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Abstract

Let G be a properly edge colored graph. A rainbow matching of G is a matching
in which no two edges have the same color. Let & denote the minimum degree of
G. We show that if |V(G)| > 85—6, then G has a rainbow matching of size at least
L?}’—‘SJ We also prove that if GG is a properly colored triangle-free graph, then G has
a rainbow matching of size at least L%J
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1 Introduction and notation

We use [3] for terminology and notations not defined here and consider simple undirected
graphs only. Let G = (V,E) be a graph. A proper edge-coloring of G is a function
¢: E — N (N is the set of nonnegative integers) such that any two adjacent edges have
distinct colors. If GG is assigned such a coloring ¢, then we say that G is a properly edge-
colored graph, or simply a properly colored graph. Let c¢(e) denote the color of the edge
e € E. For a subgraph H of G, let ¢(H) = {c(e) : e € E(H)}. A subgraph H of G is
called rainbow if its edges have distinct colors. Recently rainbow subgraphs have received
much attention, see the survey paper [8]. Here we are interested in rainbow matchings.
The study of rainbow matchings began with the following conjectures.

Conjecture 1 (Ryser [5]) Fvery Latin square of odd order has a Latin transversal.

Conjecture 2 (Brualdi-Stein [9, 11]) Every latin square of order n has a partial Latin
transversal of size at least n — 1.

An equivalent statement is that every proper n-edge-coloring of the complete bipartite
graph K, ,, contains a rainbow matching of size n — 1; Moreover, if n is odd, there exists

THE ELECTRONIC JOURNAL OF COMBINATORICS 18 (2011), #P162 1



a rainbow perfect matching. Hatami and Shor [7] proved that there is always a partial
Latin transversal (rainbow matching) of size at least n — O(log® n).

Another topic related to rainbow matchings is orthogonal matchings of graphs. Let
G be a graph on n vertices which is an edge disjoint union of m k-factors (i.e. k regular
spanning subgraphs). We ask if there is a matching M of m edges with exactly one
edge from each k-factor? Such a matching is called orthogonal because of applications
in design theory. A matching M is suborthogonal if there is at most one edge from each
k-factor. Alspach [1] posed the above problem in the case k = 2. Stong [10] proved that
if n > 3m — 2, then there is a such orthogonal matching. For k = 3, the answer is yes, see
[2]. In the same paper, Anstee and Caccetta proved the following theorem when k = 1.

Theorem 2 (2| Let G be an m-regular graph on n vertices. Then for any decomposition
of E(G) into m 1-factors Fy, Fs, ..., F,,, there is a matching M of p edges, at most one
edge from each 1-factor, with

o3
ISV

p>min{

In any decomposition of E(G) into m k-factors, we can construct an edge-colored
graph by giving each k-factor a color. Then a rainbow matching of G corresponds to
a suborthogonal matching of G. In particular, when & = 1, the edge-colored graph
obtained above is properly colored. So we can pose a more general problem: Let G be
a properly colored graph of minimum degree §(G). Is there a rainbow matching of size
§(G)? Unfortunately, the answer is negative: Let C? denote a properly 2-edge-colored
cycle with four vertices and K3 be a properly 3-edge-colored complete graph with four
vertices. Let K3 — e denote the graph obtained from K} by deleting an edge. Then there
is no rainbow matchings of size two in C%, K3, or K; — e. Moreover, if G is a properly
colored complete graph, then G has no rainbow matching of size more than [LQG)W In
addition, the following theorem was shown in [6].

Theorem 3 [6] Let G be a properly colored graph, G # Ky, and |V (G)| # 6(G)+2. Then

G contains a rainbow matching of size [%G)}

However, we believe that if the order of a properly colored graph G is much larger
than its minimum degree 6(G), there should be a rainbow matching of size §(G). So we
propose the following problem.

Problem 4 Is there a function f(n) such that for each properly colored graph G with
IV(G)| > f(6(G)), G must contain a rainbow matching of size §(G)?

Since when n is even, there exists an n x n Latin square that has no Latin transversal
(perfect rainbow matching) (see [4, 11]), if the function f(n) exists, f(n) should be greater
than 2n. Motivated by this problem, we prove the following results.
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Theorem 5 Let G be a properly colored graph and |V (G)| > . Then G has a rainbow

matching of size at least LKE)G)J

Theorem 6 Let G be a properly colored triangle-free graph. Then G has a rainbow

matching of size at least L@J

2 Proof of Theorem 5

For simplicity, let § = 6(G). If 6 < 3, it is easy to check that our theorem holds. If
4 <6 <9, by Theorem 3, G contains a rainbow matching of size [$]. Since [$] > [£],
when 4 < § <9, our conclusion holds too. So now we assume that § > 10. We will prove
it by contradiction. Suppose our conclusion is not true. We choose a maximum rainbow
matching M. Let t = |E(M)|. Then ¢t < |32| — 1. Suppose that E(M) = {e, es,..., e}
and e; = x;y;. Moreover, without loss of generality, we assume that c(e;) =i, for 1 < < ¢.
Put Vi =V —V(M). We call a color a new color if it is not in ¢(M) and call an edge uv
special if v € V(M), u € Vi and ¢(uv) is a new color. For v € V(M), let ds(v) denote the
number of the special edges incident with v. Let V5 denote the vertices v € V(M) with
ds(v) > 4. We have the following claim.

Claim 1. For each edge x;y; € E(M), if ds(z;) + ds(y;) > 5, then either ds(z;) = 0 or

Proof. Otherwise, it holds that dg(z;) + ds(y;) > 5 and ds(x;),ds(y;) > 1. Then one
of ds(x;), ds(y;) is at least 3. Suppose that dg(z;) > 3. Since dy(y;) > 1, we choose
a special edge y;u. As ds(x;) > 3, we can also choose a special edge x;w such that
c(x;w) # c(yu) and w # u. Now M U {z,w, y;u}\z;y; is a rainbow matching of size ¢ + 1,
a contradiction. O

>
>

Claim 2. |[V5| > [2].

Proof. Let x € Vi. If there is an edge xy such that c(zy) ¢ c¢(M), then y € V(M).
Otherwise, there is a rainbow matching M U zy of size t + 1, which is a contradiction.
Let E, denote the set formed by all special edges. Since each vertex in V; has degree at
least 8, |E,| > (6 — ¢)[Vi| > ([2] + 1)|V4|. By Claim 1, for each edge z;y; € E(M), if
ds(z;) + ds(yi) > 5, then ds(x;) = 0 or dys(y;) = 0, so dg(x;) + ds(y;) < |Val; If ds(z;) +
dy(yi) < 4, recall that [Vi| = [V(G)] = [V(M)] > 2 —2(|£| —1) > £ +2 > 5,
thus dg(z;) + ds(y;) < |Vi|. Hence |Es| < |Va||V4| + 4(JE(M)| — |Va]). This implies
(2] + )[Va| < |V||VA] + (I E(M)| — |Va). Hence

((B1+ DM —4EO)]  (F1+ DVl -4(F] -1
Vi| —4 - Vi| —4
26 4% —4[2] -8
- {ﬂ b= Vi| — 4

|Va| >
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Since [Vi| > 2 +2, [V5] > [2]. O

By Claim 1, there cannot be an edge in M such that both end vertices of this edge
are in V5. Then, without loss of generality, we assume that Vo = {z1, 29, ..., 2,}, where
p=|Vs| > [%1 Let G’ denote the subgraph induced by {y1, v, ..., ¥y}

Claim 3. No color in ¢(E(G")) is a new color.

Proof. Suppose, to the contrary, there exists an edge, say y;y, such that c(y192) is a new
color. Then we can find two independent edges x;w; and xswy such that wq,wy € Vi,
c(xiwn), c(rows) & (M) U {c(y1y2)} and c(xjwy) # c(xowy). We can do this, since each
vertex in V5 is incident with four special edges. Now we obtain a rainbow matching
M U {xqwy, zows, y1y2 }\{x191, X2y2} of size t + 1, which is a contradiction. O

Claim 4. ¢(E(G"))Nn{1,2,...,p} = 0.

Proof. Otherwise, there is an edge, say y;y» such that c(y1y2) € {1,...,p}. We assume
that c(yi1y2) = j. We know that G is properly colored, so j # 1,2. For convenience,
assume that j = 3. We will show the following fact.

Fact. There ezists a rainbow matching formed by three special edges {xyuy, Toug, x3us}.

Proof of the Fact. We prove it by contradiction. We choose three special edges incident
with x1, 9, r3 to form a matching M; such that |c(M;)| is as large as possible. Since
each z; is incident with four special edges and by our assumption, we can assume that
le(M7)| = 2. Without loss of generality, assume that M; = {xju, zov, z3w} and c(z1u) =
ai, c(x9v) = ag, c(xzw) = aj. As z3 is incident with four special edges, there are two
special edges x3v1, x3v2 such that vy, vy € Vi and c(z3v1), c(x3v9) ¢ (M) U {as,as}. We
claim that {v,ve} = {u,v}, otherwise we will get a rainbow matching satisfying our
condition. Now we assume that c(zsu) = as,c(r3v) = ay. Similarly, we assume that
c(xv) = by and c(zyw) = by, where by, by ¢ ¢(M) U {ay,az}. Then by = a3, otherwise
{zyw, z3u, zov} forms a rainbow matching, which is a contradiction. Moreover, by # ay,
since G is properly colored.

Now consider the vertex z5. Since x5 is incident with four special edges, there is an
edge, say w2z such that c(z22) ¢ ¢(M) U {az} and z ¢ {u,v,w}. Then c(z92) = as,
otherwise either {2z, x1v, z3u} or {x9z, x1w, x3v} would be a rainbow matching, and we
are done. Hence {x9z, 210, z3w} is a rainbow matching with colors {as, a1, b1}, which is a
contradiction. This completes the proof of the fact.

By the above fact, M U {zyuy, xous, r3us, y1y2}\{e1, €2, €3} is a rainbow matching of
size t + 1. This contradiction completes the proof of Claim 4. O

Claim 5. If there is an edge y;u, where y; € V(G') and w € V;, then c(y;u) € ¢(M) and
C(yju) N {17 27 cee >p} = @
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Proof. Otherwise, suppose that c¢(y;u) is a new color. Then d,(y;) > 1. Since ds(x;) >
4, ds(x;) + ds(y;) > 5, which contradicts with Claim 1. So c¢(y;u) € ¢(M). Suppose
c(yju) = k, where 1 < k < p. Since G is properly colored, k # j. Since z;,z; € Vo,
we can find a special edge z;w; such that w; # u. Next, there is a special edge zjw,
such that wy ¢ {u,w;} and c(xywz) # c(rjw;). Hence we have a rainbow matching
M U {zjwy, zrwe, y;u}\{z;y;, x1yr}, which is a contradiction. Thus Claim 5 holds. O

Now consider a vertex y;, where 1 < 57 < p. By Claims 3,4, and 5, we know that if
y; has a neighbor v € Vi U {yi,...,yp}, then p < ¢(y;u) < t. Thus |V(M)| — |V(G")| >

5+2 2[21+6 (
d(y;) — (t — p). It follows that 2¢t —p > § — (¢t — p). Hence t > 22 > 2520 > |3
which is a contradiction. This completes the whole proof of Theorem 5.

3 Proof of Theorem 6

Let 6 = §(G). If 6 < 3, it is easy to check that our theorem holds. So now we assume that
0 > 4. Suppose our conclusion is not true. Let M be a maximum rainbow matching of
size t. Then t < 2] — 1. Suppose that E(M) = {e1, e, ..., e} and e; = x;y;. Moreover,
without loss of generality, we assume that c(e;) = i. Put Vi =V — V(M). A color is
called a new color if it is not in ¢(M) and we call an edge uv special if v € V(M), u € V}
and c(uv) is a new color. For v € V(M), let ds(v) denote the number of the special edges
incident with v. Let Vo = {v|v € V(M), ds(v) > 3}. We have the following claim.

Claim 1. For each edge x;y; € E(M), if ds(z;) + ds(y;) > 3, then either ds(z;) = 0 or

Proof. Otherwise, suppose that dg(z;) + ds(y;) > 3 and ds(x;),ds(y;) > 1. Then either
ds(x;) > 2 or dg(y;) > 2. Assume that dg(x;) > 2. As d,(y;) > 1, we choose a special edge
yiu. By ds(x;) > 2, there is a special edge z;w such that c(z;w) # c(y;u). Clearly, u # w,
because G is triangle-free. Now M U {z;w, y;u}\x;y; is a rainbow matching of size ¢t + 1,
a contradiction. O

Claim 2. [V3| > [2].

Proof. Let x € Vi. If there is an edge xy such that c(zy) ¢ c¢(M), then y € V(M).
Otherwise, there is a rainbow matching M Uxy of size t + 1, which is a contradiction. Let
E, denote the set of all the special edges. Since each vertex in V; has degree at least 9,
|Es| > (6= 8)[Vi] = ([§]+D[Vi]. Note that [Vi| = [V(G)| = [V(M)| = 20 -2(|%] - 1) >
2 +2 > 3 (recall that if G is triangle-free, then [V(G)| > 26). On the other hand, by
Claim 1, for each edge x;y; € E(M), if ds(x;) + ds(y;) > 3, then ds(x;) = 0 or ds(y;) = 0.
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So ds(x;) +ds(y;) < |Vi|. Thus by Claim 1, |E,| < |Va||V4| +2(|E(M)| —|V5]). So we have
the following inequality: ([2]+ 1)|Vi| < [Va|[Vi| 4+ 2(|E(M)| — |Va|). Hence

(Ig1 + D)val —2[E(M)| _ ([5]+ Vil —2(1F) - 1)

V| >
Vel = Vil -2 - Vil —2
ZMH_%?J—?(%W—ZI
3 Vi —2
5
> | 2
_[3] O

For each edge e of M, at most one end vertex of e is in V5. Thus, without loss of
generality, we assume that Vo = {z1, 22, ..., 2,}, where p = V5| > [2]. Let G’ denote the
subgraph induced by {y1,vy2,. .., yp}-

Claim 3. There is a vertex v € Vy such that dy(v) > 5.

Proof. Otherwise, we have that each vertex v € V(M) has ds(v) < 4. By Claim 1, it
holds that for each edge z;y; € E(M), dy(x;) + ds(y;) < 4. Then |E,| < 4(|%2] —1). On
the other hand, |E,| > [Vi|([2]+1) > ([2] +2)([$] + 1). It follows that 4(|2| — 1) >
([27 4 2)([2] +1). Hence 26> — 126 + 54 < 0, which is a contradiction. O

Without loss of generality, we assume that dg(x;) > 5. By Claim 1, ds(y;) = 0.

Claim 4. If y; has a neighbor y € V(G') U Vi, then c(yy) € (M) and c(yiy) ¢
{1,2,---,]9}-

Proof. We distinguish the following two cases:

Case 1. Assume that y; has a neighbor, say y = v, € V(G'). We prove it by
contradiction. Firstly, suppose that ¢(y1y2) is a new color. Then we can find two in-
dependent special edges xijw; and xowy such that c(xijwn), c(zows) & (M) U {c(y1ya}
and c(xjwy) # c(xaws). We can do this, because dgs(x1) > 5 and ds(z3) > 3. Now we
obtain a rainbow matching M U {xjwy, xows, 1142 }\{x191, T2y2} of size t + 1, which is a
contradiction.

Next, suppose that ¢(y192) N {1,2,...,p} # (). Since G is properly colored, ¢(y1y2) #
1,2. Without loss of generality, we assume that c¢(yi;y2) = 3. As ds(z3),ds(x2) > 3 and
ds(x1) > 5, we can easily find three special edges xjwq, Taws, z3ws to form a rainbow
matching. Hence M U {zywy, zows, x3ws, 192} \{€1, €2, €3} is a rainbow matching of size
t+ 1.

Case 2. y; has a neighbor y € V;. We prove it by contradiction. Firstly, suppose
that c(y,y) is a new color. Then there is a special edges x;w; such that c(zijwy) # (1),
because ds(z1) > 5. Now we obtain a rainbow matching M U {zywy, y1y}\{z1y1} of size
t + 1, which is a contradiction.
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Next, suppose that ¢(y1y) N {1,2,...,p} # 0. Since G is properly colored, ¢(yy) # 1.
Without loss of generality, we assume that c(y1y) = 2. As dg(x2) > 3 and ds(z1) > 5, we
can easily find two independent special edges x1wq, xaws such that wy # y to form a rain-
bow matching. Hence we can obtain a rainbow matching M U {z wy, zows, y1y }\{e€1, €2}
of size t + 1. This contradiction completes the proof of Claim 4. O

Now consider the vertex y;. By Claims 3,4 and ds(y;) = 0, we know that if y; has
a neighbor v € Vi U{y1,...,yp}, then c(yiu) € ¢(M) and c(y1u) ¢ {1,2,...,p}. Thus

H{z1, .. 2p b + {eptts - -y eet] > d(yr) — (t — p). It follows that ¢t > 6 — (¢ — p). Hence

d+p (_é1+5
tz=5" =27

== > L2—§J, which is a contradiction. This completes the whole proof.
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