placing one on an adjacent vertex. The t-pebbling number πt(G) of a graph G is the
smallest m such that for every initial distribution of m pebbles on V (G) and every
target vertex x there exists a sequence of pebbling moves leading to a distibution
with at least t pebbles at x. Answering a question of Sieben, we show that for every
graph G, πt(G) is eventually linear in t; that is, there are numbers a, b, t0 such that
πt(G) = at + b for all t ≥ t0. Our result is also valid for weighted graphs, where
every edge e = {u, v} has some integer weight ω(e) ≥ 2, and a pebbling move from
u to v removes ω(e) pebbles at u and adds one pebble to v.

1 Introduction

Let G = (V, E) be an undirected graph. A pebbling distribution on G is a function
p : V → N0 = {0, 1, 2, . . .}. A pebbling move consists of taking two pebbles off a vertex u

and adding one pebble on an adjacent vertex v (we can think of this as paying a toll of
one pebble for using the edge {u, v}). We also say that we move one pebble from u to v.

More generally, we consider a graph G together with a weight function ω : E →
{2, 3, 4, . . .} on edges. If an edge e = {u, v} has weight ω(e), then we pay a toll of
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ω(e) − 1 pebbles for moving one pebble along e. (So the unweighted case corresponds to
ω(v) = 2 for all v ∈ V (G).)

More formally, if e = {u, v} ∈ E and p is a pebbling distribution such that p(u) ≥ ω(e),
then a pebbling move allows us to replace p with the distriution p′ given by

p′(w) =











p(u) − ω(e) for w = u,

p(v) + 1 for w = v,

p(w) otherwise.

For a vertex x ∈ V (G), let πt(G, ω, x) be the smallest integer m such for all dis-
tributions p of m pebbles there is a distribution q with q(x) ≥ t that can be reached
from p by a sequence of pebbling moves. The t-pebbling number of (G, ω) is defined as
πt(G, ω) = max{πt(G, ω, x) : x ∈ V (G)} and we write πt(G) for the unweighted case with
ω ≡ 2.

Graph pebbling originated in combinatorial number theory and group theory. The
pebbling game (unweighted and with t = 1) was suggested by Lagarias and Saks, and in
print it first appears in Chung [2]. For more background we refer to two recent surveys
by Hurlbert [4, 5].

For some graph classes the (unweighted) t-pebbling number has been determined
exactly. We have πt(Kn) = 2t + n − 2 for the complete graph, πt(C2n) = t2n and
πt(C2n−1) = t2n−1 + 2⌊2n

3
⌋ − 2n−1 + 1 for the cycle, and πt(Qd) = t2d for the cube (see

[7]). All of these are linear functions of t. Moreover, one can show that the t-pebbling
number of any tree is linear in t by using the methods of [8]. It is shown in [6] that for
the complete bipartite graph, we have πt(Km,n) = max{2t+m+n−2, 4t+m−2}, which
is linear in t but only for t sufficiently large.

Sieben [8] asked whether the t-pebbling number is always linear for t ≥ t0 where t0
is some constant. We answer this question affirmatively. A similar result is known in
Ramsey theory: the Ramsey number of t copies of a graph G is eventually linear in t

(see [1]).
To formulate our result, let us define, for every two vertices u, v ∈ V (G), the multi-

plicative distance

mdist(u, v) := min

{

∏

e∈E(P )

ω(e) : P is a u-v-path in G

}

,

(in particular, mdist(u, u) = 1 because the empty product equals 1). The function
log(mdist(u, v)) clearly defines a metric on V (G). Further, for x ∈ V (G) we set

rx := max{mdist(x, v) : v ∈ V (G)}.

Theorem 1. For every graph G with edge weight function ω and for every x ∈ V (G)
there exist b and t0 such that that for all t ≥ t0

πt(G, ω, x) = rxt + b.

Consequently, for a suitable t0 = t0(G, ω), πt(G, ω) is a linear function of t for all t ≥ t0.
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As a corollary, we immediately obtain a result from Hersovici et al. [3] about fractional
pebbling:

lim
t→∞

πt(G)

t
= 2diam(G),

where diam(G) denotes the diameter of G in the usual shortest-path metric. Indeed, for
the weight function ω ≡ 2 we have maxx∈V (G) rx = 2diam(G).

Unfortunately, our proof of Theorem 1 is existential, and it yields no upper bound on
t0. It would be interesting to find upper bounds on (the minimum necessary) t0 in terms
of G and ω, or lower bounds showing that a large t0 may sometimes be needed.

2 Proof of Theorem 1

First we check that
πt(G, ω, x) ≥ rxt (1)

for all t. To this end, we consider the distribution p0 with rxt− 1 pebbles, all placed at a
vertex y with mdist(x, y) = rx. We claim that, starting with p0, it is impossible to obtain
t pebbles at x.

To check this, we define the potential of a pebbling distribution p as

F (p) :=
∑

v∈V (G)

p(v)

mdist(v, x)
.

It is easy to see that this potential is nonincreasing under pebbling moves (using the
“multiplicative triangle inequality” mdist(u, x) ≤ ω({u, v})mdist(v, x)). Now F (p0) < t,
while any distribution q with at least t pebbles at x has F (q) ≥ t, which proves the claim
and thus also (1).

Next, we define the function

f(t) := πt(G, ω, x) − rxt.

We have f(t) ≥ 0 for all t by (1). Let n := |V (G)|; we claim that f is nonincreasing for all
t ≥ n. Once we show this, Theorem 1 will be proved, since a nonincreasing nonnegative
function with integer values has to be eventually constant.

So we want to prove that, for all t ≥ n, we have f(t) ≤ f(t − 1), which we rewrite to

πt(G, ω, x) ≤ πt−1(G, ω, x) + rx. (2)

To this end, we consider an arbitrary pebbling distribution p with m := πt−1(G, ω, x)+
rx pebbles. By (1) we obtain m ≥ rx(t − 1) + rx = rxt ≥ rxn. So by the pigeonhole
principle, there exists a vertex y with p(y) ≥ rx.

Let us temporarily remove rx pebbles from y. This yields a distribution with at
least πt−1(G, ω, x) pebbles, and, by definition, we can convert it by pebbling moves to a
distribution with at least t − 1 pebbles at x. Now we add the rx pebbles back to y and
move them toward x, and in this way we obtain one additional pebble at x. This verifies
(2), and the proof of Theorem 1 is finished.
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