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Abstract

Let I be the ideal generated by alternating polynomials in two sets of n variables.
Haiman proved that the q, t-Catalan number is the Hilbert series of the bi-graded
vector space M(=

⊕
d1,d2

Md1,d2) spanned by a minimal set of generators for I.
In this paper we give simple upper bounds on dim Md1,d2 in terms of number of
partitions, and find all bi-degrees (d1, d2) such that dim Md1,d2 achieve the upper
bounds. For such bi-degrees, we also find explicit bases for Md1,d2 .

1 Introduction

In [6], Garsia and Haiman introduced the q, t-Catalan number Cn(q, t), and showed that
Cn(q, 1) agrees with the q-Catalan number defined by Carlitz and Riordan [3]. To be
more precise, take the n× n square whose southwest corner is (0, 0) and northeast corner
is (n, n). Let Dn be the collection of Dyck paths, i.e. lattice paths from (0, 0) to (n, n)
that proceed by NORTH or EAST steps and never go below the diagonal. For any Dyck
path Π, define area(Π) to be the number of lattice squares below Π and strictly above
the diagonal. Then

Cn(q, 1) =
∑

Π∈Dn

qarea(Π).

The q, t-Catalan number Cn(q, t) also has a combinatorial interpretation using Dyck
paths. Given a Dyck path Π, let ai(Π) be the number of squares in the i-th row that lie
in the region bounded by Π and the diagonal, and define

dinv(Π) :=
∣∣{(i, j) | i < j and ai(Π) = aj(Π)}

∣∣ +
∣∣{(i, j) | i < j and ai(Π) + 1 = aj(Π)}

∣∣.
∗Partially supported by NSF grant DMS 0901367
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In [4, §1] and [5, Theorem I.2], Garsia and Haglund showed the following combinatorial
formula 1,

Cn(q, t) =
∑

Π∈Dn

qarea(Π)tdinv(Π). (1.1)

A natural question is to find the coefficient of qd1td2 in Cn(q, t) for each pair (d1, d2).
In other words, the question is to count the Dyck paths with the same pair of statistics
(area, dinv). It is well-known that the sum area(Π) + dinv(Π) is at most

(
n
2

)
. In this

paper we find coefficients of qd1td2 in Cn(q, t) when
(

n
2

)
− d1 − d2 is relatively small.

Denote by p(k) the number of partitions of k and by convention p(0) = 1 and p(k) = 0
for k < 0. Denote by p(b, k) the number of partitions of k with at most b parts, and by
convention p(0, k) = 0 for k > 0, p(b, 0) = 1 for b ≥ 0. Our first theorem is as follows,
which contains a result of Bergeron and Chen [1, Corollary 8.3.1] as a special case.

Theorem 1. Let n be a positive integer, and d1, d2, k be non-negative integers such that
k =

(
n
2

)
− d1 − d2. Define δ = min(d1, d2). Then the coefficient of qd1td2 in Cn(q, t) is

less than or equal to p(δ, k), and the equality holds if and only if one of the following
conditions holds:

• k ≤ n − 3, or

• k = n − 2 and δ = 1, or

• δ = 0.

As a consequence, we recover a special case of a result of Loehr and Warrington with
Cn(q, t) replaced by any rational or irrational slope q, t-Catalan number (see [12, Theorem
3]. The result was probably first discovered by Mark Haiman according to their paper).

Corollary 2 (Haiman, Loehr–Warrington). In the formal power series ring C[[q−1, t]],
we have

lim
n→∞

Cn(q, t)

q(
n
2)

=
∑

k,b≥0

p(b, k)q−k−btb =

∞∏

i=1

1

1 − q−it
,

where the left hand side becomes a well-defined formal power series in the sense that, for
any integers i ≤ 0 and j ≥ 0, the coefficient of qitj eventually becomes stationary.

And here is another corollary of Theorem 1.

Corollary 3.

Cn(q, q) =

n−3∑

k=0

(

p(k)

((
n

2

)
− 3k + 1

)
+ 2

k−1∑

i=1

p(i, k)

)

q(
n

2)−k + (lower degree terms).

1To be more precise, they showed Cn(q, t) =
∑

qarea(Π)tmaj(β(Π)). The right hand side is equal to∑
qdinv(Π)tarea(Π) ([7, Theorem 3.15], where maj(β(Π)) is the same as bounce(Π)), and is then equal to∑
qarea(Π)tdinv(Π) [7, (3.52)].
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We feel that the coefficient of qd1td2 for general k can also be expressed in terms of
numbers of partitions, although the expression might be complicated. For example, we
give the following conjecture which is verified for 6 ≤ n ≤ 10.

Conjecture 4. Let n, d1, d2, δ, k be as in Theorem 1. If n − 2 ≤ k ≤ 2n − 8 and δ ≥ k,
then the coefficient of qd1td2 in Cn(q, t) is equal to

p(k) − 2[p(0) + p(1) + · · ·+ p(k − n + 1)] − p(k − n + 2).

From the perspective of commutative algebra, the q, t-Catalan number is closely related
to the diagonal ideal I that we are about to define. Let n be a positive integer. The set
of all n-tuples of points in C2 forms an affine space (C2)n with coordinate ring C[x,y] :=
C[x1, y1, ..., xn, yn]. We define the diagonal ideal I ⊂ C[x,y] to be

I :=
⋂

1≤i<j≤n

(xi − xj , yi − yj).

(We define I = (1) if n = 1.) Geometrically, I is the radical ideal defining the diagonal
locus of (C2)n where at least two points coincide. Blowing up the ideal I gives the well-
known isospectral Hilbert scheme discovered by Haiman in his proof of the n! conjecture
and the positivity conjecture for the Kostka-Macdonald coefficients [8, §3.4].

Let M := I/(x,y)I, where (x,y) is the maximal ideal (x1, y1, . . . , xn, yn). The vector
space M is naturally bi-graded as

⊕
d1,d2

Md1,d2 with respect to x- and y- degrees. A
basis of the C-vector space M corresponds to a minimal set of generators of I. Haiman
discovered that the q, t-Catalan number Cn(q, t) is exactly the Hilbert series of M [9,
Corollary 3.3]:

Cn(q, t) =
∑

d1,d2

qd1td2 dimC Md1,d2. (1.2)

In the special case of q = t = 1, (1.2) implies that dimC M = 1
n+1

(
2n
n

)
= Cn, which is the

usual Catalan number.
A natural question, posed by Haiman, is to study a minimal set of generators of the

ideal I [10, §1]. There is a set of generators of the diagonal ideal I defined as follows.
Denote by N the set of nonnegative integers. Let Dn be the collection of sets D ={
(a1, b1), ..., (an, bn)

}
of n distinct points in N × N. For each D ∈ Dn, define

∆(D) = ∆
(
(a1, b1), ..., (an, bn)

)
:= det[x

aj

i y
bj

i ] =

∣∣∣∣∣∣∣

xa1
1 yb1

1 xa2
1 yb2

1 ... xan

1 ybn

1
...

...
. . .

...
xa1

n yb1
n xa2

n yb2
n ... xan

n ybn
n

∣∣∣∣∣∣∣
.

Although ∆(D) depends on the order of (a1, b1), ..., (an, bn), ∆(D) is well-defined up to
sign. Actually, we will fix a certain order as in §2.3. Then {∆(D)}D∈Dn

form a basis
for the vector space C[x,y]ǫ of alternating polynomials. In [8, Corollary 3.8.3], Haiman
proved that I is generated by C[x,y]ǫ. An immediate consequence is that I is generated
by {∆(D)}D∈Dn

. But this set of generators is infinite and is far from being a minimal set,
which should contain exactly Cn elements.
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In general, it is difficult to construct a basis of M (or equivalently, a minimal set of
generators of I). Meanwhile, not much is known about each graded piece Md1,d2 . In this
paper, we give an explicit combinatorial basis for the subspace Md1,d2 of I/(x,y) · I for
certain d1 and d2.

Theorem 5 (Main Theorem). Let n be a positive integer, and d1, d2, k be non-negative
integers such that k =

(
n
2

)
− d1 − d2. Define δ = min(d1, d2). Then dim Md1,d2 ≤ p(δ, k),

and the equality holds if and only if one of the following conditions holds:

• k ≤ n − 3, or

• k = n − 2 and δ = 1, or

• δ = 0.

In case the equality holds, there is an explicit construction of a basis for Md1,d2.

The Main Theorem follows immediately from Theorem 44 in §6.2 and Theorem 55 in
§7. The construction of the basis for Md1,d2 consists of two parts: the easier part is to
show

dim Md1,d2 ≤ p(δ, k)

using a new characterization of q, t-Catalan numbers given in §5.1; the more difficult
part is to construct p(δ, k) linearly independent elements in Md1,d2 . It seems difficult
(at least to the authors) to test directly whether a given set of elements in Md1,d2 are
linearly independent. Instead, we study a map ϕ sending an alternating polynomial
f ∈ C[x,y]ǫ to a polynomial in a polynomial ring C[ρ] := C[ρ1, ρ2, . . . ] with countably
many variables. The map ϕ has two desirable properties: (i) for many f , ϕ(f) can be
easily computed, and (ii) for each bi-degree (d1, d2), ϕ induces a well-defined morphism
ϕ̄ : Md1,d2 −→ C[ρ]. Therefore, in order to prove linear independence of a set of elements in
Md1,d2 , it is sufficient (and necessary if Conjecture 48 holds) to prove linear independence
of the images of those elements in C[ρ] under the map ϕ̄. The latter is much easier.

The structure of the paper is as follows. After introducing the notations in §2, we
study the asymptotic behavior in §3, then we define and study the map ϕ in §4. In §5
and §6 we give the upper bound and the lower bound of dim Md1,d2 . Finally, we finish the
proof of the main result in §7.

Acknowledgements. We are grateful to François Bergeron, Mahir Can, Jim Haglund,
Nick Loehr, Alex Woo and Alex Yong for valuable discussions and correspondence. The
computational part of our research was greatly aided by the commutative algebra package
Macaulay2 [11]. We thank the referee for carefully reading the manuscript and giving us
many constructive suggestions to improve the presentation.
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2 Notations

2.1 General notations

• We adopt the convention that N is the set of natural numbers including zero, and
N+ is the set of positive integers.

• For n ∈ N+, denote by Sn the symmetric group on the set {1, ..., n}.

2.2 Notations related to partitions and the ring C[ρ]

• Let k, b ∈ N+. Denote the set of partitions of k by Πk, and the set of partitions of
k into at most b parts by Πb,k. To be more precise,

Πk := {ν = (ν1, ν2, . . . , νℓ)| νi ∈ N
+, ν1 ≤ ν2 ≤ · · · ≤ νℓ, ν1 + ν2 + · · ·+ νℓ = k}.

Πb,k := {ν = (ν1, ν2, . . . , νℓ) ∈ Πk| ℓ ≤ b}.

A partition ν = (j1, . . . , j1︸ ︷︷ ︸
m1

, j2, . . . , j2︸ ︷︷ ︸
m2

, . . . , jr, . . . , jr︸ ︷︷ ︸
mr

) is also written as
∑r

i=1 miji.

Define the number of partitions p(k) = #Πk and p(b, k) = #Πb,k. By convention
p(0) = 1, p(0, k) = 0 for k > 0, p(b, 0) = 1 for all b ≥ 0.

• For a partition ν ∈ Πk, define |ν| :=
∑

νi = k.

• Define a partial order on the set of partitions Πk as follows: for two partitions
µ = (µ1, · · · , µs) and ν = (ν1, · · · , νt) in Πk, define µ � ν if there is a partition
of the set {1, . . . , s} with t nonempty parts I1, . . . , It, such that

∑
j∈Ii

µj = νi for
i = 1, . . . , t. Define µ ≺ ν if µ ≺ ν and µ 6= ν.

• Let C[ρ] := C[ρ1, ρ2, . . . ] be the polynomial ring with countably many variables ρi,
i ∈ N+. As a convention, we set ρ0 = 1. For a partition ν = (ν1, ν2, . . . , νℓ) ∈
Πk, define ρν := ρν1ρν2 · · · ρνℓ

∈ C[ρ]. Define the weight of a monomial cρi1 · · · ρiℓ

(c ∈ C \ {0}) to be i1 + · · · + iℓ. For w ∈ N, define C[ρ]w to be the subspace of
C[ρ] spanned by monomials of weight w. For f ∈ C[ρ], there is a unique expression
f =

∑∞
w=0{f}w with {f}w ∈ C[ρ]w, and we call {f}w the weight-w part of f .

2.3 Notations on ordered sequences D of n points in N × N

• For P = (a, b) ∈ N × N, denote |P | = a + b, |P |x = a, |P |y = b.

• For n ∈ N+, define

Dn := {D = (P1, . . . , Pn)|Pi ∈ N × N, for all i = 1, . . . , n},

D
′
n := {D = (P1, . . . , Pn)

∣∣ |Pi|x ∈ Z, |Pi|y ∈ N, |Pi| ≥ 0, for all i = 1, . . . , n}.

the electronic journal of combinatorics 18 (2011), #P158 5



Define D := ∪∞
n=1Dn and D

′ = ∪∞
n=1D

′
n. For D = (P1, . . . , Pn) in Dn or D

′
n, we let

(ai, bi) be the coordinates of Pi, i = 1, . . . , n. Unless otherwise specified, we assume
throughout the paper that P1, . . . , Pn in D are in standard order, meaning that

P1 < P2 < · · · < Pn, (2.1)

where the relation “<” is defined as follows:

(a, b) < (a′, b′) if a + b < a′ + b′, or if a + b = a′ + b′ and a < a′.

For D in standard order, we often use a square grid graph together with n dots to vi-
sualize it. For example, in the following picture, the horizontal and vertical bold lines
represent x- and y-axes, respectively, and D =

(
(0, 0), (1, 0), (1, 1), (2, 0), (3, 0)

)
.

u u

u

u u

• Given D = (P1, . . . , Pn) ∈ Dn, we define the x-degree, y-degree and bi-degree of D
to be

∑n
i=1 |Pi|x,

∑n
i=1 |Pi|y, and (

∑n
i=1 |Pi|x,

∑n
i=1 |Pi|y), respectively.

2.4 Notations related to the polynomial ring C[x,y]

• The diagonal ideal I of C[x,y] and the graded C-vector space M = ⊕d1,d2Md1,d2 are
defined in §1. The ideal generated by homogeneous elements in I of degrees less
than d is denoted by I<d.

• Given a monomial f = xa1
1 yb1

1 · · ·xan
n ybn

n ∈ C[x,y], we define the bi-degree of f to
be the pair (

∑n
i=1 ai,

∑n
i=1 bi). We say that a polynomial in C[x,y] has bi-degree

(d1, d2) if all its monomials have the same bi-degree (d1, d2).

• For D ∈ Dn, the alternating polynomial ∆(D) ∈ C[x,y] is defined in §1. It is easy
to see that the bi-degree of ∆(D) is equal to the bi-degree of D.

• Given two polynomials f, g ∈ C[x,y] of the same bi-degree (d1, d2), let f̄ , ḡ be the
corresponding elements in Md1,d2 . We say that

f ≡ g (modulo lower degrees)

if f̄ = ḡ in Md1,d2 , or, equivalently, if f − g is in I<d1+d2 .

3 The asymptotic behavior

The goal of this section is to prove Theorem 14 which gives explicit bases for certain
Md1,d2 under restrictive conditions on n, d1, d2. Roughly speaking, we study the behavior
of Md1,d2 for d1 + d2 close enough to

(
n
2

)
, the highest degree of M , under the condition
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that d1 and d2 are not too small. We call this behavior the asymptotic behavior, because
if we fix a positive integer k, let n, d1, d2 grow and satisfy d1 +d2 =

(
n
2

)
−k, then a simple

pattern of behavior of Md1,d2 will appear when n, d1, d2 are sufficiently large. Such an
asymptotic study provides the foundation for the whole paper.

3.1 Staircase forms and block diagonal forms

Definition-Proposition 6. Let D = (P1, . . . , Pn) ∈ Dn, Pi = (ai, bi) be as in §2. Define
k =

(
n
2

)
−
∑

i |Pi|. Then there is an n × n matrix S whose (i, j)-th entry is

{
0, if i ≤ |Pj|;
zi1zi2 · · · zi,|Pj |, where ziℓ is either xi − xℓ or yi − yℓ, otherwise,

for all 1 ≤ i, j ≤ n, such that det S ≡ ∆(D) (modulo lower degrees). We call S a staircase
form of D.

Proof. Let xij := xi − xj and yij := yi − yj for 1 ≤ i, j ≤ n. If a1 > 0, the first column of

the matrix [x
aj

i y
bj

i ] is equal to the following (where T means taking transpose of a matrix)

x1[x
a1−1
1 yb1

1 , . . . , xa1−1
n yb1

n ]T + [0, xa1−1
2 x21y

b1
2 , . . . , xa1−1

n xn1y
b1
n ]T .

Therefore

∆(D) = x1

∣∣∣∣∣∣∣

xa1−1
1 yb1

1 · · · xan

1 ybn

1
...

. . .
...

xa1−1
n yb1

n · · · xan
n ybn

n

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣

0 xa2
1 yb2

1 · · · xan

1 ybn

1

xa1−1
2 x21y

b1
2 xa2

2 yb2
2 · · · xan

2 ybn

2
...

...
. . .

...
xa1−1

n xn1y
b1
n xa2

n yb2
n · · · xan

n ybn
n

∣∣∣∣∣∣∣∣∣

The first summand is a polynomial in I<d, so ∆(D) is equivalent to the second summand
modulo I<d. If furthermore a1 − 1 > 0, the first column [0, xa1−1

2 x21y
b1
2 , . . . , xa1−1

n xn1y
b1
n ]T

in the second determinant can be written as a sum of two vectors

x2[0, x
a1−2
2 x21y

b1
2 , . . . , xa1−2

n xn1y
b1
n ]T + [0, 0, xa1−2

3 x32x31y
b1
3 , . . . , xa1−2

n xn2xn1y
b1
n ]T .

Then by a similar argument as above, ∆(D) is equivalent to the determinant

∣∣∣∣∣∣∣∣∣∣∣

0 xa2
1 yb2

1 · · · xan

1 ybn

1

0 xa2
2 yb2

2 · · · xan

2 ybn

2

xa1−2
3 x32x31y

b1
3 xa2

3 yb2
3 · · · xan

3 ybn

3
...

...
. . .

...
xa1−2

n xn2xn1y
b1
n xa2

n yb2
n · · · xan

n ybn
n

∣∣∣∣∣∣∣∣∣∣∣

modulo I<d. If b1 > 0, we apply similar operation as above. Eventually the first column
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becomes




0
...
0

x|P1|+1,1x|P1|+1,2 · · ·x|P1|+1,a1
y|P1|+1,a1+1y|P1|+1,a1+2 · · · y|P1|+1,|P1|

x|P1|+2,1x|P1|+2,2 · · ·x|P1|+2,a1
y|P1|+2,a1+1y|P1|+2,a1+2 · · · y|P1|+2,|P1|

...
xn1xn2 · · ·xn,a1

yn,a1+1yn,a1+2 · · ·yn,|P1|





,

where the top min{|P1|, n} entries are 0. Note that if we use a different order of operations
with respect to xi or yi, we may end up with a different first column.

Applying this procedure for every column, we get a matrix with min{|Pj|, n} zeros at
the j-th column for 1 ≤ j ≤ n. The resulting matrix is an expected staircase form S.

Corollary 7. Let D = (P1, . . . , Pn) ∈ Dn such that |Pj | > j − 1 for some 1 ≤ j ≤ n.
Then ∆(D) ≡ 0 (modulo lower degrees).

Proof. Let S be a staircase form of D. It is easy to check that det S = 0, hence ∆(D) ≡
det S = 0 (modulo lower degrees) by Definition-Proposition 6.

Definition 8. Let D and S be defined as in Definition-Proposition 6. Consider the set
{j
∣∣ |Pj | = j − 1} = {r1 < r2 < · · · < rℓ} and define rℓ+1 = n + 1. For 1 ≤ t ≤ ℓ, define

the t-th block Bt of S to be the square submatrix of S of size (rt+1 − rt) whose upper
left corner is the (rt, rt)-entry. Define the block diagonal form B(S) of S to be the block
diagonal matrix diag(B1, . . . , Bℓ).

Remark 9. It is easy to see that det B(S) = det S.

Example 10. Let D =
(
(0, 0), (1, 0), (0, 2), (1, 1), (3, 1)

)
. Then ∆(D) and a staircase

form S are

∆(D) =

∣∣∣∣∣∣∣∣∣∣

1 x1 y2
1 x1y1 x3

1y1

1 x2 y2
2 x2y2 x3

2y2

1 x3 y2
3 x3y3 x3

3y3

1 x4 y2
4 x4y4 x3

4y4

1 x5 y2
5 x5y5 x3

5y5

∣∣∣∣∣∣∣∣∣∣

, S =





1 0 0 0 0
1 x21 0 0 0
1 x31 y31y32 x31y32 0
1 x41 y41y42 x41y42 0
1 x51 y51y52 x51y52 x51y52x53x54




,

and the block diagonal form of S is

B(S) =





1 0 0 0 0
0 x21 0 0 0
0 0 y31y32 x31y32 0
0 0 y41y42 x41y42 0
0 0 0 0 x51y52x53x54




.
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Definition 11. Suppose that µ =
∑

miji ∈ Πk is a partition of k, where ji are distinct
positive integers. We say that a nonzero staircase form S is of partition type µ, if for each
i the block diagonal form B(S) contains exactly mi blocks that have ji nonzero entries
strictly above the diagonal. We say that D ∈ Dn is of partition type µ if its staircase
form is of partition type µ. Furthermore, if

(the entry in the i-th row and j-th column in S) = 0 for each pair (i, j), j > i+1, (3.1)

then S is called a minimal staircase form of partition type µ. We call a block minimal if
the block satisfies condition (3.1).

Remark 12. Let S be a staircase form of D = (P1, . . . , Pn) ∈ Dn. Then S is a minimal
staircase form if and only if |Pi| = i − 1 or i − 2 for every 1 ≤ i ≤ n. In this case, the
partition type of S is

(i1 − 1, i2 − i1 − 1, i3 − i2 − 1, . . . , iℓ − iℓ−1 − 1, n − iℓ),

where {i1 < i2 < · · · < iℓ} is the set of i’s such that |Pi| = i − 1.
For example, if n = 8, D = (P1, . . . , P8) and (|P1|, . . . , |P8|) = (0, 1, 1, 2, 4, 4, 5, 6), then

the staircase form S of D is a minimal staircase form. The set {i
∣∣ |Pi| = i−1} is {1, 2, 5}.

The positive integers in the sequence (1 − 1, 2 − 1 − 1, 5 − 2 − 1, 8 − 5) are (2, 3), so the
partition type of D is (2, 3).

Example 13. Suppose n = 11, k = 7, D = (P1, . . . , P11) such that (|P1|, . . . , |P11|) =
(0, 1, 2, 2, 4, 4, 4, 7, 7, 8, 9). Then a staircase form of D is of partition type (1, 3, 3) but is
not a minimal staircase form because there is a nonzero entry in the fifth row and seventh
column. (In the matrices below, a “∗” means a nonzero entry.)

S =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

∗ 0 0 0 0 0 0 0 0 0 0
∗ ∗ 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

, B(S) =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

∗ 0 0 0 0 0 0 0 0 0 0
0 ∗ 0 0 0 0 0 0 0 0 0
0 0 ∗ ∗ 0 0 0 0 0 0 0
0 0 ∗ ∗ 0 0 0 0 0 0 0
0 0 0 0 ∗ ∗ ∗ 0 0 0 0
0 0 0 0 ∗ ∗ ∗ 0 0 0 0
0 0 0 0 ∗ ∗ ∗ 0 0 0 0
0 0 0 0 0 0 0 ∗ ∗ 0 0
0 0 0 0 0 0 0 ∗ ∗ ∗ 0
0 0 0 0 0 0 0 ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 ∗ ∗ ∗ ∗

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

.

3.2 Theorem on asymptotic behavior of Md1,d2
and the proof

The main theorem of this section is the following.

Theorem 14. Let k, n, d1, d2 be integers satisfying n ≥ 8k + 5, d1, d2 ≥ (2k + 1)n, and
d1 + d2 =

(
n
2

)
− k. Then

dimC Md1,d2 = p(k).

Moreover, for each µ ∈ Πk, let Sµ be an arbitrary minimal staircase form of bi-degree
(d1, d2) and of partition type µ. Then {det Sµ}µ∈Πk

form a basis of Md1,d2.
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We need to establish a few lemmas before proving the above theorem.

Lemma 15 (Transfactor Lemma). Let D = (P1, . . . , Pn) ∈ Dn and Pi = (ai, bi) be as in
§2. Let i, j be two integers satisfying 1 ≤ i 6= j ≤ n, |Pi| = i − 1, |Pi+1| = i, |Pj| = j − 1,
|Pj+1| = j, bi > 0, aj > 0 (we define |Pn+1| = n). Let D′ be obtained from D by moving
Pi to southeast and Pj to northwest, i.e.,

D′ =
(
P1, . . . , Pi−1, Pi + (1,−1), Pi+1, . . . , Pj−1, Pj + (−1, 1), Pj+1, . . . , Pn

)
.

Then ∆(D) ≡ ∆(D′) (modulo lower degrees).

Proof. By performing appropriate operations as in the proof of Definition-Proposition 6,
we can obtain a staircase form S of D (resp. a staircase form S ′ of D′), such that the (i, i)-
entry and (j, j)-entry of S (resp. S ′) are yi1

∏i−1
t=2 zit and xj1

∏j−1
t=2 zjt (resp. xi1

∏i−1
t=2 zit

and yj1

∏j−1
t=2 zjt). The block diagonal forms of S and S ′ only differ at two blocks of size

1 located at the (i, i)-entry and (j, j)-entry. Let f0 be the product of determinants of all
blocks of B(S) except the (i, i)-entry and (j, j)-entry. Then ∆(D) − ∆(D′) is equivalent
to the following (modulo lower degrees)

det(S) − det(S ′) =
(
yi1

i−1∏

t=2

zit

)(
xj1

j−1∏

t=2

zjt

)
f0 −

(
xi1

i−1∏

t=2

zit

)(
yj1

j−1∏

t=2

zjt

)
f0

= − det




1 x1 y1

1 xi yi

1 xj yj




( i−1∏

t=2

zit

)( j−1∏

t=2

zjt

)
f0.

Without loss of generality, assume i < j. Then (det(S) − det(S ′))/zji is

− det




1 x1 y1

1 xi yi

1 xj yj




( i−1∏

t=2

zit

)( ∏

2≤t≤j−1

t6=i

zjt

)
f0.

This polynomial vanishes on the diagonal locus, so is in I<d, and then the lemma follows.

The Transfactor Lemma implies the following lemma, which is the base case k = 0 of
the inductive proof of Proposition 23.

Lemma 16. Let d1, d2 be two non-negative integers such that d1 + d2 =
(

n
2

)
. Let S be

an arbitrary staircase form with bi-degree (d1, d2) and assume that det S 6= 0. Then the
C-vector space Md1,d2 is spanned by det S.

Proof. Because d1 +d2 =
(

n
2

)
, there are

(
n
2

)
zeros in the staircase form S. Since det S 6= 0,

S and its block diagonal form B(S) must be of the following forms

S =





∗ 0 · · · 0 0
∗ ∗ · · · 0 0
...

...
. . .

...
...

∗ ∗ · · · ∗ 0
∗ ∗ · · · ∗ ∗




, B(S)=





∗ 0 · · · 0 0
0 ∗ · · · 0 0
...

...
. . .

...
...

0 0 · · · ∗ 0
0 0 · · · 0 ∗




.
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By repeatedly applying Lemma 15 we can easily deduce the following assertion: if S
and S ′ are staircase forms of D and D′, respectively, such that both S and S ′ have bi-
degree (d1, d2), then det B(S ′) ≡ det B(S) modulo I<n(n−1)/2. The lemma follows from
this assertion.

Lemma 17 (Minors Permuting Lemma). Let D = (P1, . . . , Pn) ∈ Dn and Pi = (ai, bi) as
in §2. Suppose h, ℓ, m ∈ N

+ satisfy 2 ≤ h < h + ℓ + m ≤ n + 1, |Ph| = h − 1, |Ph+ℓ| =
h + ℓ − 1, |Ph+ℓ+m| = h + ℓ + m − 1 (if h + ℓ + m = n + 1 then we assume that
|Ph+ℓ+m| = h+ ℓ+m− 1 is vacuously true). Suppose that ah+ℓ, . . . , ah+ℓ+m−1 ≥ ℓ. Define
D′ by

D′ =
(
P1, P2, . . . , Ph−1, Ph+ℓ − (ℓ, 0), Ph+ℓ+1 − (ℓ, 0), . . . , Ph+ℓ+m−1 − (ℓ, 0),

Ph + (m, 0), Ph+1 + (m, 0), . . . , Ph+ℓ−1 + (m, 0), Ph+ℓ+m, . . . , Pn

)
.

Then ∆(D) ≡ ∆(D′) (modulo lower degrees).

Proof. By performing appropriate operations as in the proof of Definition-Proposition 6
and using the assumption that ah+ℓ, . . . , ah+ℓ+m−1 ≥ ℓ , we can obtain a staircase form S
of D whose (u, v)-entry contains the factor

∏h+ℓ−1
j=h xuj =

∏h+ℓ−1
j=h (xu − xj) for every pair

(u, v) satisfying h + ℓ ≤ u, v ≤ h + ℓ + m − 1. Let B(S) = diag(B1, B2, . . . , Bs) be the
block diagonal form of S, and let Br (resp. Br+1) be the block of size ℓ (resp. m) whose
upper left corner is the (h, h)-entry (resp. (h + ℓ, h + ℓ)-entry). Then by our choice of
S, all entries in the i-th row (1 ≤ i ≤ m) of Br+1 contain

∏h+ℓ−1
j=h xi+h+ℓ−1,j as a factor.

Dividing the i-th row of Br+1 by
∏h+ℓ−1

j=h xi+h+ℓ−1,j for 1 ≤ i ≤ m and multiplying the i′-th

row of Br by
∏h+ℓ+m−1

j=h+ℓ xi′+h−1,j for 1 ≤ i′ ≤ ℓ, we obtain a new block diagonal matrix
B′ = diag(B1, . . . , Br−1, B

′
r, B

′
r+1, Br+2, . . . , Bs). Since

h+ℓ−1∏

j=h

xi+h+ℓ−1,j = (−1)ℓm
h+ℓ−1∏

j=h

xi+h+ℓ−1,j,

we have (−1)ℓm det B′ = det B = det S. Now interchange the two blocks B′
r and B′

r+1 in
B′ and then change the indices 1, . . . , n to

1, . . . , (ℓ − 1), (ℓ + h), . . . , (ℓ + h + m − 1), ℓ, . . . , (ℓ + h − 1), (ℓ + h + m), . . . , n.

The resulting matrix is the block diagonal matrix of a staircase form of D′. Note that when
we change the indices, the determinant of the resulting matrix is equal to (−1)ℓm det B′.
Therefore ∆(D) ≡ ∆(D′) (modulo lower degrees).

Example 18. Suppose n = 11, k = 7, D = (P1, . . . , P11) such that (|P1|, . . . , |P11|) =
(0, 1, 2, 2, 4, 4, 4, 7, 7, 8, 9), and |P8|x, . . . , |P11|x ≥ 3. Lemma 17 asserts that permuting the
two blocks (as framed in the following figure) in the block diagonal form does not change
the determinant modulo I<d.
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2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

∗ 0 0 0 0 0 0 0 0 0 0
0 ∗ 0 0 0 0 0 0 0 0 0
0 0 ∗ ∗ 0 0 0 0 0 0 0
0 0 ∗ ∗ 0 0 0 0 0 0 0
0 0 0 0 ∗ ∗ ∗ 0 0 0 0
0 0 0 0 ∗ ∗ ∗ 0 0 0 0
0 0 0 0 ∗ ∗ ∗ 0 0 0 0
0 0 0 0 0 0 0 ∗ ∗ 0 0
0 0 0 0 0 0 0 ∗ ∗ ∗ 0
0 0 0 0 0 0 0 ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 ∗ ∗ ∗ ∗

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

−→

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

∗ 0 0 0 0 0 0 0 0 0 0
0 ∗ 0 0 0 0 0 0 0 0 0
0 0 ∗ ∗ 0 0 0 0 0 0 0
0 0 ∗ ∗ 0 0 0 0 0 0 0
0 0 0 0 ∗ ∗ 0 0 0 0 0
0 0 0 0 ∗ ∗ ∗ 0 0 0 0
0 0 0 0 ∗ ∗ ∗ ∗ 0 0 0
0 0 0 0 ∗ ∗ ∗ ∗ 0 0 0
0 0 0 0 0 0 0 0 ∗ ∗ ∗
0 0 0 0 0 0 0 0 ∗ ∗ ∗
0 0 0 0 0 0 0 0 ∗ ∗ ∗

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Lemma 19. For p, q ∈ C[x,y], we have

A(Sym(p)q) = Sym(p)A(q),

where Sym(p) denotes the symmetric sum
∑

σ∈Sn
σ(p), and A(p) denotes the alternating

sum
∑

σ∈Sn
sgn(σ)σ(p).

Proof. A(Sym(p)q) =
∑

σ sgn(σ)Sym(p)σ(q) = Sym(p)A(q).

Lemma 20. For (ai, bi) ∈ N × N (1 ≤ i ≤ n) and c, e ∈ N,

(

n∑

i=1

xc
iy

e
i ) ·

∣∣∣∣∣∣∣∣∣

xa1
1 yb1

1 xa2
1 yb2

1 · · · xan

1 ybn

1

xa1
2 yb1

2 xa2
2 yb2

2 · · · xan

2 ybn

2
...

...
. . .

...
xa1

n yb1
n xa2

n yb2
n · · · xan

n ybn
n

∣∣∣∣∣∣∣∣∣

=

n∑

i=1

∣∣∣∣∣∣∣∣∣

xa1
1 yb1

1 · · · xai+c
1 ybi+e

1 · · · xan

1 ybn

1

xa1
2 yb1

2 · · · xai+c
2 ybi+e

2 · · · xan

2 ybn

2
...

. . .
...

. . .
...

xa1
n yb1

n · · · xai+c
n ybi+e

n · · · xan
n ybn

n

∣∣∣∣∣∣∣∣∣

.

As a consequence, we have

n∑

i=1

∆
(
(a1, b1), . . . , (ai−1, bi−1), (ai + c, bi + e), (ai+1, bi+1), . . . , (an, bn)

)
≡ 0

modulo lower degrees.

Proof. Plug in p = xc
1y

e
1 and q = xa1

1 yb1
1 xa2

2 yb2
2 · · ·xan

n ybn
n in Lemma 19.

The following definition involves minimal staircase forms defined in Definition 11.

Definition 21. Suppose that n, d1, d2, k are positive numbers satisfying k =
(

n
2

)
−d1−d2,

and µ is a partition of k. Define J≺µ
d1,d2

(resp. J�µ
d1,d2

) to be the ideal of C[x,y] generated
by the determinants of all minimal staircase forms of bi-degree (d1, d2) and partition type
≺ µ (resp. � µ).

Lemma 22. Let D = (P1, . . . , Pn) ∈ Dn, Pi = (ai, bi) be as in §2 but we allow Pi = Pj

for i 6= j. Let (d1, d2) be the bi-degree of D. Let S be a staircase form of D of partition
type µ, and B(S) be the block diagonal form of S. Denote the number of nonzero entries
strictly above the diagonal in the last block by jr. If D satisfies the assumption that the last
block of B(S) is of size t0 ≥ 2, the first (jr + 2) blocks of B(S) are of size 1, P2 = (1, 0),
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and bjr+2 ≥ 1, then for an integer t such that 1 ≤ t ≤ t0 and an−t+1, bn−t+1 ≥ 1, we have
2∆(D) ≡ ∆(Dտ) + ∆(Dց) modulo the ideal I<d + J≺µ

d1,d2
, where

Dտ :=
(
P1, . . . , Pjr+1, Pjr+2 + (1,−1), Pjr+3, . . . , Pn−t, Pn−t+1 + (−1, 1), Pn−t+2, . . . , Pn

)
,

Dց :=
(
P1, (0, 1), P3, . . . , Pn−t, Pn−t+1 + (1,−1), Pn−t+2, . . . , Pn

)
.

Moreover, if the last block of B(S) is not minimal or if |Pn−t+1| > n − t0, then ∆(D) ≡
∆(Dց) modulo I<d + J≺µ

d1,d2
.

Proof. Throughout the proof, “≡” means equivalence modulo the ideal I<d + J≺µ
d1,d2

. We

use the notation (P1, . . . , P̂i, . . . , Pn) to denote (P1, . . . , Pi−1, Pi+1, . . . , Pn). Note that the
condition (2.1) does not always hold in the proof.

Suppose that the partition type of S is
∑r

i=1 miji. Applying Lemma 20 to

(
∑

x
an−t+1

i y
bn−t+1−1
i ) · ∆(

(
P1, (0, 1), P2, . . . , P̂n−t+1, . . . , Pn

)
),

we get a sum of n determinants. The first determinant is in I<d because all entries in the
first row of the staircase form are zero. The second determinant is

∆
(
P1, Pn−t+1, P2, P3, . . . , P̂n−t+1, . . . , Pn

)
= (−1)n−t−1∆(D). (3.2)

The i-th determinant for i ≥ 3 is

∆
(
P1, (0, 1), P2, P3, . . . , Pi−2, Pi−1 + Pn−t+1 − (0, 1), Pi, Pi+1, . . . , P̂n−t+1, . . . , Pn

)
.

When 3 ≤ i ≤ jr + 3, its partition type is � m1j1 + · · · + mr−1jr−1 + (mr − 1)jr + (i −
3) + (jr − i + 3). The latter partition is ≺ the partition type of S when 4 ≤ i ≤ jr + 2.
If i > jr + 3, the i-th determinant is equivalent to 0. So modulo I<d + J≺µ

d1,d2
, the sum of

(3.2) and the following two determinants

∆
(
P1, (0, 1), P2 + Pn−t+1 − (0, 1), P3, . . . , P̂n−t+1, . . . , Pn

)
, (3.3)

∆
(
P1, (0, 1), P2, . . . , Pjr+1, Pjr+2 + Pn−t+1 − (0, 1), Pjr+3, . . . , P̂n−t+1, . . . , Pn

)
(3.4)

is equivalent to 0.
Similarly, applying Lemma 20 to

(
∑

x
an−t+1−1
i y

bn−t+1

i )∆
(
P1, (0, 1), P2, . . . , Pjr+1, Pjr+2+(1,−1), Pjr+3, . . . , P̂n−t+1, . . . , Pn

)
,

we conclude that the sum of the following three determinant is equivalent to 0:

∆
(
P1, Pn−t+1 + (−1, 1), P2, . . . , Pjr+1, Pjr+2 + (1,−1), Pjr+3, . . . , P̂n−t+1, . . . , Pn

)
, (3.5)

∆
(
P1, (0, 1), Pn−t+1, P3, . . . , Pjr+1, Pjr+2 + (1,−1), Pjr+3, . . . , P̂n−t+1, . . . , Pn

)
, (3.6)

∆
(
P1, (0, 1), P2, . . . , Pjr+1, Pjr+2 + Pn−t+1 − (0, 1), Pjr+3, . . . , P̂n−t+1, . . . , Pn

)
, (3.7)
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Now we have two equations:
{

(3.2) + (3.3) + (3.4) ≡ 0,
(3.5) + (3.6) + (3.7) ≡ 0.

By Transfactor Lemma (Lemma 15), the polynomial (3.6) is equivalent to

∆
(
P1, P2, Pn−t+1, P3, . . . , Pjr+1, Pjr+2, Pjr+3, . . . , P̂n−t+1, . . . , Pn

)

= (−1)n−t−2∆(D) = −(3.2),

and we also have (3.4)=(3.7), therefore

(3.5) ≡ −(3.6) − (3.7) ≡ (3.2) − (3.4) ≡ 2(3.2) + (3.3).

Since (3.5)=(−1)n−t−1∆(Dտ) and (3.3)= (−1)n−t−2∆(Dց), the lemma follows.
Note that since |Pn−t+1| ≥ |Pn−t0+1| = n − t0, we have

|Pjr+2 + Pn−t+1 − (0, 1)| ≥ (jr + 1) + (n − t0) − 1 = jr + n − t0

which is greater than n− 1 if jr ≥ t0. But this is always the case if the last block of B(S)
is not minimal. In this case, (3.4)≡ 0 and therefore (3.2) + (3.3) ≡ 0. Of course we still
have (3.2) + (3.3) ≡ 0 if |Pn−t+1| > n − t0.

Proposition 23. Let k ∈ N, n, d1, d2 ∈ N+ satisfy n ≥ 8k + 5 and d1, d2 ≥ (2k + 1)n.
Let µ =

∑
miji be a partition of k. Suppose that D1, D2 ∈ Dn have the same bi-degree

(d1, d2) and the same partition type µ, and suppose that staircase forms of D1 and D2 are
both minimal. Then ∆(D1) ≡ ∆(D2) modulo I<d + J≺µ

d1,d2
.

Proof. The conditions d1 + d2 ≤
(

n
2

)
and d1, d2 ≥ (2k + 1)n imply

(
n
2

)
≥ 2(2k + 1)n, or

equivalently, n ≥ 8k + 5.
We prove the proposition by induction on k. The base case k = 0 is proved in Lemma

16. Suppose the proposition holds for k < k0, and we need to prove the case k = k0.
Let D = (P1, . . . , Pn) ∈ Dn, and let S be a minimal staircase form of D of partition

type µ. Without loss of generality, we assume that the last block of B(S) is of size greater
than 1. (Otherwise, the last block corresponding to Pn is of size 1. Let M be the last
block of size greater than 1. Since d1 ≥ (2k + 1)n, there are sufficiently many size-1
blocks in B(S), such that by successively moving a Pi corresponding to a size-1 block to
northwest direction and moving Pn to southeast direction using Transfactor Lemma 15,
we can assume Pn = (an, 0). Then we apply Minors Permuting Lemma 17 to permute
the last block with the blocks in its northwest direction until it moves to the northwest
of M . This procedure moves M to the southeast direction. Repeat the procedure until
M becomes the last block.)

Because of Transfactor Lemma 15, Minors Permuting Lemma 17 and the condition
n ≥ 8k + 5, we can assume that the first (k + 2) blocks of B(S) are of size 1.

Now we apply Lemma 22. Denote by t0 the size of the last block in B(S). By
Transfactor Lemma 15 we may assume P2 = (1, 0). If there is an integer t, such that

the electronic journal of combinatorics 18 (2011), #P158 14



1 ≤ t ≤ t0 and |Pn−t+1| > n− t0, then D ≡ Dց. Therefore we may assume that |Pi|y = 0
for i > n − t + 2.

Define a(D) = |Pn−t0+2|x − |Pn−t0+1|x and define a(Dտ) and a(Dց) similarly. Then
a(Dտ) − 1 = a(D) = a(Dց) + 1. Consider the special case when Pn−t0+1 = Pn−t0+2. In
this case ∆(D) = 0, hence ∆(Dտ) ≡ −∆(Dց), a(Dտ) = 1 and a(Dց) = −1. Let D′′ be
the set obtained from Dց by interchanging the (n− t0 + 1)-th and (n− t0 + 2)-th points.
Now compare Dտ = (P ′

1, . . . , P
′
n) with D′′ = (P ′′

1 , . . . , P ′′
n ):

• they both give minimal staircase forms of the same partition type as S,

• a(Dտ) = a(D′′) = 1,

• ∆(Dտ) ≡ ∆(D′′),

• P ′′
i =






P ′
i + (1,−1), for i = n − t + 1, n − t + 2;

P ′
i + (−1, 1), for i = 2, jr + 2;

P ′
i , otherwise.

In other words, we can move P ′
n−t+1 and P ′

n−t+2 of Dտ to southeast direction and move
two size-1 blocks of Dտ to northwest direction simultaneously without changing ∆(Dտ)
(modulo the equivalence relation). Repeat the movement until the y-coordinates of the
(n − t + 1)-th and (n − t + 2)-th points become 1 and 0, respectively. Then apply the
inductive assumption for the first n − t points, we can draw the following conclusion: if
D1, D2 ∈ Dn, such that

(i) they both have minimal staircase forms,

(ii) they have the same partition type,

(iii) they have the same bi-degree,

(iv) a(D1) = a(D2) = 1,

then ∆(D1) ≡ ±∆(D2). This implies the proposition under the extra condition (iv). For
the rest of the proof, we show how to remove the condition (iv). Note that, if (ii) is
replaced by a stronger condition:

(ii)′ they are both in standard order and their block diagonal forms are of the same
shape (in the sense that the size of the i-th blocks in the two block diagonal forms
are the same for every i),

then ∆(D1) ≡ ∆(D2).
By Lemma 22, we can show that, assuming (i) (ii)′ (iii) and a(D1), a(D2) > 0, we have

1

a(D1)
∆(D1) ≡

1

a(D2)
∆(D2). (3.8)
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Indeed, it is sufficient to show that

if conditions (i)(ii)′ (iii) hold and a(D1) = 1, then a(D2)∆(D1) ≡ ∆(D2). (3.9)

This can be proved by induction on a(D2). The case a(D2) = 0 is trivial since in this case
∆(D2) = 0. The case a(D2) = 1 is already shown. Now by induction we assume that (3.9)
is true for a(D2) = m−1 and m. Suppose a(D2) = m+1. Take D ∈ Dn such that Dտ ≡
D2. (This is always possible, since we can modify D2 using Transfactor Lemma and Minors
Permuting Lemma if necessary.) Then Lemma 22 asserts that 2∆(D) ≡ ∆(Dտ)+∆(Dց).
The inductive assumption implies ∆(D) ≡ m ∆(D1) and ∆(Dց) ≡ (m− 1)∆(D1), hence

∆(D2) ≡ ∆(Dտ) ≡ 2m ∆(D1) − (m − 1)∆(D1) = (m + 1)∆(D1).

This completes the inductive proof of (3.9).

Proposition 24. Suppose that n ≥ 8k + 5, d1, d2 ≥ (2k + 1)n, and µ =
∑

miji is a
partition of k. If D ∈ Dn has a nonzero staircase form S of type µ and of bi-degree
(d1, d2), then ∆(D) is in the ideal I<d + J�µ

d1,d2
.

Proof. Assume D = (P1, . . . , Pn) ∈ Dn, S is a staircase form of D and is not minimal. By
Transfactor Lemma 15 and Minors Permuting Lemma 17 , we can assume without loss of
generality that, in the block diagonal form B(S) = diag(B1, . . . , Bs), all the size-1 blocks
are in the northwest of the blocks of size greater than 1. In particular, the size t0 of the
last block of B(S) is greater than 1.

First note that if the assumption of Lemma 22 is satisfied and the last block of B(S)
is not minimal, the conclusion easily follows. Indeed, in this case the equivalence ∆(D) ≡
∆(Dց) in Lemma 22 implies that we may move any point Pi in the last block of B(S) to
Pi + (1,−1). Suppose Pi has the same degree as Pi+1 for some i, n − t0 + 1 ≤ i ≤ n − 1.
Keep on moving Pi to southeast direction until it collides with Pi+1. Then the determinant
will be 0.

Now we show that we can always assume the assumption of Lemma 22 holds and
the last block of B(S) is not minimal. Indeed, since there are sufficiently many size-1
blocks in B(S), we can apply Minors Permuting Lemma and Transfactor Lemma to move
the points in D until the assumption of Lemma 22 is satisfied. To see the latter, let us
assume on the contrary that the last block Bs of B(S) is minimal. Define n′ = n − t0,
D′ = (P1, . . . , Pn−t0) ∈ Dn′, d′ =

∑n−t0
i=1 |Pi|, d′

1 =
∑n−t0

i=1 ai, d′
2 =

∑n−t0
i=1 bi, k′ =

(
n′

2

)
− d′,

and let µ′ be the partition type of D′. Then k ≥ k′ + t0 − 1, and

n′ ≥ 8k + 5 − t0 ≥ 8(k′ + t0 − 1) + 5 − t0 ≥ 8k′ + 5,

d′
1 > d1 − t0n ≥ (2k + 1)n − t0n ≥ (2k′ + t0 − 1)n ≥ (2k′ + 1)n ≥ (2k′ + 1)n′.

Similarly, d′
2 ≥ (2k′ +1)n′. By inductive assumption, ∆(D′) is in the ideal I<d′ +J�µ′

d′1,d′2
, so

∆(D) = ∆(D′) ·det(Bs) is in the ideal I<d +J�µ
d1,d2

. Hence in the case when Bs is minimal,
there is nothing to prove.
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Lemma 25. Suppose that n, k, u ∈ N satisfy k ≤ u ≤ n − 2. Define v = n − 1 − u,
d1 = u(u + 1)/2, d2 = v(v + 1)/2 + uv − k. Then d1, d2 ≥ 0, k =

(
n
2

)
− d1 − d2, and

dim Md1,d2 ≥ p(k).

Proof. The only nontrivial statement, which we shall prove, is the last inequality. Consider
a partition

λ = (λ) = (u + ε0, u − 1 + ε1, u − 2 + ε2, . . . , 1 + εu−1, 0, 0, . . . , 0︸ ︷︷ ︸
v+1

),

where ε0, . . . , εu−1 ∈ {0, 1} satisfy

u−1∑

i=0

εi = k and

u−1∑

i=0

iεi = k(k + 1)/2. (3.10)

The partition λ determines a Dyck path Π with ai(Π) = n − i − λi for i = 1, . . . , n. It
is easy to check that area(Π) = v(v + 1)/2 + uv − k and dinv(Π) = u(u + 1)/2. Since
there are p(k) number of solutions for the system (3.10), we have dim Md1,d2 ≥ p(k) due
to (1.2).

Finally, we are ready to prove Theorem 14.

Proof of Theorem 14. It follows from Proposition 24 and Proposition 23 that the C-vector
space Md1,d2 is spanned by {detSµ}µ∈Πk

. In particular, dim Md1,d2 ≤ p(k). So we only
need to show that dim Md1,d2 ≥ p(k). Lemma 25 proves this inequality for special values
of d1 and d2. For general d1 and d2, we add sufficiently many appropriate size-1 blocks
and apply Lemma 25. To be more precise, choose a sufficiently large number ñ ≫ n
such that there are positive integers u and v satisfying k ≤ u ≤ ñ − 2, 1 + u + v = ñ,
u(u + 1)/2 ≥ (2k + 1)ñ, and v(v + 1)/2 + uv − k ≥ (2k + 1)ñ. Choose (ñ − n) points
Pi = (ai, bi) ∈ N × N for n + 1 ≤ i ≤ ñ, such that

ai + bi = i − 1 for n + 1 ≤ i ≤ ñ,

d̃1 :=
ñ∑

i=1

ai = u(u + 1)/2,

d̃2 :=

ñ∑

i=1

bi = v(v + 1)/2 + uv − k,

(which is always possible). By our choice of Pn+1, . . . , Pñ, if D = (P1, . . . , Pn) has a
minimal staircase form of partition type µ, then D̃ = (P1, . . . , Pn, Pn+1, . . . , Pñ) also has
a minimal staircase form of the same partition type µ. Let S̃ be the staircase form of D̃
and B(S̃) the block diagonal form of S̃. Denote by f0 the product of the last (ñ−n) size-1
minors in B(S̃). Define Ĩ = ∩1≤i<j≤ñ(xi−xj , yi−yj) to be an ideal of C[x1, y1, . . . , xñ, yñ],
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and define M̃ = Ĩ/(x,y)Ĩ which is doubly graded as ⊕d̃1,d̃2
M̃d̃1,d̃2

. Then we have a C-linear
map:

L : Md1,d2 → M̃d̃1,d̃2

f 7→ f · f0.

For each partition µ of k, if Dµ has a minimal staircase form Sµ of partition type µ, then
L(det Sµ) = det S̃µ, where S̃µ is of partition type µ and is a minimal staircase form of
D̃µ = Dµ ∪ (Pn+1, . . . , Pñ). Hence {L(det Sµ)}µ∈Πk

form a basis for M̃d̃1,d̃2
, and the map

L is surjective, which implies dim Md1,d2 ≥ dim M̃d̃1,d̃2
≥ p(k).

4 Map ϕ

4.1 Definition and properties of ϕ

In this subsection we define and study the map ϕ which naturally arises when we look for
a minimal set of generators of the diagonal ideal I.

Definition 26. (a) For D =
(
(a1, b1), ..., (an, bn)

)
∈ D

′
n, let k =

(
n
2

)
−
∑n

i=1(ai + bi) and
define

ϕ(D) = ϕ
(
(a1, b1), ..., (an, bn)

)
:= (−1)k

∑

σ∈Sn

sgn(σ)
n∏

i=1

(∑
ρw1ρw2 · · · ρwbi

)
,

where (w1, . . . , wbi
) in the sum

∑
ρw1ρw2 · · · ρwbi

runs through the set

{(w1, . . . , wbi
) ∈ N

bi | w1 + · · · + wbi
= σ(i) − 1 − ai − bi}, (4.1)

with the convention that

∑
ρw1 · · · ρwbi

=






0 if σ(i) − 1 − ai − bi < 0;
0 if bi = 0 and σ(i) − 1 − ai − bi > 0;
1 if bi = 0 and σ(i) − 1 − ai − bi = 0.

This defines a map ϕ : D
′
n → C[ρ] and we denote its restriction ϕ|Dn

: Dn → C[ρ] also by
ϕ.

(b) We give an equivalent definition of ϕ(D). For b ∈ N, w ∈ Z, define

h(b, w) :=
{
(1 + ρ1 + ρ2 + · · · )b

}
w
.

Then

ϕ(D) = (−1)k

∣∣∣∣∣∣∣∣∣

h(b1,−|P1|) h(b1, 1 − |P1|) h(b1, 2 − |P1|) · · · h(b1, n − 1 − |P1|)
h(b2,−|P2|) h(b2, 1 − |P2|) h(b2, 2 − |P2|) · · · h(b2, n − 1 − |P2|)

...
...

...
. . .

...
h(bn,−|Pn|) h(bn, 1 − |Pn|) h(bn, 2 − |Pn|) · · · h(bn, n − 1 − |Pn|)

∣∣∣∣∣∣∣∣∣

.
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(c) We extend the definition of ϕ linearly: given a formal sum
∑ℓ

i=1 ciDi, where
D1, . . . , Dℓ ∈ D

′
n and c1, . . . cℓ ∈ C, we define

ϕ(
ℓ∑

i=1

ciDi) :=
ℓ∑

i=1

ci ϕ(Di).

For any bi-homogeneous alternating polynomial f ∈ C[x,y]ǫ, since {∆(D)}D∈Dn
is a basis

of C[x,y]ǫ, there is a unique expression f =
∑ℓ

i=1 ci ∆(Di), where Di ∈ Dn. We define

ϕ(f) := ϕ(
ℓ∑

i=1

ciDi) =
ℓ∑

i=1

ci ϕ(Di).

This induces a map ϕ : C[x,y]ǫ → C[ρ].

Example 27. The equivalence of (a) and (b) is not obvious but follows from a straightfor-
ward computation, so we will not go through the proof here. Instead, we give the following
example: let n = 4, D =

(
(0, 0), (0, 1), (1, 0), (0, 2)

)
. Then k =

(
4
2

)
− (0 + 1 + 1 + 2) = 2.

We first consider the definition (a). There are only two σ ∈ S4 that contribute to the
sum: 1324 and 1423. For σ = 1324, the sum

∑
ρw1ρw2 · · · ρwbi

are 1, ρ1, 1, 2ρ1 for

i = 1, 2, 3, 4, respectively, so sgn(σ)
∏n

i=1

(∑
ρw1ρw2 · · · ρwbi

)
= (−1)1 · ρ1 · 1 · 2ρ1 = −2ρ2

1.

Similarly, for σ = 1423, sgn(σ)
∏n

i=1

(∑
ρw1ρw2 · · · ρwbi

)
= (+1)1 ·ρ2 ·1 ·1 = ρ2. Therefore

ϕ(D) = (−1)2(−2ρ2
1 + ρ2) = −2ρ2

1 + ρ2. On the other hand, the definition (b) gives

ϕ(D) = (−1)2

∣∣∣∣∣∣∣∣

h(0, 0) h(0, 1) h(0, 2) h(0, 3)
h(1,−1) h(1, 0) h(1, 1) h(1, 2)
h(0,−1) h(0, 0) h(0, 1) h(0, 2)
h(2,−2) h(2,−1) h(2, 0) h(2, 1)

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

1 0 0 0
0 1 ρ1 ρ2

0 1 0 0
0 0 1 2ρ1

∣∣∣∣∣∣∣∣
= −2ρ2

1 + ρ2.

Lemma 28. Let n ∈ N
+, D = (P1, . . . , Pn) ∈ D

′
n, where P1 < · · · < Pn as in (2.1).

(i) If |Pi| ≥ i for some 1 ≤ i ≤ n, then ϕ(D) = 0.
(ii) Suppose m ∈ N+ and Q1, . . . , Qm ∈ Z × N satisfy |Qi| = i − 1 for 1 ≤ i ≤ m. Let

D̃ = (Q1, . . . , Qm, P1 + (m, 0), P2 + (m, 0), . . . , Pn + (m, 0)) ∈ D
′
m+n. Then ϕ(D̃) = ϕ(D).

(iii) Let t ∈ N+, Q = (−t, t) and D̃ = (P1+Q, P2+Q, . . . , Pn+Q). Then ϕ(D̃) = ϕ(D).
(iv) Let S = {i

∣∣ |Pi| := ai + bi = i − 1} = {i1 < · · · < iℓ} and assume i1 = 1. We
call (Pir , . . . , Pir+1−1) the r-th block of D, for 1 ≤ r ≤ ℓ (assuming Piℓ+1

= n + 1). Then

ϕ(D) =
∏ℓ

r=1 ϕ
(
Pir − (ir − 1, 0), Pir+1 − (ir − 1, 0), . . . , Pir+1−1 − (ir − 1, 0)

)
.

(v) Suppose |Pi| = 0 for 1 ≤ i ≤ n. Then ϕ(D) = c · ρ
(n

2)
1 , where c =

Q

i<j(bi−bj)

1!2!···(n−1)!
is a

positive integer.
(vi) For s ∈ N+, let D =

(
(−1, 1), (0, 0), (1, 0), . . . , (s − 1, 0)

)
. Then ϕ(D) = ρs.

Proof. (i) follows from the convention stated after (4.1), and (vi) follows from Definition
26 (b).
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(ii) By definition, ϕ(D̃) = (−1)k̃
∑

σ̃∈Sm+n
sgn(σ̃)

∏m+n
i=1

(∑
ρw1 · · · ρwbi

)
, where w1,

. . . , wbi
∈ N and

w1 + · · ·+ wbi
= σ̃(i) − 1 − ai − bi =

{
σ̃(i) − i, if i ≤ m;
σ̃(i) − 1 − m − |Pi−m|, if i > m.

If σ̃(i) < i for some i ≤ m, then none of (w1, . . . , wbi
) in Nbi satisfies the condition

(4.1), hence
∏m+n

i=1 (
∑

ρw1 · · · ρwbi
) = 0, and the summand corresponding to σ̃ does not

contribute to ϕ(D̃). So we only need to consider those σ̃ with σ̃(i) = i (1 ≤ i ≤ m).
Each such σ̃ corresponds to a permutation of {m + 1, . . . , m + n}. Define σ ∈ Sn by
σ(i−m) = σ̃(i)−m, m+1 ≤ i ≤ m+n. Then σ̃(i)−1−m−|Pi−m| = σ(i−m)−1−|Pi−m|
for m + 1 ≤ i ≤ m + n. Moreover,

k̃ =

(
n + m

2

)
−

m∑

i=1

|Qi| −
n∑

i=1

(|Pi| + m) =

(
n

2

)
−

n∑

i=1

|Pi| = k.

Comparing with the definition of ϕ(D), we conclude that ϕ(D̃) = ϕ(D).
(iii) It suffices to prove the case when t = 1. Define

vi =





h(b1, i − |P1|)
h(b2, i − |P2|)

...
h(bn, i − |Pn|)




, v′

i =





h(b1 + 1, i − |P1|)
h(b2 + 1, i − |P2|)

...
h(bn + 1, i − |Pn|)




, 0 ≤ i ≤ n − 1.

By the definition of the map ϕ,

ϕ(D) = (−1)k det(v0, . . . ,vn−1), ϕ(D̃) = (−1)k det(v′
0, . . . ,v

′
n−1).

By the definition of the function h, it is easy to deduce the relation

h(b + 1, w) = h(b, w) + ρ1h(b, w − 1) + ρ2h(b, w − 2) + · · · .

Since |P1|, . . . , |Pn| are non-negative integers, the above relation implies

v′
i = vi + ρ1vi−1 + ρ2vi−2 + · · · + ρiv0, 0 ≤ i ≤ n − 1,

hence
ϕ(D) = (−1)k det(v0, . . . ,vn−1) = (−1)k det(v′

0, . . . ,v
′
n−1) = ϕ(D̃).

(iv) Suppose that the summand in ϕ(D) corresponding to σ ∈ Sn does contribute.
By the definition of ϕ(D), it is necessary that σ(j) − 1 − |Pj| ≥ 0 for each 1 ≤ j ≤ n.
For each integer 1 ≤ r ≤ ℓ, if j ≥ ir, then σ(j) ≥ 1 + |Pj| ≥ 1 + |Pir | = ir. So σ
maps the set {ir, ir + 1, . . . , n} to itself for every r. It follows that σ maps each block to
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itself. Let σr be the restriction of σ to {ir, ir + 1, . . . , ir+1 − 1}. Define nr = ir+1 − ir,
kr =

∑ir+1−2
j=ir−1 j −

∑ir+1−1
j=ir

|Pj |. Then by (ii) and a routine computation, we have

ϕ(D) = (−1)k1+···+kℓ

∑

σ1,...,σℓ

sgn(σ1) · · · sgn(σℓ)

n1+···+nℓ∏

i=1

(∑
ρw1 ...ρwbi

)

=

ℓ∏

r=1

(
(−1)kr

∑

σr

sgn(σr)

nr∏

i=1

(∑
ρw1...ρwbi

))

=
ℓ∏

r=1

ϕ
(
Pir − (ir − 1, 0), Pir+1 − (ir − 1, 0), . . . , Pir+1−1 − (ir − 1, 0)

)
.

(v) We rewrite the definition of ϕ as

ϕ(D) = (−1)k
∑

(σ,{w
(i)
j

})

(
sgn(σ)

n∏

i=1

ρ
w

(i)
1

ρ
w

(i)
2
· · · ρ

w
(i)
bi

)
, (4.2)

where {w
(i)
j } is a set of nonnegative integers, 1 ≤ i ≤ n, 1 ≤ j ≤ bi. For 1 ≤ i ≤ n, since

|Pi| = 0, those w
(i)
j satisfy the condition w

(i)
1 + · · ·+ w

(i)
bi

= σ(i) − 1. Denote by Σ the set

of all possible data (σ, {w
(i)
j }).

Let Σ′ ⊂ Σ be the subset consisting of those (σ, {w
(i)
j }) such that not all w

(i)
j are 0

or 1. We shall define an automorphism ι : Σ′ → Σ′ such that ι ◦ ι is the identity. For
(σ, {w

(i)
j }) ∈ Σ′, define mi to be the number of nonzero elements in (wi

1, . . . , w
(i)
bi

). Then

m1+ · · ·+mn ≤ 0+1+ · · ·+(n−1) =
(

n
2

)
. Since some w

(i)
j is greater than 1, the inequality

must be strict, therefore we can find a smallest pair (r, r′) such that r < r′ and mr = mr′

(here (r, r′) < (s, s′) if r < s, or r = s and r′ < s′). Define

{j1 < · · · < jmr
} := {j| w

(r)
j 6= 0}, {j′1 < · · · < j′mr

} := {j′| w
(r′)
j 6= 0}.

Define σ̃ ∈ Sn as σ̃(r) = σ(r′), σ̃(r′) = σ(r), and σ̃(ℓ) = σ(ℓ) for ℓ 6= r, r′. Define {w̃
(i)
j }

as follows: for i 6= r, r′, define w̃
(i)
j = w

(i)
j , 1 ≤ j ≤ bi; for i = r, define w̃

(r)
jℓ

= w
(r′)
j′
ℓ

for

1 ≤ ℓ ≤ mr, and w̃
(r)
j = 0 for j 6= j1, . . . , jmr

; for i = r′, define w̃
(r′)
j′
ℓ

= w
(r)
jℓ

for 1 ≤ ℓ ≤ mr,

and w̃
(r′)
j′ = 0 for j′ 6= j′1, . . . , j

′
mr

. Define the automorphism ι : (σ, {w
(i)
j }) 7→ (σ̃, {w̃

(i)
j }).

It is easy to check that ι ◦ ι is the identity. Moreover, ι has no fixed point because σ 6= σ̃.
Since sgn(σ) = −sgn(σ̃), the summand in (4.2) corresponding to (σ, {w

(i)
j }) cancels with

the summand corresponding to (σ̃, {w̃
(i)
j }).

Now we are left with the case when all w
(i)
j are 0 or 1. Using Definition 26 (b), and

using the fact that the monomial ρw
1 in h(b, w) has coefficient

(
b
w

)
, we have

ϕ(D) = (−1)(
n
2)

∣∣∣∣∣∣∣

(
b1
0

)
ρ0

1

(
b1
1

)
ρ1

1 · · ·
(

b1
n−1

)
ρn−1

1
...

...
. . .

...(
bn

0

)
ρ0

1

(
bn

1

)
ρ1

1 · · ·
(

bn

n−1

)
ρn−1

1

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

(
bn

0

) (
bn

1

)
· · ·

(
bn

n−1

)

...
...

. . .
...(

b1
0

) (
b1
1

)
· · ·

(
b1

n−1

)

∣∣∣∣∣∣∣
ρ
(n

2)
1 = c·ρ

(n

2)
1 ,
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where c is the second determinant, which is an integer. Moreover,

c =

∣∣∣∣∣∣∣

(
bn

0

) (
bn

1

)
· · ·

(
bn

n−1

)

...
...

. . .
...(

b1
0

) (
b1
1

)
· · ·

(
b1

n−1

)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

1 bn
b2n
2!

· · · bn−1
n

(n−1)!
...

...
...

. . .
...

1 b1
b21
2!

· · ·
bn−1
1

(n−1)!

∣∣∣∣∣∣∣∣
=

∏
i<j(bi − bj)

1!2! · · · (n − 1)!
,

by properties of Vandermonde matrices. Since b1 > b2 > · · · > bn, c is positive.

4.2 Relation between ϕ(D) and ∆(D)

Definition 29. The data (m, n, (r1, . . . , rm), (s1, . . . , sm)) ∈ N×N+×Nm×Nm satisfying
1 ≤ r1 < r2 < · · · < rm < rm+1 := n and 0 ≤ si ≤ ri+1 − ri − 1 (1 ≤ i ≤ m) determines
an element D ∈ Dn, which is obtained by sorting the set

{(0, 0), (1, 0), · · · , (n − 1, 0)} ∪ {(r1 − 1, 1), (r2 − 1, 1), . . . , (rm − 1, 1)}

\ {(r1 + s1, 0), (r2 + s2, 0), . . . , (rm + sm, 0)}

in increasing order as in (2.1). A staircase form of such D is called a special minimal
staircase form.

Remark 30. It is easy to see that a special minimal staircase form is indeed a minimal
staircase form. Using the notation in the definition, the partition type of a special minimal
staircase form D is obtained from (s1, s2, . . . , sm) by eliminating 0’s and sorting the se-
quence if necessary. The following figure gives a typical example of D which has a special
minimal staircase form, where m = 3, n = 13, (r1, r2, r3) = (2, 5, 7), (s1, s2, s3) = (2, 1, 5),
and the partition type is (1, 2, 5).

• •
•
• •

•
•
•

• • • ••

Lemma 31. (i) Let n ∈ N+, d1, d2, k ∈ N and d1 + d2 =
(

n
2

)
− k. Define

Π′
k =

{
µ ∈ Πk

∣∣∣∣
there exists Fµ ∈ Dn whose staircase form is minimal,
of partition type µ and of bi-degree (d1, d2)

}
.

If there are coefficients {cµ ∈ C}µ∈Π′
k

satisfying

∑

µ∈Π′
k

cµ ∆(Fµ) ≡ 0 (modulo lower degrees),

then cµ = 0 for every µ ∈ Π′
k. In other words, {∆(Fµ)}µ∈Π′

k
form a linearly independent

set in Md1,d2.
(ii) If D1, D2 ∈ Dn have the same partition type and the same bi-degree,and both have

special minimal staircase forms, then D1 ≡ D2 (modulo lower degrees).
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Proof. (i) Choose a sufficiently large N ∈ N and choose (N − n) points Pn+1, . . . , PN ∈
N × N such that |Pi| = i − 1 for n + 1 ≤ i ≤ N and

|Pn+1|x + · · ·+ |PN |x ≥ (2k + 1)N, |Pn+1|y + · · · + |PN |y ≥ (2k + 1)N.

Define F ′
µ = Fµ∪ (Pn+1, Pn+2, . . . , PN). Theorem 14 asserts that {∆(F ′

µ)}µ∈Π′
k

are linearly
independent modulo lower degrees. Since ∆(F ′

µ) is equivalent to ∆(Fµ) · f0 for a poly-
nomial f0 independent of µ, the linear independence of {∆(F ′

µ)}µ∈Π′
k

implies the linear
independence of {∆(Fµ)}µ∈Π′

k
.

(ii) The claim follows immediately from Minors Permuting Lemma 17.

Proposition 32. Let n ∈ N+, D = (P1, . . . , Pn) ∈ Dn and k =
(

n
2

)
−
∑n

i=1 |Pi| ≥ 0.
Suppose that N ∈ N+ satisfies N > N0 := (

∑n
i=1 |Pi|y)(k + 1). Define

D̃ :=
(
(0, 0), (1, 0), . . . , (N − 1, 0), P1 + (N, 0), . . . , Pn + (N, 0)

)
∈ DN+n.

Let d2 =
∑

i |Pi|y be the y-degree of D (which is also the y-degree of D̃). For µ ∈ Πd2,k,
suppose that Fµ ∈ Dn is of partition type µ, of the same bi-degree as D̃ and has a special
minimal staircase form. Then there exist unique integers cµ (µ ∈ Πd2,k) such that

∆(D̃) ≡
∑

µ∈Πd2,k

cµ · ∆(Fµ) (modulo lower degrees).

Moreover, the integers cµ satisfy

ϕ(D) =
∑

µ∈Πd2,k

cµρµ. (4.3)

Proof. Throughout the proof, we do not require the standard order (2.1) for elements in
D.

The uniqueness of cµ follows from the fact that {∆(Fµ)}µ∈Π′
k

form a linearly indepen-
dent set in Md1,d2 which is proved in Lemma 31. For the existence of cµ, we shall give an
algorithm showing that those cµ are exactly the integers satisfying (4.3).

Define Q
(0)
s = (s − 1, 0) for 1 ≤ s ≤ N , P

(0)
t = Pt + (N, 0) for 1 ≤ t ≤ n and define

D(0) := D̃ = (Q
(0)
1 , Q

(0)
2 , . . . , Q

(0)
N , P

(0)
1 , P

(0)
2 , . . . , P (0)

n ).

Partition the sequence of N0 points (Q
(0)
2 , Q

(0)
3 , . . . , Q

(0)
N0+1) into (

∑n
i=1 |Pi|y) parts of length

(k + 1): for 1 ≤ r ≤
∑n

i=1 |Pi|y, the r-th part is (Q
(0)
(r−1)(k+1)+2, . . . , Q

(0)
r(k+1)+1). Define a

sequence A of length
∑n

t=1 |Pt|y as A =
(
(1, |P1|y), . . . , (1, 2), (1, 1), (2, |P2|y), . . . , (2, 2),

(2, 1), . . . , (n, |Pn|y), . . . , (n, 2), (n, 1)
)
.

Given a set of nonnegative integers w = {w
(i′)
j′ }(i′,j′)∈A, we construct

D(r)
w

= (Q
(r)
1 , . . . , Q

(r)
N , P

(r)
1 , . . . , P (r)

n )
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inductively on r ∈ [1,
∑n

ℓ=1 |Pℓ|y]. Suppose D
(r−1)
w has been constructed, and the r-th pair

in the sequence A is (i, j). Then D
(r)
w is constructed as follows.

Q
(r)

(r−1)(k+1)+2+w
(i)
j

= ((r − 1)(k + 1), 1),

Q
(r)
ℓ = Q

(r−1)
ℓ , for 1 ≤ ℓ ≤ N and ℓ 6= (r − 1)(k + 1) + 2 + w

(i)
j ,

P
(r)
i = P

(r−1)
i + (w

(i)
j + 1,−1),

P
(r)
ℓ = P

(r−1)
ℓ , for 1 ≤ ℓ ≤ n and ℓ 6= i.

The following equivalence can be proved inductively on r from 1 to n:

∆(D̃) ≡ (−1)r
∑

w

∆(D(r)
w

), (modulo lower degrees), (4.4)

where w runs through all sets of integers {w
(i′)
j′ }(i′,j′)≤(i,j) with w

(i′)
j′ ∈ [0, k]. To illus-

trate the idea, we only go through the first two steps r = 1 and r = 2 and leave the
details to the interested reader. For r = 1, we can assume |P1|y > 0 because other-
wise we can take the smallest h with |Ph|y > 0 and the argument will be similar. Denote

w = w
(1)
|P1|y

for simplicity. We need to show ∆(D̃)+
∑

0≤w≤k ∆
(
(0, 0), . . . , (w, 0), (0, 1), (w+

2, 0), . . . , (N − 1, 0), P1 + (w + 1,−1), P2, . . . , Pn

)
is equivalent to 0 modulo lower de-

grees. This follows immediately from Lemma 20 by plugging in (c, e) = P
(0)
1 − (0, 1)

and
(
(a1, b1), . . . , (aN+n, bN+n)

)
=
(
(0, 0), (1, 0), . . . , (N − 1, 0), (0, 1), P

(0)
2 , P

(0)
3 , . . . , P

(0)
n

)
.

Here we can assume w ≤ k because otherwise the total degree of the polynomial ∆(D̃)
is strictly greater than

(
N+n

2

)
, which implies ∆(D̃) ≡ 0 modulo lower degrees. For r = 2,

we only consider the case |P1|y ≥ 2 since other cases are similar. By induction,

∆(D̃) ≡ −
∑

0≤w
(1)
|P1|y

≤k

∆(D
(1)

{w
(1)
|P1|y

}
), (modulo lower degrees).

A similar argument as in the case r = 1 gives

∆(D
(1)

{w
(1)
|P1|y

}
) ≡ −

∑

0≤w
(1)
|P1|y−1

≤k

∆(D
(1)

{w
(1)
|P1|y

,w
(1)
|P1|y−1

}
), (modulo lower degrees).

Combining the above two equivalences together, we have

∆(D̃) ≡ (−1)2
∑

0≤w
(1)
|P1|y

,w
(1)
|P1|y−1

≤k

∆(D
(1)

{w
(1)
|P1|y

,w
(1)
|P1|y−1

}
), (modulo lower degrees).

An induction similar to the above argument gives the proof of (4.4).

Take r = r0 =
∑n

ℓ=1 |Pℓ|y into (4.4). Now we have |P
(r0)
1 |y = · · · = |P

(r0)
n |y = 0.

Assume

{|P
(r0)
1 |x, |P

(r0)
2 |x, . . . , |P

(r0)
n |x} is a permutation of {N, N + 1, . . . , N + n − 1},
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because it is a necessary condition for ∆(D
(r0)
w ) 6≡ 0. Let σ ∈ Sn be the permutation

satisfying |P
(r0)
i |x = σ(i) + N − 1. Since P

(r0)
i = P

(0)
i +

∑|Pi|y
j=1 w

(i)
j , we have

|Pi|y∑

j=1

w
(i)
j = P

(r0)
i −P

(0)
i = (σ(i) + N − 1)− (N + |Pi|) = σ(i)− 1− |Pi| = σ(i)− 1− ai − bi,

which is exactly the condition in the definition of ϕ(D) (see Definition 26(a)). Next, we

shall figure out the correct sign. For this, we rearrange the order of points in D
(r0)
w to

satisfy the condition (2.1). For 1 ≤ r ≤
∑n

ℓ=1 |Pℓ|y, the r-th part

(
(r−1)(k+1)+1, 0

)
,
(
(r−1)(k+1)+2, 0

)
, . . . ,

(
(r−1)(k+1)+1+w

(i)
j , 0

)
, . . . ,

(
r(k+1), 0

)

is modified to

(
(r − 1)(k + 1) + 1, 0

)
,
(
(r − 1)(k + 1) + 2, 0

)
, . . . ,

(
(r − 1)(k + 1), 1

)
, . . . ,

(
r(k + 1), 0

)
.

The only change is that the point
(
(r−1)(k+1)+1+w

(i)
j , 0

)
is replaced by

(
(r−1)(k+1), 1

)
.

To rearrange this part into standard order, we need to move the (1 + w
(i)
j )-th point in

front of the first point, so the change of sign is (−1)w
(i)
j . On the other hand, rearranging

(P
(r0)
1 , . . . , P

(r0)
1 ) to the standard order incurs a sign change sgn(σ). So the total change

of sign is

(−1)
Pn

i=1

P|Pi|y
j=1 w

(i)
j · sgn(σ) = (−1)

Pn
i=1(σ(i)−1−|Pi|) · sgn(σ) = (−1)ksgn(σ),

which coincides with the sign in the definition of ϕ(D) (Definition 26(a)).

Finally, note that D
(r0)
w (after rearranging it to the standard order) has a special

minimal staircase form. The partition type of D
(r0)
w is (w

(i)
j )i,j, which is compatible with

the definition (4.2) of ϕ(D). Thus we have finished the proof of Proposition 32.

5 The upper bound of dim Md1,d2

5.1 A characterization of the q, t-Catalan number

We give the following conjecture, which is equivalent to a conjecture by Mahir Can and
Nick Loehr in their unpublished work [2].

Conjecture 33. Let Λn be the set of integer sequences λ1 ≥ · · · ≥ λn−1 ≥ λn = 0
satisfying λi ≤ n − i for all i ∈ [1, n]. For any λ = (λ1, . . . , λn) ∈ Λn, let

ai = n − i − λi, bi = #{j| i < j ≤ n, λi − λj + i − j ∈ {0, 1}},

and define D(λ) =
(
(a1, b1), . . . , (an, bn)

)
. Then {∆(D(λ))}λ∈Λn

generates the ideal I.
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Example 34. For n = 3, Λ3 consists of (2, 1, 0), (1, 1, 0), (2, 0, 0), (1, 0, 0), (0, 0, 0), the
corresponding D(λ) are as shown in the following figure.

•
•
• •

•
•

•

••
•
•• •••

Definition 35. Let D
catalan
n be the set which consists of D ∈ Dn satisfying the following

conditions:
(a) If (p, 0) is in D, then (i, 0) is in D for all i ∈ [0, p].
(b) For every p ∈ N,

#{j | (p + 1, j) ∈ D} + #{j | (p, j) ∈ D} ≥ max{j | (p, j) ∈ D} + 1.

(If {j | (p, j) ∈ D} = ∅, then we require that no point (i, j) ∈ D satisfies i ≥ p.)

Proposition 36. The map θ : Λn → D
catalan
n defined by sending λ to D(λ) is a bijection.

Proof. We first show that D(λ) is in D
catalan
n . By the definition of D(λ), suppose ai = ai′

for some i, i′ ∈ [1, n], then i ≤ i′ if and only if bi ≥ bi′ . Indeed, suppose i ≤ i′. Since
ai = ai′ implies (λi + i) = (λi′ + i′), we have

{j| i < j ≤ n, (λi + i) − (λj + j) ∈ {0, 1}} ⊇ {j| i′ < j ≤ n, (λi′ + i′) − (λj + j) ∈ {0, 1}},

hence bi ≥ bi′ . For (a), suppose (aℓ, bℓ) = (p, 0) ∈ D(λ) and (p − 1, 0) /∈ D(λ). Since

ai − ai+1 = (n − i− λi) − (n − i− 1− λi+1) = 1 − (λi − λi+1) ≤ 1, for all i ∈ [1, n − 1]

and an = 0, there exists i ∈ [ℓ + 1, n] such that ai = p− 1. Suppose i0 is maximal among
all such i. Since (aℓ, bℓ) = (p, 0), we have ai < p for all i > ℓ. Therefore

bi0 = #{j| i0 < j ≤ n, aj − ai0 ∈ {0, 1}} = #{j| i0 < j ≤ n, aj ∈ {p − 1, p}} = 0,

(ai0 , bi0) = (p − 1, 0), which contradicts our assumption that (p − 1, 0) /∈ D(λ). For (b),
if {j | (p, j) ∈ D} = ∅, then since ai − ai+1 ≤ 1 for all i ∈ [1, n− 1], there is no point in D
whose x-coordinate is greater than or equal to p. Therefore we assume {j | (p, j) ∈ D} 6= ∅.
Define q = max{j | (p, j) ∈ D}, and assume (p, q) is the ℓ-th pair (aℓ, bℓ) in D. Then

q = bℓ = #{j| ℓ < j ≤ n, aj − aℓ ∈ {0, 1}} = #{j| ℓ < j ≤ n, aj = p or p + 1},

#{j | (p + 1, j) ∈ D} + #{j | (p, j) ∈ D} ≥ q + 1.

So D(λ) is in D
catalan
n .

To show that θ : D 7→ D(λ) is a bijection, it suffices to construct a map θ−1 sending
D(λ) back to λ. We give an inductive construction on n. Let p ∈ N be the minimal
integer such that

#{j | (p + 1, j) ∈ D} + #{j | (p, j) ∈ D} ≤ max{j | (p, j) ∈ D} + 1.
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Let q = max{j | (p, j) ∈ D} and take (a1, b1) = (p, q) ∈ D. Now let D′ be obtained from
D by deleting the point (a1, b1). It is easy to check that D′ is in D

catalan
n−1 . By induction

we have θ−1(D′) = (λ′
1, λ

′
2, · · · , λ′

n−1). Then we define

θ−1(D) := (n − 1 − p, λ′
1, λ

′
2, . . . , λ

′
n−1).

To check that it is in Λn, we need to show n− 1− p ≥ λ′
1, i.e., p ≤ (n− 1)− λ′

1 = a′
1 + 1,

where a′
1 is the minimal integer that

#{j | (a′
1 + 1, j) ∈ D′} + #{j | (a′

1, j) ∈ D′} ≤ max{j | (a′
1, j) ∈ D′} + 1.

But D and D′ coincide on column 0, 1, . . . , p − 1, therefore a′
1 ≥ p − 1.

To check that θ and θ−1 are inverse to each other is routine and we shall skip.

Remark 37. The above proposition is discovered independently by Alexander Woo [13].

Corollary 38. The dimension of Md1,d2, which is also the coefficient of qd1td2 in the q, t-
Catalan number Cn(q, t), is equal to the number of D ∈ D

catalan
n with bi-degree (d1, d2).

In particular, the usual Catalan number 1
n+1

(
n
2

)
is equal to |Dcatalan

n |.

Proof. It follows immediately from Proposition 36 and (1.1).

5.2 The upper bound of dimMd1,d2

In order to compare Md1,d2 for different n, we use M
(n)
d1,d2

to specify which n we are
considering.

Proposition 39. Let ℓ, n ∈ N+, d1, d2 ∈ N, and k =
(

n
2

)
− d1 − d2 ≥ 0. Then we have

dim M
(n)
d1,d2

≤ dim M
(n+ℓ)

d1+(ℓ

2)+nℓ, d2
.

In particular, dim M
(n)
d1,d2

≤ p(d2, k).

Proof. For D(n) ∈ D
catalan
n of bi-degree (d1, d2), let D(n+ℓ) =

(
(0, 0), (1, 0), . . . , (ℓ−1, 0)

)
∪(

D(n) + (ℓ, 0)
)
, where D(n) + (ℓ, 0) means translating the set D(n) by the vector (ℓ, 0). It

is easy to verify that D(n+ℓ) is in the set D
catalan
n+ℓ and has bi-degree (d1 +

(
ℓ
2

)
+ nℓ, d2).

Then Corollary 38 implies the first assertion.
For any D(n) ∈ Dn of bi-degree (d1, d2), by taking sufficiently large ℓ and applying

Proposition 32, we get ∆(D(n+ℓ)) ≡
∑

µ∈Πd2,k
cµ · ∆(Fµ) (modulo lower degrees), where

Fµ ∈ Dn+ℓ have special minimal staircase forms of bi-degree (d1 +
(

ℓ
2

)
+ nℓ, d2) and of

partition type µ. This implies dim M
(n+ℓ)

d1+(ℓ

2)+nℓ, d2
≤ p(d2, k) and dim M

(n)
d1, d2

≤ p(d2, k).
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6 The lower bound of dim Md1,d2

6.1 A homogeneous term order.

Definition 40. Let k be a positive integer.
(a) For two partitions ν = (ν1 ≤ · · · ≤ νm), µ = (µ1 ≤ · · · ≤ µn) ∈ Πk, we define

ρν < ρµ if there is a positive integer j ≤ min(m, n) such that νi = µi for 1 ≤ i ≤ j − 1
and νj < µj. This defines a total order on the monomials in C[ρ]k.

(b) For a nonzero polynomial f =
∑

cνρν ∈ C[ρ]k, where cν ∈ C, the leading monomial
of f is defined as

LM(f) := max{ρν |cν 6= 0},

and the leading term of f is LT(f) := cνρν , where ρν = LM(f). For c ∈ C \ {0}, define
LT(c) = 1 and LM(c) = c.

Example 41. Let f = 2ρ1ρ2ρ7 − 5ρ4ρ6 ∈ C[ρ]10. Then LM(f) = ρ4ρ6, LT(f) = −5ρ4ρ6.

Lemma 42. (a) Let ρν be a fixed monomial in C[ρ]. Then two monomials ρµ, ρµ′ in C[ρ]k
satisfy ρµ ≤ ρµ′ if and only if ρµρν ≤ ρµ′ρν.

(b) Let ρµ, ρν be monomials in C[ρ]k and ρµ′ , ρν′ be monomials in C[ρ]k′ such that
ρµ ≤ ρν and ρµ′ ≤ ρν′. Then ρµρµ′ ≤ ρνρν′ in C[ρ]k+k′.

(c) If k, k′ ∈ N, f ∈ C[ρ]k, and g ∈ C[ρ]k′, then

LM(fg) = LM(f)LM(g), LT(fg) = LT(f)LT(g).

Proof. The proof is easy and is left as an exercise to the interested reader.

6.2 The theorems on the lower bound of dimMd1,d2

Theorem 43. Suppose that n, d1, d2 ∈ N+ and k ∈ N satisfy k ≤ n− 4, d1 + d2 =
(

n
2

)
− k

and d2 ≤ d1. Then for each ν ∈ Πd2,k, there exists a Dν ∈ Dn such that ∆(Dν) has
bi-degree (d1, d2), and that LM(ϕ(Dν)) = ρν.

Theorem 44. Suppose that n, d1, d2 ∈ N+ and k ∈ N satisfy k ≤ n−3, d1 +d2 =
(

n
2

)
−k,

d2 ≤ d1. Then for each ν ∈ Πd2,k, there exists an alternating polynomial fν of bi-degree
(d1, d2), either of the form ∆(D) for some D ∈ D

n, or of the form ∆(D) − ∆(D′) for
some D, D′ ∈ Dn, such that LM(ϕ(fν)) = ρν. Moreover, dim Md1,d2 = p(d2, k).

Remark 45. Theorem 43 and Theorem 44 are proved using the same idea. In the proofs,
we give explicit constructions for Dν (in Theorem 43) and fν (in Theorem 44).

Example 46. We give an example of Dν in Theorem 43. Let n = 18, k = 14, (d1, d2) =
(84, 7), ν = (1, 1, 1, 2, 2, 3, 4). Divide ν into 3 sub-partitions ν̃1 = (1, 1, 1), ν̃2 = (2, 2),
ν̃3 = (3, 4). Construct Di ∈ D

′
|ν̃i|

such that LM(ϕ(Di)) = ρν̃i
for i = 1, 2, 3.

D3 =
u

u u

u

u u
D2 =

u

u

u

u
D1 =

u

u

u
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Then assemble D3, D2 and D1 together with appropriate extra points:

Dν =
v

v

v v

v

v v

v

v

v

v

v

v

v v v v v

p p p p p p p p p p p p p p

p p p p p p p p p p p p p p

p p p p p p p p p p p p p p

p p p p p p p p p p p p p p p

?

D3

p p p p p p p p p p p p p p

p p p p p p p p p p p p p p

p p p p p p p

p p p p p p p p

?

D2

p p p p p p p p p p p p p p

p p p p p p p p p p p p p p

p p p p

p p p p p

?

D1

p p p p p p p p p p p p p p

p p p p p p p p p p p p p p

p p p p p p p p p p p p p p

p p p p p p p p p p p p p p

?

extra points

This way we get a Dν satisfying LM(ϕ(Dν)) = ρν̃1ρν̃2ρν̃3 = ρν .

6.3 Proof of Theorem 43 and Theorem 44

The following crucial lemma provides an effective method to verify if a set of alternating
polynomials is linearly independent.

Lemma 47. Fix (d1, d2) ∈ N × N. Let f ∈ C[x1, y1, . . . , xn, yn]ǫ be a bi-homogeneous
alternating polynomial of bi-degree (d1, d2). If ϕ(f) 6= 0, then f 6≡ 0 (modulo lower
degrees). As a consequence, ϕ induces a well-defined linear map

ϕ̄ : Md1,d2 −→ C[ρ1, ρ2, ...]k.

Proof. Suppose ϕ(f) 6= 0. By Proposition 32, after replacing n by a sufficiently large
integer if necessary, we can assume that f ≡

∑
µ cµFµ (modulo lower degrees). Since

ϕ(f) 6= 0, Proposition 32 guarantees cµ 6= 0 for some µ. Using the fact that {∆(Fµ)}µ are
linearly independent in Md1,d2 , we conclude that f 6≡ 0 (modulo lower degrees).

The map ϕ̄ is useful in the study of Md1,d2 . Theorem 44 implies that, for k =
(

n
2

)
−d1−

d2 ≤ n − 3 and d2 ≤ d1, the map ϕ̄ is injective and the image is spanned by {ρν}ν∈Πd2,k
.

In fact, all the computations we did so far support the following conjecture.

Conjecture 48. The linear map ϕ̄ is injective.

Proposition 49. Conjecture 33 implies Conjecture 48.

Proof. Suppose that f ∈ C[x1, y1, . . . , xn, yn]
ǫ is a bi-homogeneous alternating polyno-

mial of bi-degree (d1, d2) satisfying ϕ̄(f) = 0. Conjecture 33 implies that the elements of
D

catalan
n with bi-degree (d1, d2) form a basis of Md1,d2 , so we can express f as a linear com-

bination
∑

i ci ∆(Di), Di ∈ D
catalan
n . Define D′

i ∈ D
catalan
n+ℓ as in the proof of Proposition 39.

Then ϕ̄(
∑

i ci ∆(D′
i)) = ϕ̄(

∑
i ci ∆(Di)) = ϕ̄(f) = 0. Since ϕ̄ : Md1+ℓ,d2 → C[ρ]k is injec-

tive,
∑

i ci ∆(D′
i) = 0, which implies ci = 0 for all i and therefore f ≡

∑
i ci ∆(Di) = 0.

Lemma 50. Let w ≥ 2 ∈ N. Suppose D = (P1, . . . , Pw+1) ∈ D
′
w+1, where Pi are all

distinct and |P1| = |P2| = 0, |Pi| = i−2 (3 ≤ i ≤ w+1). Then LT(ϕ(D)) = (|P1|y−|P2|y)ρw

and LM(ϕ(D)) = ρw.

Proof. It immediately follows from the definition of ϕ(D).
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Lemma 51. Let v, w ∈ N and 2 ≤ v ≤ w. Suppose that D = (P1, ..., Pw+2) ∈ D
′
w+2,

where Pi are all distinct and

|Pi| =






0, if i = 1, 2;
i − 2, if 3 ≤ i ≤ w − v + 3;
i − 3, if w − v + 4 ≤ i ≤ w + 2.

Then LT(ϕ(D)) = −(|P1|y − |P2|y)(|Pw−v+3|y − |Pw−v+4|y)ρvρw and LM(ϕ(D)) = ρvρw.

Proof. Let ϕ(D) =
∑

cµρµ. First, we show that if cµ 6= 0 then ρµ ≤ ρvρw. There exist

integers {w
(i)
j } and σ ∈ Sw+2 such that

(
sgn(σ)

∏n
i=1 ρ

w
(i)
1

ρ
w

(i)
2
· · ·ρ

w
(i)
bi

)
in (4.2) is not zero,

and

ρµ =
n∏

i=1

ρ
w

(i)
1

ρ
w

(i)
2
· · · ρ

w
(i)
bi

. (6.1)

Because of condition (4.1), we have σ(i)−1−ai−bi ≥ 0, for all i ∈ [1, w+2]. In particular,
σ(w−v +3) ≥ w−v +2, σ(w−v +4) ≥ w−v +2. Since σ is a permutation, σ(w−v +3)
and σ(w− v + 4) are different from each other, hence at least one of them is greater than
or equal to w − v + 3. Let u be w − v + 3 or w − v + 4 such that σ(u) ≥ w − v + 3. Since
σ(u) ≤ w + 2 and |Pu|(= au + bu) = w − v + 1, we have 1 ≤ σ(u) − 1 − |Pu| ≤ v. By

condition (4.1), w
(u)
1 + ... + w

(u)
bu

= σ(u) − 1 − au − bu ∈ [1, v]. Take j ∈ N+, 1 ≤ j ≤ bu

such that w
(u)
j 6= 0. Then ρ

w
(u)
j

is a factor of ρµ by (6.1). Since w
(u)
j ≤ v ≤ w, we conclude

that ρµ ≤ ρvρw.
Now we show that cµ 6= 0 for µ = (v, w). Assume the monomial ρvρw appears in (6.1).

By the argument in the above paragraph, we have σ(u) − 1 − |Pu| = v, which implies
σ(u) = w + 2. Define δ := u − (w − v + 3) ∈ {0, 1}. Since σ(1) and σ(2) cannot be 1, we
may assume σ(1+ǫ) 6= 1 for ǫ ∈ {0, 1}. Then σ(1+ǫ)−1−|P1+ǫ| = w and σ(1+ǫ) = w+1.
For every positive integer i ≤ w+2 that i 6= 1+ ǫ and i 6= u, we must have σ(i) = 1+ |Pi|.
So σ ∈ Sn must be one of the four permutations σǫ,δ for (ǫ, δ) = (0, 0), (0, 1), (1, 0) or
(1, 1), where

σǫ,δ(i) =






1, if i = 2 − ǫ;
w + 1, if i = 1 + ǫ;
i − 1, if ǫ + 2 ≤ i ≤ w − v + 2 + δ;
w + 2, if i = w − v + 3 + δ;
i − 2, if w − v + 4 + δ ≤ i ≤ w + 2.

By routine computation, we get

ǫ δ coefficient of ρvρw corresponding to σ
0 0 −|P1|y|Pw−v+3|y
0 1 +|P1|y|Pw−v+4|y
1 0 +|P2|y|Pw−v+3|y
1 1 −|P2|y|Pw−v+4|y

.

Adding the coefficients gives cµ = c(v,w) = −(|P1|y−|P2|y)(|Pw−v+3|y−|Pw−v+4|y) 6= 0.
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Example 52. Let v = 2, w = 3, D =
(
(−1, 1), (0, 0), (0, 1), (0, 2), (1, 1)

)
. Computation

shows that ϕ(D) = −ρ2ρ3 +ρ1ρ4 +ρ1ρ
2
2 −2ρ2

1ρ3 +2ρ3
1ρ2 −ρ5

1. So LT(ϕ(D)) = −(1−0)(2−
1)ρ2ρ3 = −ρ2ρ3 as asserted in Lemma 51.

Definition 53. To a sequence ν = (ν1 ≤ ν2 ≤ · · · ≤ νn) of positive integers, we associate
a finite sequence ν̃ = (ν̃1, ν̃2, . . . ) of subsequences of ν as follows, where c is the number
of 1’s in ν and m = n − c:

ν̃i =






(1, 1, 1), 1 ≤ i ≤ ⌈ c
3
⌉ − 1;

(1, . . . , 1︸ ︷︷ ︸
c+3−3⌈ c

3
⌉

), i = ⌈ c
3
⌉;

(νc+2(i−⌈ c
3
⌉)−1, νc+2(i−⌈ c

3
⌉)), ⌈ c

3
⌉ + 1 ≤ i ≤ ⌈ c

3
⌉ + ⌈m

2
⌉ − 1;

(νc+2⌈m
2
⌉−1, . . . , νc+m), i = ⌈ c

3
⌉ + ⌈m

2
⌉.

Example 54. If ν = (9) then ν̃ = ((9)).
If ν = (1, 1, 1, 1) then ν̃ = ((1, 1, 1), (1)).
If ν = (1, 1, 1, 1, 10) then ν̃ = ((1, 1, 1), (1), (10)).
If ν = (1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 5, 5) then ν̃ = ((1, 1, 1), (1, 1, 1), (1, 1), (3, 3), (5, 5)).
If ν = (1, 1, 1, 2, 2, 2, 3, 3, 7, 7) then ν̃ = ((1, 1, 1), (2, 2), (2, 3), (3, 7), (7)).

Proof of Theorem 43. The following table is the building block of our proof.

µ Eµ ∈ D
′ |µ| #Eµ

(1,1,1) (P1, P2, P3), |P1| = |P2| = |P3| = 0 3 3
(1,1) (P1, P2, P3, P4), |P1| = |P2| = 0, |P3| = |P4| = 2 2 4
(1) (P1, P2), |P1| = |P2| = 0 1 2

(v, w)
2 ≤ v ≤ w

(P1, . . . , Pw+2) ∈ D
′
w+2, such that

|Pi| =






0, if 1 ≤ i ≤ 2;
i − 2, if 3 ≤ i ≤ w − v + 3;
i − 3, if w − v + 4 ≤ i ≤ w + 2.

v + w w + 2

(w)
w ≥ 2

(P1, . . . , Pw+1), such that
|P1| = |P2| = 0, |Pi| = i − 2 (3 ≤ i ≤ w + 1)

w w + 1

(6.2)

We claim that LM(ϕ(Eµ)) = ρµ in the above table: the case µ = (1, 1, 1) or (1) follows
from Lemma 28 (v); the case µ = (1, 1) follows from Lemma 28 (iv)(v); the case µ = (v, w)
follows from Lemma 51; the case µ = (w) follows from Lemma 50.

Let ν̃ = {ν̃1, . . . , ν̃m} be defined as in Definition 53. The idea of the construction of
Dν is to take the union of translations of Eν̃1, . . . , Eν̃m

together with some points in N×N

that do not affect the value of ϕ. Consider the following two cases separately.
CASE 1: ν̃m 6= (1, 1, 1).
Define translating vectors T1, . . . , Tm ∈ N × N as follows. Tm = (1, 0),

Ti = (1 + #Eν̃i+1
+ #Eν̃i+2

+ · · · + #Eν̃m
, 0), for all i ∈ [1, m − 1].
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Define n0 = 1 + #Eν̃1 + #Eν̃2 + · · ·+ #Eν̃m
. Then n0 ≤ (1 + |ν̃1|+ |ν̃2|+ · · ·+ |ν̃m|) + 3 =

k +4 ≤ n. Choose Pj ∈ N×N such that |Pj| = j − 1 for j ∈ [n0 +1, n]. Define D ∈ D
′ as

D = The sequence obtained by sorting {(0, 0)} ∪ ∪m
i=1(Eν̃i

+ Ti) ∪ ∪n
j=n0+1{Pj}

in increasing order as in (2.1).
(6.3)

Claim. Fix ν ∈ Πd2,k. For an integer d′
2 satisfying #ν ≤ d′

2 ≤
(

n
2

)
− k − (#ν), define

d′
1 =

(
n
2

)
− k − d′

2. Then we can make choices of Eν̃i
and Pj such that the D in (6.3) has

bi-degree (d′
1, d

′
2), and the x-coordinates of the points in D are non-negative, i.e. D ∈ D.

Proof of Claim. We give the exact lower and upper bounds of the y-degree of D, and
show that every integer between these bounds can be the y-degree of some D.

For the exact lower bound, let Pj = (j − 1, 0) and Eν̃i
be as in the following table.

ν̃i Eν̃i
∈ D

′ y-degree of Eν̃i

(1,1,1)
(
(−2, 2), (−1, 1), (0, 0)

)
3

(1,1)
(
(−1, 1), (0, 0), (1, 1), (0, 2)

)
2

(1)
(
(−1, 1), (0, 0)

)
1

(v, w)
2 ≤ v ≤ w

(
(−1, 1), (0, 0), (1, 0), . . . , (w − v, 0),
(w − v, 1), (w − v + 1, 0), . . . , (w − 1, 0)

) 2

(w)
w ≥ 2

(
(−1, 1), (0, 0), (1, 0), . . . , (w − 1, 0)

)
1

Denote the resulting D by Dmin y. The y-degree of Eν̃i
is equal to #ν̃i for every ν̃i in the

table. So the y-degree of Dmin y is
∑m

i=1(#ν̃i) = (#ν).
For the exact upper bound, we note that if D ∈ Dn can be constructed as (6.3), then

the transpose of D (i.e. swap the x and y coordinates of each point in D) can also be
constructed as (6.3) for some choices of Pj and Eν̃i

. In particular, the transpose of Dmin y,
denoted by Dmax y, can be constructed as (6.3). The y-degree of Dmax y is

(
n
2

)
− k − (#ν),

and is the maximal y-degree for all possible D ∈ Dn constructed in (6.3).
Finally, if we move an appropriate point of D to the north-west direction, the y-degree

will increase by 1. So every integer between #ν and
(

n
2

)
− k − (#ν) is the y-degree of

some D. This completes the proof of Claim.

Now we continue the proof of CASE 1. By assumption, d2 ≤ d1, d1 + d2 =
(

n
2

)
− k,

and (#ν) ≤ d2 since ν is a partition of k with at most d2 parts. Then (#ν) ≤ d2 ≤(
n
2

)
−k−(#ν). The above claim asserts that d2 is the y-degree of some D ∈ D constructed

as (6.3). This D, denote it by Dν , has bi-degree (d1, d2) . Lemma 28 (ii)(iii)(iv) imply
ϕ(Dν) =

∏m
i=1 ϕ(Eν̃i

), therefore LM(ϕ(Dν)) =
∏m

i=1 LM(ϕ(Eν̃i
)) =

∏m
i=1 ρν̃i

= ρν using
Lemma 42 (c).

CASE 2: ν̃m = (1, 1, 1).
In this case, (#ν) = k = 3m. Choose a D ∈ D such that |Pj| = j − 1 for 1 ≤ j ≤

n − 3m, |Pn−3m+3j−2| = |Pn−3m+3j−1| = |Pn−3m+3j | = n = 3m + 3j − 3. By assumption,
we have ν ∈ Πd2,k and therefore d2 ≥ k. It is straightforward to verify that we can choose
such a D with bi-degree (d1, d2). This completes the proof of Theorem 43.
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Proof of Theorem 44. The proof is almost identical with the one of Theorem 43. We only
need to modify the row µ = (1, 1) in the table (6.2). Instead of using E(1,1) ∈ D

′ (which
contains 4 points), we use two elements E ′

(1,1) =
(
(−a − 1, a + 1), (−a, a), (a + 1, a)

)

and E ′′
(1,1) =

(
(−a − 1, a + 1), (−a, a), (a, a + 1)

)
in D′. A simple computation shows

ϕ(E ′
(1,1)) = ρ2, ϕ(E ′′

(1,1)) = −ρ2
1 + ρ2, so ϕ(E ′

(1,1)) − ϕ(E ′′
(1,1)) = ρ2

1. Here we need to
be cautious because the bi-degree of E ′

(1,1) and E ′′
(1,1) are not the same. This will not

bring any problem, since we can move points in other Eµ to adjust the total bi-degree.
Eventually, suppose that ℓ is the integer that ν̃ℓ = (1, 1), we can construct D′

ν , D
′′
ν ∈ D

both of bi-degree (d1, d2) such that

ϕ(D′
ν) = ϕ(E ′

(1,1))
∏

i6=ℓ

ϕ(Eν̃i
), ϕ(D′′

ν) = ϕ(E ′′
(1,1))

∏

i6=ℓ

ϕ(Eν̃i
).

Then f := ∆(D′
ν) − ∆(D′′

ν) satisfies LM(ϕ(f)) = ρν .
Now for each ν ∈ Πd2,k, we can construct fν such that LM(ϕ(f)) = ρν . If we write down

the coefficient matrix for ϕ(fν) with basis {ρµ}µ∈Πk
arranged in decreasing order, we obtain

a row echelon form with rank p(d2, k). So dim Md1,d2 ≥ p(d2, k) by Lemma 47. Combining
the upper bound obtained in Proposition 39, we conclude that dim Md1,d2 = p(d2, k).

7 The condition for the equality dim Md1,d2 = p(d2, k) to

hold

In Proposition 39 we showed the inequality dim Md1,d2 ≤ p(d2, k), then in Theorem 44
we showed that “=” holds for k ≤ n − 3. In this section, we show that the condition
k ≤ n − 3 is the best we can hope, in the sense of the following theorem.

Theorem 55. Let n, d1, d2, k be as in Theorem 5, and d2 ≤ d1. Then dim Md1,d2 ≤
p(d2, k). Moreover, the equality holds if and only if “k ≤ n − 3”, or “k = n − 2 and
d2 = 1”, or “d2 = 0”.

Proof. The inequality is proved in Proposition 39, so we are left to show the second
statement. The “if” part follows easily from Theorem 44. For the “only if” part, It is
straightforward to check the cases d2 = 0 or 1, so we can focus on the case d2 ≥ 2. By
Proposition 39, it suffices to show that dimM

(n)
d1,d2

< dim M
(n+1)
d1+n,d2

for k = n−2. It is easy
to check that (d1 − n + 3) ≥ 0, therefore (d1 − n + 3) and (d2 − 2) are two non-negative

integers that add up to
(

n
2

)
− k − n + 1 =

(
n−2

2

)
. We know that dim M

(n−2)
d1−n+3,d2−2 = 1.

Choose D(n−2) ∈ D
Catalan
n−2 which has bi-degree (d1 − n + 3, d2 − 2). Define D(n+1) =(

(0, 0), (1, 0), (0, 2)
)
∪
(
D(n−2) +(2, 0)

)
. Then D(n+1) ∈ D

Catalan
n+1 is of bi-degree (d1 +n, d2).

On the other hand, every D(n) ∈ D
Catalan
n of bi-degree (d1, d2) determines an element(

(0, 0)
)
∪
(
D(n) +(1, 0)

)
in D

Catalan
n+1 of bi-degree (d1 +n, d2) and is not the same as D(n+1).

Therefore dim M
(n)
d1,d2

< dim M
(n+1)
d1+n,d2

.
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