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Abstract
An oriented graph Gσ is a simple undirected graph G with an orientation, which

assigns to each edge a direction so that Gσ becomes a directed graph. G is called
the underlying graph of Gσ and we denote by S(Gσ) the skew-adjacency matrix
of Gσ and its spectrum Sp(Gσ) is called the skew-spectrum of Gσ. In this paper,
the coefficients of the characteristic polynomial of the skew-adjacency matrix S(Gσ)
are given in terms of Gσ and as its applications, new combinatorial proofs of known
results are obtained and new families of oriented bipartite graphs Gσ with Sp(Gσ) =
iSp(G) are given.

1 Introduction

All undirected graphs in this paper are simple and finite. Let G be a graph with n
vertices and A(G) = (ai,j) the adjacency matrix of G, where ai,j = aj,i = 1 if there is
an edge ij between vertices i and j in G (denoted by i ∼ j), otherwise ai,j = aj,i = 0.
We call G nonsingular if the matrix A(G) is nonsingular. The characteristic polynomial
P (G; x) = det(xI − A(G)) of A(G), where I stands for the identity matrix of order n, is
said to be the characteristic polynomial of the graph G. The n roots of the polynomial
P (G; x) are said to be the eigenvalues of the graph G. Since A(G) is symmetric, all
eigenvalues of A(G) are real and we denote by Sp(G) the adjacency spectrum of G.

Let Gσ (or
−→
G) be a graph with an orientation, which assigns to each edge of G a

direction so that Gσ becomes a directed graph. The skew-adjacency matrix S(Gσ) = (si,j)
is real skew symmetric matrix, where si,j = 1 and sj,i = −1 if i → j is an arc of Gσ,
otherwise si,j = sj,i = 0. The skew-spectrum Sp(Gσ) of Gσ is defined as the spectrum of
S(Gσ). Note that Sp(Gσ) consists of only purely imaginary eigenvalues because S(Gσ) is
real skew symmetric.
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Unlike the adjacency matrix of a graph, there is little research on the skew-adjacency
matrix S(Gσ), except that in enumeration of perfect matchings of a graph, see [9] and
references therein, where the square of the number of perfect matchings of a graph G with
a Pfaffian orientation is the determinant of the skew-adjacency matrix S(Gσ).

Recently, the skew-energy of Gσ was defined as the energy of matrix S(Gσ), that is,

E(Gσ) =
∑

λ∈Sp(Gσ)

|λ|.

The concept of the energy of an undirected graph was introduced by Gutman and there
has been a constant streams of papers devoted to this topic. The concept of the skew-
energy of a simple directed graph (that is, oriented graph) was introduced by Adiga,
Balakrishnan and So, and some basic facts are discussed and some open problems are
proposed [1], such as,

• Problem 1: Interpret all the coefficients of the characteristic polynomial of S(Gσ).

• Problem 2: Find new families of oriented graphs Gσ with E(Gσ) = E(G).

The motivation of this paper is to address the above two open problems. In section 2
we derive the coefficients of the characteristic polynomial of S(Gσ) in terms of Gσ, which
is similar to the result of the coefficients of the characteristic polynomial of the adjacency
matrix A(G). In section 3 we give some applications of the coefficients theorem: the new
combinatorial proofs of known results in [10] are obtained (that is, Sp(Gσ) = iSp(G) for
some orientation σ if and only if G is bipartite and Sp(Gσ) = iSp(G) for any orientation
Gσ of G if and only if G is acyclic) and some new families of oriented bipartite graphs Gσ

with E(Gσ) = E(G) are given.

2 The skew-characteristic polynomial of Gσ

Let G be a graph. A linear subgraph L of G is a disjoint union of some edges and some
cycles in G. A k-matching M in G is a disjoint union of k-edges. If 2k is the order of G,
then a k− matching of G is called a perfect matching of G.

Let G be a graph and A(G) be its adjacency matrix and characteristic polynomial of
G be

P (G; x) = det(xI − A) =
n∑

i=0

aix
n−i. (2.1)

Then a0(G) = 1, a1(G) = 0, and −a2(G) is the number of edges in G. In general, we have
(see [7])

ai =
∑

L∈Li

(−1)p1(L)(−2)p2(L), (2.2)

where Li denotes the set of all linear subgraphs L of G with i vertices, p1(L) is the number
of components of size 2 in L and p2(L) is the number of cycles in L. If G is bipartite, then
ai = 0 for all odd i, and
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P (G; x) =

bn
2
c∑

i=0

(−1)ib2i(G)xn−2i, (2.3)

where all b2i = (−1)ia2i are nonnegative [4, p. 147].
Let G be a graph and Gσ be an orientation of G and S(Gσ) be the skew-adjacency

matrix of Gσ. Denote the characteristic polynomial of S(Gσ) by

P (Gσ; x) = det(xI − S) =
n∑

i=0

cix
n−i. (2.4)

Then (i) c0 = 1, (ii) c2 is the number of edges of G, (iii) ci ≥ 0 for all i and (iv) all ci = 0
for all odd i since the determinant of any skew symmetric matrix is nonnegative and is 0
if its order is odd. In this section we give ci in term of Gσ in general. It is based on the
combinatorial definition of the determinant of a matrix [6, Section 9.1].

Recall the definition of the determinant of a matrix M = (mi,j) is

det M =
∑

τ∈Sym(n)

sign(τ)m1,τ(1)m2,τ(2) · · ·mn,τ(n), (2.5)

where the summation extends over the set Sym(n) of all permutations τ of {1, 2, ..., n}.
Suppose that the permutation τ consists of k permutation cycles of sizes `1, `2, ..., `k,
respectively, where `1 + `2 + · · ·+ `k = n. Then sign(τ) can be computed by

sign(τ) = (−1)`1−1+`2−1+···+`k−1 = (−1)n(−1)k. (2.6)

Let Dn be the complete digraph with vertex set {1, 2, ..., n} in which each ordered pair
(i, j) of vertices forms an arc of Dn. We assign to each arc (i, j) of Dn the weight mi,j and
thereby obtain a weighted digraph. The weight of a directed cycle γ : i1 → i2 → · · · →
it → i1 is defined to be

−mi1,i2 · · ·mit−1,itmit,i1 ,

the negative of all the product of the weights of arcs.
Let τ be a permutation of {1, 2, ..., n} as above. The permutation digraph D(τ) is

the digraph with vertices {1, 2, ..., n} and with the n arcs {(i, τ(i)) : i = 1, 2, ..., n}. The
digraph D(τ) is a spanning sub-digraph of the complete digraph Dn. The directed cycles
of D(τ) are in one-to-one correspondence with the permutation cycles of τ and the arc
sets of these directed cycles partition the set of arcs of D(τ). The weight wt(Dτ) of the
permutation digraph D(τ) is defined to be the product of the weights of its direct cycles,
wt(D(τ)) = (−1)km1,τ(1)m2,τ(2)mn,τ(n). Using (2.5) and (2.6), we obtain

det(M) = (−1)n
∑

τ∈Sym(n)

wt(D(τ)). (2.7)

Let E(n) denote the set of all permutations τ of {1, 2, ..., n} such that the size of all
permutation cycles of τ are even.
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Lemma 2.1 [8, Lemma 2.1] If M = (mi,j) is an n× n skew symmetric matrix then

det M =
∑

τ∈E(n)

sign(τ)m1,τ(1) · · ·mn,τ(n).

If M = (mi,j) is an n× n skew symmetric matrix then

det(M) = (−1)n
∑

τ∈E(n)

wt(D(τ)). (2.8)

We need also following concepts from [9] in order to interpret all coefficients c2i in
term of Gσ.

Let C be an undirected even cycle of Gσ. Now regardless of which of the possible rout-
ing around C is chosen, if C contains an even number of oriented edge whose orientation
agrees with the routing, then C also contains an even number of edges whose orientation
is opposite to the routing. Hence the following definition is independent of the routing
chosen.

If C be any undirected even cycle of Gσ, we say C is evenly oriented relative to Gσ if
it has an even number of edges oriented in the direction of the routing. Otherwise C is
oddly oriented.

Let S = (sij) be skew-adjacency matrix of an oriented graph Gσ. Note that each
undirected cycle C of Gσ correspondences two permutation cycles, and the weights of
these two permutation digraphs are −1 if C is evenly oriented relative to Gσ and +1 if C
is oddly oriented.

We call a linear subgraph L of G evenly linear if L contains no cycle with odd length
and denote by ELi(G) ( or ELi for short) the set of all evenly linear subgraphs of G with
i vertices. For a linear subgraph L ∈ ELi denote by pe(L) (resp., po(L) ) the number of
evenly (resp., oddly) oriented cycles in L relative to Gσ. For a linear subgraph L ∈ ELn,
L contributes (−2)pe(L)2po(L) to the determinant of S(Gσ).

Summarizing the above we have

Lemma 2.2 If S(Gσ) = (si,j) is an n × n skew-adjacency matrix of the orientation Gσ

of a graph G. Then
det S(Gσ) =

∑
L∈ELn

(−2)pe(L)2po(L),

where pe(L) is the number of evenly oriented cycles of L relative to Gσ and po(S) is the
number of oddly oriented cycles of L relative to Gσ, respectively.

Note that if n is odd then ELn is empty and hence det S(Gσ) = 0.
As (−1)ici is the summation of determinants of all principal i× i submatrices S(Gσ),

using Lemma 2.2, we have

Theorem 2.3 Let G be a graph and Gσ be an orientation of G. Then

ci =
∑

L∈ELi

(−2)pe(L)2po(L), (2.9)

the electronic journal of combinatorics 18 (2011), #p156 4



where pe(L) is the number of evenly oriented cycles of L relative to Gσ and po(S) is the
number of oddly oriented cycles of L relative to Gσ, respectively. In particular, ci = 0 if i
is odd.

As applications of the above theorem, we can obtain the following result which can be
used to find recursions for the characteristic polynomial of some skew-adjacency matrices.

Theorem 2.4 Let e = uv be an edge of G, then

P (Gσ;x) = P (Gσ−e;x)+P (Gσ−u−v;x)+2
∑

e∈C∈Od(Gσ)

P (Gσ−C;x)−2
∑

e∈C∈Ev(Gσ)

P (Gσ−C;x).

Proof. Every evenly linear subgraph L of G with i vertices must belong to one of the
following four kinds:

(1). E1 : L does not contain the edge e;
(2). E2 : L contains the edge e but e is not in any cycle component of L;
(3). E3 : L contains the edge e and e is contained in some oddly oriented cycle

component C of L;
(4). E4 : L contains the edge e and e is contained in some evenly oriented cycle

component C in L.
Note that any evenly linear subgraph L with i vertices which does not use e is an

evenly linear subgraph with i vertices of G− e. If an evenly linear subgraph L belongs E2,
then the edge e is a component and L determines an evenly linear subgraph L′ of G−u−v
with i− 2 vertices such that L = e ∪ L′. For any evenly linear subgraph L belongs to E3

(or E4), L determines an evenly linear subgraph L′ of G−C with i−|C| vertices for some
oddly (resp., evenly) oriented cycle C in Gσ such that L = C ∪ L′. Hence,

ci(G
σ) =

∑
L∈ELi(G)

(−2)pe(L)2po(L)

=
∑

L∈E1

(−2)pe(L)2po(L) +
∑

L∈E2

(−2)pe(L)2po(L)

+
∑

L∈E3

(−2)pe(L)2po(L) +
∑

L∈E4

(−2)pe(L)2po(L)

=
∑

L′∈ELi(G−e)

(−2)pe(L′)2po(L′) +
∑

L′∈ELi−2(G−u−v)

(−2)pe(L′)2po(L′)

+2
∑

e∈C∈Od(Gσ)

∑
L′∈ELi−|C|(G−C)

(−2)pe(L′)2po(L′)

−2
∑

e∈C∈Ev(Gσ)

∑
L′∈ELi−|C|(G−C)

(−2)pe(L′)2po(L′)

= ci(G
σ − e) + ci−2(G

σ − u− v) + 2
∑

e∈C∈Od(Gσ)

ci−|C|(G
σ − C)

−2
∑

e∈C∈Ev(Gσ)

ci−|C|(G
σ − C),
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where Od(Gσ) (resp., Ev(Gσ)) is the set of all oddly (resp., evenly) oriented (even) cycles
of Gσ. Therefore, the result follows.

Corollary 2.5 Let e = uv be an edge of G that is on no even cycle in G. Then

P (Gσ; x) = P (Gσ − e; x) + P (Gσ − u− v; x).

Example 2.6 Let Sn,3 be the unicyclic graph obtained from the star of n vertices by
adding an edge and Sσ

n,3 be any orientation of Sn,3. Then by (2.9),

P (Sσ
n,3; x) = xn + nxn−2 + (n− 3)xn−4.

Let Sn,4 be the unicycle graph obtained from the cycle C4 by adding n − 4 pendent
vertices to a vertex of C4 and let So

n,4 (resp., Se
n,4 ) be an orientation of graph Sn,4 such

that the unique cycle C4 in Sn,4 is oddly (resp., evenly) oriented relative to So
n,4. Then

P (So
n,4; x) = xn + nxn−2 + (2n− 4)xn−4,

P (Se
n,4; x) = xn + nxn−2 + (2n− 8)xn−4.

Let Cn and Pn be the cycle graph and the path graph with n vertices, respectively.
In what follows we compute the characteristic polynomial of the skew-adjacency matrix
of any orientation of Cn and Pn. Letting i =

√
−1 and x = 2i sin τ, we have P (P σ

1 , x) =
2i sin τ, P (P σ

2 , x) = 2 cos 2τ − 1 = cos 3τ
cos τ

, and P (Pn
σ; x) = xP (P σ

n−1; x) + P (P σ
n−2; x) for

n ≥ 3. Using the identities sin(θ+ϕ)−sin(θ−ϕ) = 2 cos θ sin ϕ and cos(θ+ϕ)−cos(θ−ϕ) =
−2 sin θ sin ϕ with θ = nτ and ϕ = τ, it follows that the solution of the recursion is

Example 2.7

P (Pn
σ; x) =

{
cos(n+1)τ

cos τ
, n is even;

i sin(n+1)τ
cos τ

, n is odd.

When π/2 < τ < −π/2, then values of x = 2i sin τ are distinct and balanced. To
obtain the skew-spectrum of P σ

n , if j = 1, 2, ..., n, we may take τ = (n + 1 − 2j) π
2(n+1)

when n is even and also when n is odd. Since sin τ = cos(π
2
− τ), the skew-spectrum of

Pn
σ is {2i cos jπ

n+1
|j = 1, 2, ..., n}.

Using Corollary 2.4, for any orientation Cσ
n of the cycle Cn, we have

P (Cn
σ; x) =


P (P σ

n ; x) + P (P σ
n−2; x) + 2, n is even and the cycle is oddly oriented;

P (P σ
n ; x) + P (P σ

n−2; x)− 2, n is even and the cycle is evenly oriented;
P (P σ

n ; x) + P (P σ
n−2; x), n is odd.

Hence, by the Example 2.7, we have
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Example 2.8

P (Cn
σ; x) =


2cos nτ + 2, n is even and the cycle is oddly oriented;
2cos nτ − 2, n is even and the cycle is evenly oriented;
2i sin nτ, n is odd.

Hence the skew-spectrum of Cn
σ is {2i sin 2jπ

n
|j = 1, 2, ..., n} if n is odd, and

{2i sin (2j−1)π
n

|j = 1, 2, ..., n} if n is even and the cycle is oddly oriented, and

{2i sin 2jπ
n
|j = 1, 2, ..., n} if n is even and the cycle is evenly oriented.

3 Oriented graphs Gσ with Sp(Gσ) = iSp(G)

Let G be a graph and Gσ be an orientation of G. The characteristic polynomials of
G and Gσ are expressed as (2.1) and (2.4), respectively. Because the roots of P (Gσ; x)
are pure imaginary and occur in complex conjugate pairs, while the roots of P (G; x)
are all real, it follows that Sp(Gσ) = iSp(G) if and only if P (G; x) =

∑n
i=0 aix

n−i =
xn−2r ∏r

i=1(x
2 − λ2

i ) and P (G; x) =
∑n

i=0 cix
n−i = xn−2r ∏r

i=1(x
2 + λ2

i ) for some non-zero
real numbers λ1, λ2, ..., λr if and only if

a2i = (−1)ic2i, a2i+1 = c2i+1 = 0, (3.1)

where i = 0, 1, ..., bn
2
c.

Let Gσ be an orientation of a graph G. An even cycle C2` is said to be oriented
uniformly if C2` is oddly (resp., evenly) oriented relative to Gσ when ` is odd (resp.,
even).

Lemma 3.1 Let G be a bipartite graph and Gσ be an orientation of G. If every even cycle
is oriented uniformly then Sp(Gσ) = iSp(G).

Proof. Since G is bipartite, all cycles in G are even and all linear subgraphs are even.
Then a2i+1 = 0 for all i. Since every even cycle is oriented uniformly, for every cycle
C2` with length 2`, C2` is evenly oriented relative to Gσ if and only if ` is even. Thus
(−1)pe(C2`) = (−1)`+1.

By Eqs (2.2) and (2.9), we have

(−1)ia2i = m(G, i) +
∑

L∈CL2i

(−1)p1(L)+i(−2)p2(L), (3.2)

c2i = m(G, i) +
∑

L∈CL2i

(−2)pe(L)2po(L), (3.3)

where m(G, i) is the number of matchings with i edges and CL2i is the set of all linear
subgraphs with 2i vertices of G and with at least one cycle.

For a linear subgraph L ∈ CL2i of G, assume that L contains the cycles C2`1 , ..., C2`p2
.

Then the number of components of L that are single edge is p1(L) = i−∑p2(L)
j=1 `j. Hence
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Figure 1: A graph G and an orientation Gσ with all even cycles oriented uniformly.

(−1)p1(L)+i = (−1)
∑p2(L)

j=1
`j . Therefore L contributes (−1)`1+1 · · · (−1)`p2+1(−2)p2(L) =

(−1)p1(L)+i(−2)p2(L) in c2i. Thus (−1)ia2i = c2i by Eqs. (3.2) and (3.3) and the proof
is completed.

The following corollary provides a new family of oriented bipartite graphs Gσ with
Sp(Gσ) = iSp(G) and hence E(Gσ) = E(G).

Corollary 3.2 Let G be a graph whose blocks are K2 or even cycles. If all even cycles of
G are oriented uniformly in Gσ then Sp(Gσ) = iSp(G) and hence E(Gσ) = E(G).

The following two results appeared in [10]. The proofs there are based on matrix
theory. Now we give proofs that are more combinatorial.

Theorem 3.3 A graph G is bipartite if and only if there is an orientation σ such that
Sp(Gσ) = iSp(G).

Proof. (Sufficiency) If there is an orientation σ such that Sp(Gσ) = iSp(G) then a2i+1 =
c2i+1 = 0. Hence G is bipartite.

(Necessity) If G is a bipartite graph with vertices partition V = V1 ∪ V2. Let Gσ be
the orientation such that all arcs are from V1 to V2. Then a2i+1 = 0 for all i, and every
even cycle is oriented uniformly relative to Gσ. Thus Sp(Gσ) = iSp(G) by Lemma 3.1

We call a graph G acyclic (or a forest) if G contains no cycles. A tree is a connected
and acyclic graph.

Theorem 3.4 Let G be a graph. Then iSp(G) = Sp(Gσ) for any orientation Gσ if and
only if G is acyclic.

Proof. (Sufficiency) If G is acyclic, then a2i+1 = 0 and a2i = (−1)im(G, i) and c2i =
m(G, i) and hence iSp(G) = Sp(Gσ) by the first paragraph of this section.

(Necessity) Suppose that G is not acyclic, then G contains at least a cycle. G is
bipartite by iSp(G) = SpS(Gσ) and Theorem 3.3. Let the length of shortest cycle of
G be g, then g is even, say g = 2r. Then (−1)rag = m(G, r) + (−1)r+12n(G, Cg) and
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cg = m(G, r) + 2no(G
σ, Cg) − 2ne(G

σ, Cg), where no(G
σ, Cg) (ne(G

σ, Cg)) is the number
of oddly (resp., evenly) oriented cycles in G of length g relative to Gσ and n(G, Cg) is
the number of cycles in G of length g. Note that no(G

σ, Cg) + ne(G
σ, Cg) = n(G, Cg). As

in the proof of Theorem 3.3, let G have the orientation Gσ where all edges are directed
from V1 to V2. For this orientation, 2no(G

σ, Cg) − 2ne(G
σ, Cg) equals 2no(G

σ, Cg) if r
odd and −2ne(G

σ, Cg) if r is even. Thus reversing the direction of an edge that is on at
least one cycle of length g must change 2no(G

σ, Cg)− 2ne(G
σ, Cg) and so must change cg.

Hence (−1)r+12n(G, Cg) 6= 2no(G
σ, Cg) − 2ne(G

σ, Cg). That is, (−1)ra2r 6= c2r, which is
contradiction with iSp(G) 6= Sp(Gσ).

From the above Theorem 3.4, if T is a tree and
−→
T is any orientation of T then

Sp(
−→
T ) = iSp(T ). In what follows we provide another interesting family of oriented graphs

Gσ with Sp(Gσ) = iSp(G) and hence with E(Gσ) = E(G)
Let T be a tree with a perfect matching M (in this case, T has a unique perfect

matching) and
−→
T be an orientation of T. Note that the adjacency matrix A(T ) of T

and skew-adjacency matrix S(
−→
T ) of

−→
T are nonsingular if and only if T has a perfect

matching. In order to describe the inverses of A(T ) and S(T ), the following definition of
an alternating path is taken from Buckley, Doty and Harary [5, p.156].

Definition 3.5 Let G be a graph with a perfect matching M. A path in G : P (i, j) =
i1i2 · · · i2k (where i1 = i, i2k = j) from a vertex i to a vertex j is said to be an alternating
path if the edges i1i2, i3i4, · · · , i2k−1i2k are edges in the perfect matching M.

For a tree with a perfect matching, there is at most one alternating path between
any pair of vertices. Note that if P (i, j) is an alternating path between vertices i and j,

then the number of edges in P (i, j) which are not in M is |P (i,j)|−1
2

, where |P (i, j)| is the
number of the edges in the path P (i, j).

Proposition 3.6 (Buckley, Doty and Harary [5, Theorem 3]) Let T be a nonsingular tree
on n vertices and A be its adjacency matrix. Let B = (bi,j), where

bi,j =

{
(−1)

|P (i,j)|−1
2 , if there is an alternating path P (i, j);

0, otherwise.

Then B = A−1.

Let T be a nonsingular tree with vertices 1, 2, · · · , n. Let T−1 denote the graph with
vertex set {1, 2, · · · , n}, where vertices i and j are adjacent in T−1 if and only if there is
an alternating path between i and j in T . We call the graph T−1 the inverse graph of the
nonsingular tree T . It is shown in [3] that the graph T−1 is connected and bipartite, see
[3] for more detail.

Corollary 3.7 (Barik, Neumann and Pati [3, Lemma 2.3]) Let T be a nonsingular tree
and T−1 be its inverse graph. Then the inverse matrix of the adjacency matrix of T is
similar to the adjacency matrix of T−1 via a diagonal matrix of ±1.
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Let P (i, j) be an alternating path from vertex i to vertex j of
−→
T and let |−→P (i, j)| be

the number of oriented edges in P (i, j) whose orientation agrees with the routing from i
to j. Note that if the alternating path P (i, j) = i1i2i3 · · · i2k (where i1 = i, i2k = j) then

(−1)|
−→
P (i,j)| = (−si1,i2)(−si2,i3) · · · (−si2k−1,i2k

), where S = (si,j) is the skew-adjacency

matrix of
−→
T .

Although we are concerned with trees here, it should be mentioned that Proposition
3.6 and Corollary 3.7 have been generalized to bipartite graphs with a unique perfect
matching (see [3, Lem. 2.1] and [2, Thm. 5 and Cor.5]. Also, the inverse graph T−1 is
presented as an example of a graph inverse G+ defined in [11] (see Thm 3.2 there).

Using a technique similar to that in [3, Lemma 2.1], we obtain the following combi-
natorial description of the inverse of the skew-adjacency matrix of a tree with a perfect
matching.

Lemma 3.8 Let
−→
T be an orientation of a nonsingular tree T on n vertices and S be its

skew-adjacency matrix. Let R = (ri,j), where

ri,j =

 (−1)|
−→
P (i,j)|, if there is an alternating path P (i, j),

0, otherwise.

Then R = S−1.

Proof. The (i, j)-th entry of SR is given by

(SR)i,j =
n∑

k=1

si,krk,j =
∑
k∼i

si,krk,j.

Thus for each i = 1, 2, ..., n,

(SR)i,i =
∑
k∼i

si,krk,i = si,i′(−si′,i) = 1,

as there exists exactly one vertex, say i′, such that the edge i′i ∈M.
Now let i, j be two distinct vertices in T . Suppose that for each vertex v adjacent

to i, there is no alternating path from v to j, then rv,j = 0. Thus we have (SR)i,j = 0.
Moreover, v is unique, otherwise there would be a cycle in T containing the vertex i.

Assume now that there is a vertex v 6= i′ adjacent to i such that P (v, j) = vx2 · · ·xm−1j
is an alternating path from v to j. In this case, P ′ = i′ivx2 · · ·xm−1j, that is, i′iP (v, j) is
also an alternating path from i′ to j. Conversely, if there is an alternating path P (i′, j)
from i′ to j, it must have the form i′ivx2 · · ·xm−1j. Thus there must exist a vertex v 6= i′

adjacent to i such that an alternating path from v to j exists.
We have just seen that the alternating path from i′ to j is of the form i′iP (v, j), where

P (v, j) is the alternating path from v to j. Hence

(SR)i,j = si,i′ri′,j + si,vrv,j = si,i′(−si′,i)(−si,v)rv,j + si,vrv,j = 0
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Figure 2: A tree and its inverses

and the proof is done.

From Lemma 3.8, we see that if S−1 is the skew-adjacency matrix of an orientation−→
T of a tree T with a perfect matchings, then S−1 is also a skew symmetric matrix with
entries 0,−1, or 1. Thus S−1 is the skew-adjacency matrix of some oriented graph, we

use the notation
−→
T

−1
for this oriented graph and call

−→
T

−1
the inverse oriented graph of

−→
T . Because of |bij| = |rij| in Proposition 3.6 and Lemma 3.8, it follows that

−→
T

−1
is an

orientation of the inverse graph T−1 of T. See Fig. 2 for an example based on Fig. 1 in
[3]. The dotted lines represent the edges in the perfect matching M.

Proposition 3.9 Let T be a tree with a perfect matching and
−→
T be any orientation of

T . Then Sp(
−→
T

−1
) = iSp(T−1) and hence E(

−→
T

−1
) = E(T−1).

Proof. Let λ1, λ2, ..., λn be all eigenvalues of T. Then λ1, λ2, ..., λn are non-zero
as T is nonsingular and Sp(T−1) = { 1

λ1
, 1

λ2
, · · · , 1

λn
} by Corollary 3.7. As T is a

tree, we have Sp(
−→
T ) = {λ1i, λ2i, · · · , λni} by Theorem 3.4. Thus SpS(

−→
T

−1
) =

{− 1
λ1

i,− 1
λ2

i, · · · ,− 1
λn

i} = { 1
λ1

i, 1
λ2

i, · · · , 1
λn

i} for the skew-adjacency matrix of
−→
T

−1
is

the inverse of the skew-adjacency matrix of
−→
T and the negative of each eigenvalue of T is

also an eigenvalue of T. Therefore Sp(
−→
T

−1
) = iSp(T−1) and hence E(

−→
T

−1
) = E(T−1).
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