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Abstract

Let G be a properly edge colored graph. A rainbow matching of G is a matching
in which no two edges have the same color. Let δ denote the minimum degree of
G. We show that if |V (G)| ≥ 8δ

5 , then G has a rainbow matching of size at least

⌊3δ
5 ⌋. We also prove that if G is a properly colored triangle-free graph, then G has

a rainbow matching of size at least ⌊2δ
3 ⌋.
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1 Introduction and notation

We use [3] for terminology and notations not defined here and consider simple undirected
graphs only. Let G = (V, E) be a graph. A proper edge-coloring of G is a function
c : E → N (N is the set of nonnegative integers) such that any two adjacent edges have
distinct colors. If G is assigned such a coloring c, then we say that G is a properly edge-
colored graph, or simply a properly colored graph. Let c(e) denote the color of the edge
e ∈ E. For a subgraph H of G, let c(H) = {c(e) : e ∈ E(H)}. A subgraph H of G is
called rainbow if its edges have distinct colors. Recently rainbow subgraphs have received
much attention, see the survey paper [8]. Here we are interested in rainbow matchings.
The study of rainbow matchings began with the following conjectures.

Conjecture 1 (Ryser [5]) Every Latin square of odd order has a Latin transversal.

Conjecture 2 (Brualdi-Stein [9, 11]) Every latin square of order n has a partial Latin

transversal of size at least n − 1.

An equivalent statement is that every proper n-edge-coloring of the complete bipartite
graph Kn,n contains a rainbow matching of size n − 1; Moreover, if n is odd, there exists
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a rainbow perfect matching. Hatami and Shor [7] proved that there is always a partial
Latin transversal (rainbow matching) of size at least n − O(log2 n).

Another topic related to rainbow matchings is orthogonal matchings of graphs. Let
G be a graph on n vertices which is an edge disjoint union of m k-factors (i.e. k regular
spanning subgraphs). We ask if there is a matching M of m edges with exactly one
edge from each k-factor? Such a matching is called orthogonal because of applications
in design theory. A matching M is suborthogonal if there is at most one edge from each
k-factor. Alspach [1] posed the above problem in the case k = 2. Stong [10] proved that
if n ≥ 3m−2, then there is a such orthogonal matching. For k = 3, the answer is yes, see
[2]. In the same paper, Anstee and Caccetta proved the following theorem when k = 1.

Theorem 2 [2] Let G be an m-regular graph on n vertices. Then for any decomposition

of E(G) into m 1-factors F1, F2, . . . , Fm, there is a matching M of p edges, at most one

edge from each 1-factor, with

p > min
{n

2
−

3

2
(
n

2
)

2

3 , m −
3

2
m

2

3

}

.

In any decomposition of E(G) into m k-factors, we can construct an edge-colored
graph by giving each k-factor a color. Then a rainbow matching of G corresponds to
a suborthogonal matching of G. In particular, when k = 1, the edge-colored graph
obtained above is properly colored. So we can pose a more general problem: Let G be
a properly colored graph of minimum degree δ(G). Is there a rainbow matching of size
δ(G)? Unfortunately, the answer is negative: Let C2

4 denote a properly 2-edge-colored
cycle with four vertices and K3

4 be a properly 3-edge-colored complete graph with four
vertices. Let K3

4 − e denote the graph obtained from K3
4 by deleting an edge. Then there

is no rainbow matchings of size two in C2
4 , K

3
4 , or K3

4 − e. Moreover, if G is a properly

colored complete graph, then G has no rainbow matching of size more than ⌈ δ(G)
2
⌉. In

addition, the following theorem was shown in [6].

Theorem 3 [6] Let G be a properly colored graph, G 6= K4, and |V (G)| 6= δ(G)+2. Then

G contains a rainbow matching of size ⌈ δ(G)
2
⌉.

However, we believe that if the order of a properly colored graph G is much larger
than its minimum degree δ(G), there should be a rainbow matching of size δ(G). So we
propose the following problem.

Problem 4 Is there a function f(n) such that for each properly colored graph G with

|V (G)| ≥ f(δ(G)), G must contain a rainbow matching of size δ(G)?

Since when n is even, there exists an n×n Latin square that has no Latin transversal
(perfect rainbow matching) (see [4, 11]), if the function f(n) exists, f(n) should be greater
than 2n. Motivated by this problem, we prove the following results.
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Theorem 5 Let G be a properly colored graph and |V (G)| ≥ 8δ(G)
5

. Then G has a rainbow

matching of size at least ⌊3δ(G)
5

⌋.

Theorem 6 Let G be a properly colored triangle-free graph. Then G has a rainbow

matching of size at least ⌊2δ(G)
3

⌋.

2 Proof of Theorem 5

For simplicity, let δ = δ(G). If δ ≤ 3, it is easy to check that our theorem holds. If
4 ≤ δ ≤ 9, by Theorem 3, G contains a rainbow matching of size ⌈ δ

2
⌉. Since ⌈ δ

2
⌉ ≥ ⌊3δ

5
⌋,

when 4 ≤ δ ≤ 9, our conclusion holds too. So now we assume that δ ≥ 10. We will prove
it by contradiction. Suppose our conclusion is not true. We choose a maximum rainbow
matching M . Let t = |E(M)|. Then t ≤ ⌊3δ

5
⌋ − 1. Suppose that E(M) = {e1, e2, . . . , et}

and ei = xiyi. Moreover, without loss of generality, we assume that c(ei) = i, for 1 ≤ i ≤ t.
Put V1 = V − V (M). We call a color a new color if it is not in c(M) and call an edge uv
special if v ∈ V (M), u ∈ V1 and c(uv) is a new color. For v ∈ V (M), let ds(v) denote the
number of the special edges incident with v. Let V2 denote the vertices v ∈ V (M) with
ds(v) ≥ 4. We have the following claim.

Claim 1. For each edge xiyi ∈ E(M), if ds(xi) + ds(yi) ≥ 5, then either ds(xi) = 0 or

ds(yi) = 0.

Proof. Otherwise, it holds that ds(xi) + ds(yi) ≥ 5 and ds(xi), ds(yi) ≥ 1. Then one
of ds(xi), ds(yi) is at least 3. Suppose that ds(xi) ≥ 3. Since ds(yi) ≥ 1, we choose
a special edge yiu. As ds(xi) ≥ 3, we can also choose a special edge xiw such that
c(xiw) 6= c(yiu) and w 6= u. Now M ∪ {xiw, yiu}\xiyi is a rainbow matching of size t + 1,
a contradiction.

Claim 2. |V2| ≥ ⌈2δ
5
⌉.

Proof. Let x ∈ V1. If there is an edge xy such that c(xy) /∈ c(M), then y ∈ V (M).
Otherwise, there is a rainbow matching M ∪ xy of size t + 1, which is a contradiction.
Let Es denote the set formed by all special edges. Since each vertex in V1 has degree at
least δ, |Es| ≥ (δ − t)|V1| ≥ (⌈2δ

5
⌉ + 1)|V1|. By Claim 1, for each edge xiyi ∈ E(M), if

ds(xi) + ds(yi) ≥ 5, then ds(xi) = 0 or ds(yi) = 0, so ds(xi) + ds(yi) ≤ |V1|; If ds(xi) +
ds(yi) ≤ 4, recall that |V1| = |V (G)| − |V (M)| ≥ 8δ

5
− 2(⌊3δ

5
⌋ − 1) ≥ 2δ

5
+ 2 ≥ 5,

thus ds(xi) + ds(yi) ≤ |V1|. Hence |Es| ≤ |V2||V1| + 4(|E(M)| − |V2|). This implies
(⌈2δ

5
⌉ + 1)|V1| ≤ |V2||V1| + 4(|E(M)| − |V2|). Hence

|V2| ≥
(⌈2δ

5
⌉ + 1)|V1| − 4|E(M)|

|V1| − 4
≥

(⌈2δ
5
⌉ + 1)|V1| − 4(⌊3δ

5
⌋ − 1)

|V1| − 4

=
⌈2δ

5

⌉

+ 1 −
4⌊3δ

5
⌋ − 4⌈2δ

5
⌉ − 8

|V1| − 4
.
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Since |V1| ≥
2δ
5

+ 2, |V2| ≥ ⌈2δ
5
⌉.

By Claim 1, there cannot be an edge in M such that both end vertices of this edge
are in V2. Then, without loss of generality, we assume that V2 = {x1, x2, . . . , xp}, where
p = |V2| ≥ ⌈2k

5
⌉. Let G′ denote the subgraph induced by {y1, y2, . . . , yp}.

Claim 3. No color in c(E(G′)) is a new color.

Proof. Suppose, to the contrary, there exists an edge, say y1y2 such that c(y1y2) is a new
color. Then we can find two independent edges x1w1 and x2w2 such that w1, w2 ∈ V1,
c(x1w1), c(x2w2) /∈ c(M) ∪ {c(y1y2)} and c(x1w1) 6= c(x2w2). We can do this, since each
vertex in V2 is incident with four special edges. Now we obtain a rainbow matching
M ∪ {x1w1, x2w2, y1y2}\{x1y1, x2y2} of size t + 1, which is a contradiction.

Claim 4. c(E(G′)) ∩ {1, 2, . . . , p} = ∅.

Proof. Otherwise, there is an edge, say y1y2 such that c(y1y2) ∈ {1, . . . , p}. We assume
that c(y1y2) = j. We know that G is properly colored, so j 6= 1, 2. For convenience,
assume that j = 3. We will show the following fact.

Fact. There exists a rainbow matching formed by three special edges {x1u1, x2u2, x3u3}.

Proof of the Fact. We prove it by contradiction. We choose three special edges incident
with x1, x2, x3 to form a matching M1 such that |c(M1)| is as large as possible. Since
each xi is incident with four special edges and by our assumption, we can assume that
|c(M1)| = 2. Without loss of generality, assume that M1 = {x1u, x2v, x3w} and c(x1u) =
a1, c(x2v) = a2, c(x3w) = a1. As x3 is incident with four special edges, there are two
special edges x3v1, x3v2 such that v1, v2 ∈ V1 and c(x3v1), c(x3v2) /∈ c(M) ∪ {a1, a2}. We
claim that {v1, v2} = {u, v}, otherwise we will get a rainbow matching satisfying our
condition. Now we assume that c(x3u) = a3, c(x3v) = a4. Similarly, we assume that
c(x1v) = b1 and c(x1w) = b2, where b1, b2 /∈ c(M) ∪ {a1, a2}. Then b2 = a3, otherwise
{x1w, x3u, x2v} forms a rainbow matching, which is a contradiction. Moreover, b1 6= a4,
since G is properly colored.

Now consider the vertex x2. Since x2 is incident with four special edges, there is an
edge, say x2z such that c(x2z) /∈ c(M) ∪ {a2} and z /∈ {u, v, w}. Then c(x2z) = a3,
otherwise either {x2z, x1v, x3u} or {x2z, x1w, x3v} would be a rainbow matching, and we
are done. Hence {x2z, x1v, x3w} is a rainbow matching with colors {a3, a1, b1}, which is a
contradiction. This completes the proof of the fact.

By the above fact, M ∪ {x1u1, x2u2, x3u3, y1y2}\{e1, e2, e3} is a rainbow matching of
size t + 1. This contradiction completes the proof of Claim 4.

Claim 5. If there is an edge yju, where yj ∈ V (G′) and u ∈ V1, then c(yju) ∈ c(M) and

c(yju) ∩ {1, 2, . . . , p} = ∅.
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Proof. Otherwise, suppose that c(yju) is a new color. Then ds(yj) ≥ 1. Since ds(xj) ≥
4, ds(xj) + ds(yj) ≥ 5, which contradicts with Claim 1. So c(yju) ∈ c(M). Suppose
c(yju) = k, where 1 ≤ k ≤ p. Since G is properly colored, k 6= j. Since xj , xk ∈ V2,
we can find a special edge xjw1 such that w1 6= u. Next, there is a special edge xkw2

such that w2 /∈ {u, w1} and c(xkw2) 6= c(xjw1). Hence we have a rainbow matching
M ∪ {xjw1, xkw2, yju}\{xjyj, xkyk}, which is a contradiction. Thus Claim 5 holds.

Now consider a vertex yj, where 1 ≤ j ≤ p. By Claims 3,4, and 5, we know that if
yj has a neighbor u ∈ V1 ∪ {y1, . . . , yp}, then p < c(yju) ≤ t. Thus |V (M)| − |V (G′)| ≥

d(yj) − (t − p). It follows that 2t − p ≥ δ − (t − p). Hence t ≥ δ+2p

3
≥

2⌈ 2δ

5
⌉+δ

3
≥ ⌊3δ

5
⌋,

which is a contradiction. This completes the whole proof of Theorem 5.

3 Proof of Theorem 6

Let δ = δ(G). If δ ≤ 3, it is easy to check that our theorem holds. So now we assume that
δ ≥ 4. Suppose our conclusion is not true. Let M be a maximum rainbow matching of
size t. Then t ≤ ⌊2δ

3
⌋ − 1. Suppose that E(M) = {e1, e2, . . . , et} and ei = xiyi. Moreover,

without loss of generality, we assume that c(ei) = i. Put V1 = V − V (M). A color is
called a new color if it is not in c(M) and we call an edge uv special if v ∈ V (M), u ∈ V1

and c(uv) is a new color. For v ∈ V (M), let ds(v) denote the number of the special edges
incident with v. Let V2 = {v|v ∈ V (M), ds(v) ≥ 3}. We have the following claim.

Claim 1. For each edge xiyi ∈ E(M), if ds(xi) + ds(yi) ≥ 3, then either ds(xi) = 0 or

ds(yi) = 0.

Proof. Otherwise, suppose that ds(xi) + ds(yi) ≥ 3 and ds(xi), ds(yi) ≥ 1. Then either
ds(xi) ≥ 2 or ds(yi) ≥ 2. Assume that ds(xi) ≥ 2. As ds(yi) ≥ 1, we choose a special edge
yiu. By ds(xi) ≥ 2, there is a special edge xiw such that c(xiw) 6= c(yiu). Clearly, u 6= w,
because G is triangle-free. Now M ∪ {xiw, yiu}\xiyi is a rainbow matching of size t + 1,
a contradiction.

Claim 2. |V2| ≥ ⌈ δ
3
⌉.

Proof. Let x ∈ V1. If there is an edge xy such that c(xy) /∈ c(M), then y ∈ V (M).
Otherwise, there is a rainbow matching M ∪xy of size t+1, which is a contradiction. Let
Es denote the set of all the special edges. Since each vertex in V1 has degree at least δ,
|Es| ≥ (δ− t)|V1| ≥ (⌈ δ

3
⌉+1)|V1|. Note that |V1| = |V (G)| − |V (M)| ≥ 2δ− 2(⌊2δ

3
⌋− 1) ≥

2δ
3

+ 2 ≥ 3 (recall that if G is triangle-free, then |V (G)| ≥ 2δ). On the other hand, by
Claim 1, for each edge xiyi ∈ E(M), if ds(xi) + ds(yi) ≥ 3, then ds(xi) = 0 or ds(yi) = 0.
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So ds(xi)+ds(yi) ≤ |V1|. Thus by Claim 1, |Es| ≤ |V2||V1|+2(|E(M)|− |V2|). So we have
the following inequality: (⌈ δ

3
⌉ + 1)|V1| ≤ |V2||V1| + 2(|E(M)| − |V2|). Hence

|V2| ≥
(⌈ δ

3
⌉ + 1)|V1| − 2|E(M)|

|V1| − 2
≥

(⌈ δ
3
⌉ + 1)|V1| − 2(⌊2δ

3
⌋ − 1)

|V1| − 2

=
⌈δ

3

⌉

+ 1 −
2⌊2δ

3
⌋ − 2⌈ δ

3
⌉ − 4

|V1| − 2

≥
⌈δ

3

⌉

.

For each edge e of M , at most one end vertex of e is in V2. Thus, without loss of
generality, we assume that V2 = {x1, x2, . . . , xp}, where p = |V2| ≥ ⌈ δ

3
⌉. Let G′ denote the

subgraph induced by {y1, y2, . . . , yp}.

Claim 3. There is a vertex v ∈ V2 such that ds(v) ≥ 5.

Proof. Otherwise, we have that each vertex v ∈ V (M) has ds(v) ≤ 4. By Claim 1, it
holds that for each edge xiyi ∈ E(M), ds(xi) + ds(yi) ≤ 4. Then |Es| ≤ 4(⌊2δ

3
⌋ − 1). On

the other hand, |Es| ≥ |V1|(⌈
δ
3
⌉ + 1) ≥ (⌈2δ

3
⌉ + 2)(⌈ δ

3
⌉ + 1). It follows that 4(⌊2δ

3
⌋ − 1) ≥

(⌈2δ
3
⌉ + 2)(⌈ δ

3
⌉ + 1). Hence 2δ2 − 12δ + 54 ≤ 0, which is a contradiction.

Without loss of generality, we assume that ds(x1) ≥ 5. By Claim 1, ds(y1) = 0.

Claim 4. If y1 has a neighbor y ∈ V (G
′

) ∪ V1, then c(y1y) ∈ c(M) and c(y1y) /∈
{1, 2, . . . , p}.

Proof. We distinguish the following two cases:
Case 1. Assume that y1 has a neighbor, say y = y2 ∈ V (G

′

). We prove it by
contradiction. Firstly, suppose that c(y1y2) is a new color. Then we can find two in-
dependent special edges x1w1 and x2w2 such that c(x1w1), c(x2w2) /∈ c(M) ∪ {c(y1y2}
and c(x1w1) 6= c(x2w2). We can do this, because ds(x1) ≥ 5 and ds(x2) ≥ 3. Now we
obtain a rainbow matching M ∪ {x1w1, x2w2, y1y2}\{x1y1, x2y2} of size t + 1, which is a
contradiction.

Next, suppose that c(y1y2) ∩ {1, 2, . . . , p} 6= ∅. Since G is properly colored, c(y1y2) 6=
1, 2. Without loss of generality, we assume that c(y1y2) = 3. As ds(x3), ds(x2) ≥ 3 and
ds(x1) ≥ 5, we can easily find three special edges x1w1, x2w2, x3w3 to form a rainbow
matching. Hence M ∪ {x1w1, x2w2, x3w3, y1y2}\{e1, e2, e3} is a rainbow matching of size
t + 1.

Case 2. y1 has a neighbor y ∈ V1. We prove it by contradiction. Firstly, suppose
that c(y1y) is a new color. Then there is a special edges x1w1 such that c(x1w1) 6= c(y1y),
because ds(x1) ≥ 5. Now we obtain a rainbow matching M ∪ {x1w1, y1y}\{x1y1} of size
t + 1, which is a contradiction.
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Next, suppose that c(y1y)∩ {1, 2, . . . , p} 6= ∅. Since G is properly colored, c(y1y) 6= 1.
Without loss of generality, we assume that c(y1y) = 2. As ds(x2) ≥ 3 and ds(x1) ≥ 5, we
can easily find two independent special edges x1w1, x2w2 such that w2 6= y to form a rain-
bow matching. Hence we can obtain a rainbow matching M ∪ {x1w1, x2w2, y1y}\{e1, e2}
of size t + 1. This contradiction completes the proof of Claim 4.

Now consider the vertex y1. By Claims 3,4 and ds(y1) = 0, we know that if y1 has
a neighbor u ∈ V1 ∪ {y1, . . . , yp}, then c(y1u) ∈ c(M) and c(y1u) /∈ {1, 2, . . . , p}. Thus
|{x1, . . . , xp}| + |{ep+1, . . . , et}| ≥ d(y1) − (t − p). It follows that t ≥ δ − (t − p). Hence

t ≥ δ+p

2
≥

⌈ δ

3
⌉+δ

2
≥ ⌊2δ

3
⌋, which is a contradiction. This completes the whole proof.
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