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Abstract

A planar digraph D is clustered planar if in some planar embedding of D we
have at each vertex the in-arcs occurring sequentially in the local rotation. By sup-
plementing the operations used to form the usual minors in Kuratowski’s theorem,
clustered planar digraphs are characterised.

1 Introduction

Kuratowski’s theorem is a well known result that characterises planar graphs. A (topo-
logical) minor of a graph G is formed by some combination of three operations: vertex
removal, edge removal and smoothing. Smoothing involves replacing two edges meeting at
a degree two vertex with a single edge. Under the implied ordering the minimal non-planar
graphs, or so-called obstructions to planarity, are K3,3 and K5.

Kuratowski’s theorem and Robertson and Seymour’s epic “fundamental theorem” for
topological graph theory (culminating in [5]) do not apply to digraphs. When restrictions
are placed on the nature of the digraph embedding, the operations used to form digraph
minors may be restricted or modified; it is no longer certain that the set of obstructions
under a restricted or modified partial order is finite. Bonnington et. al. [1, 2] have in-
vestigated Eulerian planar digraphs; that is, digraphs with planar embeddings in which
the in-arcs and out-arcs alternate around each vertex. Pisanski [4] has investigated the
genus distribution and embeddings of graphs with clustered in-arcs at each vertex, and
clustered planar graphs in particular. This paper investigates extending the use of minors
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(in an altered sense) for digraphs with conditions placed on the nature of the directed
embedding to determine obstructions to a digraph property.

A vertex x in a digraph is called a source (respectively sink) if all of the arcs at x are
out-arcs (in-arcs). An ss-digraph is a digraph in which every vertex is either a sink or a
source. Clearly, the underlying graph of an ss-digraph is bipartite.

A digraph D is clustered planar if it has a planar embedding in which at each vertex the
in-arcs occur sequentially in the local rotation. In this paper we provide a Kuratowski-type
theorem for clustered planarity. As an intermediary step, we will classify the ss-digraphs
which are clustered planar, and show how this relates to planar bipartite graphs. Of use
in classifying clustered planar digraphs is the property of planarity of ss-digraphs; such
digraphs are said to be ss-planar, having the property of ss-planarity.

A source-path between two vertices x and y consists of two arcs (w, x) and (w, y)

for some vertex w of degree two, and is denoted
←◦→
xy . Similarly, a sink-path between x

and y consists of arcs (x, w) and (y, w) where w has degree two, and is denoted
→◦←
xy .

Collectively we call these s-paths. A digraph H is an s-path subdivision of a graph G if
it has the vertices of G and an arc or an s-path in H for each edge in G. Note that the
underlying graph of H is a subdivision of G.

Four operations preserve ss-planarity:

1. Vertex removal.

2. Arc removal (the directed equivalent of edge removal).

3. The double smoothing operation is only applied to adjacent degree two vertices. If
there exist vertices w, x, y and z with arcs (w, x), (y, x) and (y, z), where x and
y are degree two vertices, then the double smoothing operation removes these arcs
and the vertices x and y, and introduces the new arc (w, z).

4. The cut inversion operation has the effect of reversing the direction of all of the arcs

at a vertex x. Each sink-path
→◦←
xy is replaced by the arc (y, x). For each remaining

arc (x, z) at x (which is not on a sink-path), a new vertex ẑ is introduced, and the

arc (x, z) is replaced by the source-path
←◦→
xz through ẑ. Each source-path

←◦→
xy is

replaced by the arc (x, y), and for each remaining arc (z, x) at x (which is not on

a source-path), a new vertex ẑ is introduced, and the arc (z, x) is replaced by
→◦←
xz

through ẑ. Cut inversions are only performed when the resulting digraph is smaller,
in the sense outlined below. Figure 1 illustrates a cut inversion operation.

An operation may be performed on a digraph H = (V, A) if the operation reduces the
number of vertices and arcs, M1 = |V |+|A|. Additionally, an operation may be performed
if this measure M1 remains constant, and the measure M2 = (# sources) − (# sinks) is
reduced. An example of this kind of minor forming is shown in Figure 1. In this way, the
standard partial order of topological minors is modified.

Any double smoothing, vertex removal or arc removal reduces M1. A cut inversion
may be performed at a vertex x of degree n > 2 if there are at least d(n + 1)/2e s-paths
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Figure 1: The cut inversion operation forming J3 (which is Σ2) as an ss-minor of J2. The
cut inversion is shown as a dashed box.

at x, or if there are exactly n/2 source-paths at x. A cut inversion either reduces the
number of s-paths in a digraph, or keeps this number constant but increases the number
of sinks.

These operations and measures form a partial order of ss-minors in which it turns out
there are two obstructions to ss-planarity. The first, Σ1, is formed in a straightforward
manner from K3,3 by directing all edges of K3,3 from one of the sets of the bipartition
to the other. The second more interesting obstruction, Σ2, is built from K5 as an s-path
subdivision by labelling two of the vertices as sinks and three as sources. Edges are
replaced by arcs from sources to sinks, sink-paths between sources, and a source-path
between the sinks. The underlying graph of Σ2 is called Kb

5. This second obstruction is
shown on the right in Figure 1.

2 Obstructions to ss-planarity

Theorem 1 Suppose H is an obstruction to ss-planarity. Then H is either Σ1 or Σ2.

Proof. Since the underlying graph G of H is non-planar, it must contain (by
Kuratowski’s theorem [3]) a subdivision of either K3,3 or K5. An ss-minor can be formed
from H in the same way, using the same operations of vertex and arc removals on H as
are performed on G.

Moreover, the subdivided edges of the corresponding Kuratowski subgraph of H can
be double smoothed to either arcs or s-paths. Let J be the s-path subdivision of K3,3 or
K5 obtained in this way.

Suppose J is an s-path subdivision of K3,3. Let X and Y be the two sets of vertices
in the bipartition of K3,3, let i be the number of sources in X, and let k be the number
of sources in Y . Without loss of generality, we suppose i ≥ k, and denote such an s-path
subdivision of K3,3 with the notation Ji,k. There are ten such non-isomorphic s-path
subdivisions of K3,3. Cut inversions operations reduce all s-path subdivisions of K3,3 to
J3,0, as the following sequences of cut inversions show.

J3,3 → J3,2 → J2,2 → J2,1 → J2,0 → J3,0
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Figure 2: The nine obstructions to bipartite planarity without cut inversion allowed. The
obstructions with cut inversion, K3,3 and Kb

5, are in the lower right.

J0,0 → J1,0 → J1,1 → J2,1 → J3,1 → J3,0

It follows that if G contains a subdivision of K3,3, then H has J3,0 = Σ1 as an ss-minor.
Suppose J is an s-path subdivision of K5. In this case, the degree 4 vertices are

partitioned into two sets X and Y of sources and sinks respectively. Vertices in the same
set have an s-path between them; vertices in different sets have an arc from the vertex of X
to the vertex of Y . There are six such non-isomorphic s-path subdivisions of K5, which we
label J|X|. With cut inversion operations, we find J0 → J1 → J2 → J3 (the final operation
keeping M1 constant while reducing M2 as shown in Figure 1) and J5 → J4 → J3. It
follows that if G contains a subdivision of K5, then H has J3 = Σ2 as an ss-minor.

Without the cut inversion operation there are 16 obstructions to ss-planarity, corre-
sponding to the different forms of Ji,k and J|X| in the proof. Without the measure M2

there are three obstructions to ss-planarity, as the cut inversion J2 → J3 would not be
possible.

These operations preserving ss-planarity of digraphs can be used as undirected opera-
tions which preserve bipartite planarity of graphs. The corresponding underlying graphs
of Σ1 and Σ2 are the obstructions to planarity of bipartite graphs. Without cut inversion
there are nine obstructions to bipartite planarity, corresponding to the non-isomorphic
underlying graphs of the digraphs Ji,k and J|X| in the proof; these are shown in Figure 2.

Corollary 2 The obstructions to bipartite planarity (under our implied ordering which
preserves bipartiteness) are K3,3 and Kb

5.
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3 Obstructions to Clustered Planarity

We use Theorem 1 to find the obstructions to clustered planarity. Note that all ss-planar
digraphs are also clustered planar. We introduce a new operation which can be used
successively to form a minor of any clustered planar digraph which is ss-planar.

The new operation for clustered planarity is an expansion operation. An expansion
operation may be performed at any vertex x which is neither a sink or a source. The
expansion operation separates the in-arcs and the out-arcs at the vertex, forming two
new vertices. One of the new vertices is a sink, and other other is a source. The vertex x
is removed and replaced by the vertices x+ and x− and the arc (x+, x−). Every arc (x, y)
is replaced by the arc (x+, y), and every arc (z, x) is replaced by the arc (z, x−). (The
vertices x+ and x− are a source and sink respectively). This new operation preserves
clustered planarity.

This operation increases the value of M1 by two. The resulting minor is bigger than
the original digraph (in that it has one more edge and one more vertex). Accordingly,
we introduce a new (and more important) measure M0. Simply, let M0 be the number of
vertices which have both in-arcs and out-arcs.

Given a digraph D, a digraph formed by one of the operations discussed above (ex-
pansion, cut inversion, double smoothing, arc removal and vertex removal) is a minor in
the extended partial order if the measure M0 is reduced, or M0 remains constant and M1

is reduced, or if M0 and M1 remain constant and M2 is reduced.

Lemma 3 Obstructions to clustered planarity (under the extended partial order) are ss-
digraphs.

Proof. Suppose D is an obstruction to clustered planarity that is not an ss-digraph;
that is, M0 > 0. Then it has a vertex x which is neither a sink or a source, and expanding
that vertex forms a minor of D which is not clustered planar, a contradiction of the
minimality of the supposed obstruction D. Hence all obstructions have M0 = 0.

Theorem 4 The obstructions to clustered planarity under the extended partial order are
Σ1 and Σ2.

Proof. The proof follows immediately from Lemma 3 and the proof of Theorem 1.

The set of obstructions depends on the operations (and measures) used. Other partial
orders using different operations and measures result in different sets of obstructions. It
is possible to use only operations which do not increase the number of vertices or arcs
when forming a minor; however the arguments required are longer and more complicated,
with eleven operations, four measures and resulting in ten obstructions to clustered pla-
narity [6].
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