Rainbow matchings in properly edge colored graphs

Guanghui Wang

School of Mathematics Shandong University Jinan, Shandong, 250100, P.R. China

ghwang@sdu.edu.cn

Submitted: Mar 14, 2011; Accepted: Jul 20, 2011; Published: Aug 5, 2011 Mathematics Subject Classifications: 05C15, 05C70

Abstract

Let G be a properly edge colored graph. A rainbow matching of G is a matching in which no two edges have the same color. Let δ denote the minimum degree of G. We show that if $|V(G)| \geq \frac{8\delta}{5}$, then G has a rainbow matching of size at least $\lfloor \frac{3\delta}{5} \rfloor$. We also prove that if G is a properly colored triangle-free graph, then G has a rainbow matching of size at least $\lfloor \frac{2\delta}{3} \rfloor$.

Keywords: rainbow matchings, properly colored graphs, triangle-free graphs

1 Introduction and notation

We use [3] for terminology and notations not defined here and consider simple undirected graphs only. Let G = (V, E) be a graph. A proper edge-coloring of G is a function $c: E \to \mathbb{N}$ (\mathbb{N} is the set of nonnegative integers) such that any two adjacent edges have distinct colors. If G is assigned such a coloring c, then we say that G is a properly edgecolored graph, or simply a properly colored graph. Let c(e) denote the color of the edge $e \in E$. For a subgraph H of G, let $c(H) = \{c(e) : e \in E(H)\}$. A subgraph H of G is called rainbow if its edges have distinct colors. Recently rainbow subgraphs have received much attention, see the survey paper [8]. Here we are interested in rainbow matchings. The study of rainbow matchings began with the following conjectures.

Conjecture 1 (Ryser [5]) Every Latin square of odd order has a Latin transversal.

Conjecture 2 (Brualdi-Stein [9, 11]) Every latin square of order n has a partial Latin transversal of size at least n - 1.

An equivalent statement is that every proper *n*-edge-coloring of the complete bipartite graph $K_{n,n}$ contains a rainbow matching of size n-1; Moreover, if *n* is odd, there exists

a rainbow perfect matching. Hatami and Shor [7] proved that there is always a partial Latin transversal (rainbow matching) of size at least $n - O(\log^2 n)$.

Another topic related to rainbow matchings is orthogonal matchings of graphs. Let G be a graph on n vertices which is an edge disjoint union of m k-factors (i.e. k regular spanning subgraphs). We ask if there is a matching M of m edges with exactly one edge from each k-factor? Such a matching is called orthogonal because of applications in design theory. A matching M is suborthogonal if there is at most one edge from each k-factor. Alspach [1] posed the above problem in the case k = 2. Stong [10] proved that if $n \geq 3m-2$, then there is a such orthogonal matching. For k = 3, the answer is yes, see [2]. In the same paper, Anstee and Caccetta proved the following theorem when k = 1.

Theorem 2 [2] Let G be an m-regular graph on n vertices. Then for any decomposition of E(G) into m 1-factors F_1, F_2, \ldots, F_m , there is a matching M of p edges, at most one edge from each 1-factor, with

$$p>\min\Big\{\frac{n}{2}-\frac{3}{2}(\frac{n}{2})^{\frac{2}{3}},m-\frac{3}{2}m^{\frac{2}{3}}\Big\}.$$

In any decomposition of E(G) into m k-factors, we can construct an edge-colored graph by giving each k-factor a color. Then a rainbow matching of G corresponds to a suborthogonal matching of G. In particular, when k = 1, the edge-colored graph obtained above is properly colored. So we can pose a more general problem: Let G be a properly colored graph of minimum degree $\delta(G)$. Is there a rainbow matching of size $\delta(G)$? Unfortunately, the answer is negative: Let C_4^2 denote a properly 2-edge-colored cycle with four vertices and K_4^3 be a properly 3-edge-colored complete graph with four vertices. Let $K_4^3 - e$ denote the graph obtained from K_4^3 by deleting an edge. Then there is no rainbow matchings of size two in C_4^2, K_4^3 , or $K_4^3 - e$. Moreover, if G is a properly colored complete graph, then G has no rainbow matching of size more than $\lceil \frac{\delta(G)}{2} \rceil$. In addition, the following theorem was shown in [6].

Theorem 3 [6] Let G be a properly colored graph, $G \neq K_4$, and $|V(G)| \neq \delta(G) + 2$. Then G contains a rainbow matching of size $\lceil \frac{\delta(G)}{2} \rceil$.

However, we believe that if the order of a properly colored graph G is much larger than its minimum degree $\delta(G)$, there should be a rainbow matching of size $\delta(G)$. So we propose the following problem.

Problem 4 Is there a function f(n) such that for each properly colored graph G with $|V(G)| \ge f(\delta(G))$, G must contain a rainbow matching of size $\delta(G)$?

Since when n is even, there exists an $n \times n$ Latin square that has no Latin transversal (perfect rainbow matching) (see [4, 11]), if the function f(n) exists, f(n) should be greater than 2n. Motivated by this problem, we prove the following results.

Theorem 5 Let G be a properly colored graph and $|V(G)| \ge \frac{8\delta(G)}{5}$. Then G has a rainbow matching of size at least $\lfloor \frac{3\delta(G)}{5} \rfloor$.

Theorem 6 Let G be a properly colored triangle-free graph. Then G has a rainbow matching of size at least $\lfloor \frac{2\delta(G)}{3} \rfloor$.

2 Proof of Theorem 5

For simplicity, let $\delta = \delta(G)$. If $\delta \leq 3$, it is easy to check that our theorem holds. If $4 \leq \delta \leq 9$, by Theorem 3, G contains a rainbow matching of size $\lceil \frac{\delta}{2} \rceil$. Since $\lceil \frac{\delta}{2} \rceil \geq \lfloor \frac{3\delta}{5} \rfloor$, when $4 \leq \delta \leq 9$, our conclusion holds too. So now we assume that $\delta \geq 10$. We will prove it by contradiction. Suppose our conclusion is not true. We choose a maximum rainbow matching M. Let t = |E(M)|. Then $t \leq \lfloor \frac{3\delta}{5} \rfloor - 1$. Suppose that $E(M) = \{e_1, e_2, \ldots, e_t\}$ and $e_i = x_i y_i$. Moreover, without loss of generality, we assume that $c(e_i) = i$, for $1 \leq i \leq t$. Put $V_1 = V - V(M)$. We call a color a *new* color if it is not in c(M) and call an edge *uv* special if $v \in V(M)$, $u \in V_1$ and c(uv) is a new color. For $v \in V(M)$, let $d_s(v)$ denote the number of the special edges incident with v. Let V_2 denote the vertices $v \in V(M)$ with $d_s(v) \geq 4$. We have the following claim.

Claim 1. For each edge $x_i y_i \in E(M)$, if $d_s(x_i) + d_s(y_i) \ge 5$, then either $d_s(x_i) = 0$ or $d_s(y_i) = 0$.

Proof. Otherwise, it holds that $d_s(x_i) + d_s(y_i) \ge 5$ and $d_s(x_i), d_s(y_i) \ge 1$. Then one of $d_s(x_i), d_s(y_i)$ is at least 3. Suppose that $d_s(x_i) \ge 3$. Since $d_s(y_i) \ge 1$, we choose a special edge $y_i u$. As $d_s(x_i) \ge 3$, we can also choose a special edge $x_i w$ such that $c(x_i w) \ne c(y_i u)$ and $w \ne u$. Now $M \cup \{x_i w, y_i u\} \setminus x_i y_i$ is a rainbow matching of size t + 1, a contradiction.

Claim 2. $|V_2| \ge \lceil \frac{2\delta}{5} \rceil$.

Proof. Let $x \in V_1$. If there is an edge xy such that $c(xy) \notin c(M)$, then $y \in V(M)$. Otherwise, there is a rainbow matching $M \cup xy$ of size t + 1, which is a contradiction. Let E_s denote the set formed by all special edges. Since each vertex in V_1 has degree at least δ , $|E_s| \ge (\delta - t)|V_1| \ge (\lceil \frac{2\delta}{5} \rceil + 1)|V_1|$. By Claim 1, for each edge $x_iy_i \in E(M)$, if $d_s(x_i) + d_s(y_i) \ge 5$, then $d_s(x_i) = 0$ or $d_s(y_i) = 0$, so $d_s(x_i) + d_s(y_i) \le |V_1|$; If $d_s(x_i) + d_s(y_i) \le 4$, recall that $|V_1| = |V(G)| - |V(M)| \ge \frac{8\delta}{5} - 2(\lfloor \frac{3\delta}{5} \rfloor - 1) \ge \frac{2\delta}{5} + 2 \ge 5$, thus $d_s(x_i) + d_s(y_i) \le |V_1|$. Hence $|E_s| \le |V_2||V_1| + 4(|E(M)| - |V_2|)$. This implies $(\lceil \frac{2\delta}{5} \rceil + 1)|V_1| \le |V_2||V_1| + 4(|E(M)| - |V_2|)$. Hence

$$|V_2| \ge \frac{(\lceil \frac{2\delta}{5} \rceil + 1)|V_1| - 4|E(M)|}{|V_1| - 4} \ge \frac{(\lceil \frac{2\delta}{5} \rceil + 1)|V_1| - 4(\lfloor \frac{3\delta}{5} \rfloor - 1)}{|V_1| - 4}$$
$$= \left\lceil \frac{2\delta}{5} \right\rceil + 1 - \frac{4\lfloor \frac{3\delta}{5} \rfloor - 4\lceil \frac{2\delta}{5} \rceil - 8}{|V_1| - 4}$$

Since $|V_1| \ge \frac{2\delta}{5} + 2$, $|V_2| \ge \lceil \frac{2\delta}{5} \rceil$.

By Claim 1, there cannot be an edge in M such that both end vertices of this edge are in V_2 . Then, without loss of generality, we assume that $V_2 = \{x_1, x_2, \ldots, x_p\}$, where $p = |V_2| \ge \lceil \frac{2k}{5} \rceil$. Let G' denote the subgraph induced by $\{y_1, y_2, \ldots, y_p\}$.

Claim 3. No color in c(E(G')) is a new color.

Proof. Suppose, to the contrary, there exists an edge, say y_1y_2 such that $c(y_1y_2)$ is a new color. Then we can find two independent edges x_1w_1 and x_2w_2 such that $w_1, w_2 \in V_1$, $c(x_1w_1), c(x_2w_2) \notin c(M) \cup \{c(y_1y_2)\}$ and $c(x_1w_1) \neq c(x_2w_2)$. We can do this, since each vertex in V_2 is incident with four special edges. Now we obtain a rainbow matching $M \cup \{x_1w_1, x_2w_2, y_1y_2\} \setminus \{x_1y_1, x_2y_2\}$ of size t + 1, which is a contradiction.

Claim 4. $c(E(G')) \cap \{1, 2, ..., p\} = \emptyset$.

Proof. Otherwise, there is an edge, say y_1y_2 such that $c(y_1y_2) \in \{1, \ldots, p\}$. We assume that $c(y_1y_2) = j$. We know that G is properly colored, so $j \neq 1, 2$. For convenience, assume that j = 3. We will show the following fact.

Fact. There exists a rainbow matching formed by three special edges $\{x_1u_1, x_2u_2, x_3u_3\}$.

Proof of the Fact. We prove it by contradiction. We choose three special edges incident with x_1, x_2, x_3 to form a matching M_1 such that $|c(M_1)|$ is as large as possible. Since each x_i is incident with four special edges and by our assumption, we can assume that $|c(M_1)| = 2$. Without loss of generality, assume that $M_1 = \{x_1u, x_2v, x_3w\}$ and $c(x_1u) =$ $a_1, c(x_2v) = a_2, c(x_3w) = a_1$. As x_3 is incident with four special edges, there are two special edges x_3v_1, x_3v_2 such that $v_1, v_2 \in V_1$ and $c(x_3v_1), c(x_3v_2) \notin c(M) \cup \{a_1, a_2\}$. We claim that $\{v_1, v_2\} = \{u, v\}$, otherwise we will get a rainbow matching satisfying our condition. Now we assume that $c(x_3u) = a_3, c(x_3v) = a_4$. Similarly, we assume that $c(x_1v) = b_1$ and $c(x_1w) = b_2$, where $b_1, b_2 \notin c(M) \cup \{a_1, a_2\}$. Then $b_2 = a_3$, otherwise $\{x_1w, x_3u, x_2v\}$ forms a rainbow matching, which is a contradiction. Moreover, $b_1 \neq a_4$, since G is properly colored.

Now consider the vertex x_2 . Since x_2 is incident with four special edges, there is an edge, say x_2z such that $c(x_2z) \notin c(M) \cup \{a_2\}$ and $z \notin \{u, v, w\}$. Then $c(x_2z) = a_3$, otherwise either $\{x_2z, x_1v, x_3u\}$ or $\{x_2z, x_1w, x_3v\}$ would be a rainbow matching, and we are done. Hence $\{x_2z, x_1v, x_3w\}$ is a rainbow matching with colors $\{a_3, a_1, b_1\}$, which is a contradiction. This completes the proof of the fact.

By the above fact, $M \cup \{x_1u_1, x_2u_2, x_3u_3, y_1y_2\} \setminus \{e_1, e_2, e_3\}$ is a rainbow matching of size t + 1. This contradiction completes the proof of Claim 4.

Claim 5. If there is an edge $y_j u$, where $y_j \in V(G')$ and $u \in V_1$, then $c(y_j u) \in c(M)$ and $c(y_j u) \cap \{1, 2, \ldots, p\} = \emptyset$.

Proof. Otherwise, suppose that $c(y_j u)$ is a new color. Then $d_s(y_j) \ge 1$. Since $d_s(x_j) \ge 4$, $d_s(x_j) + d_s(y_j) \ge 5$, which contradicts with Claim 1. So $c(y_j u) \in c(M)$. Suppose $c(y_j u) = k$, where $1 \le k \le p$. Since G is properly colored, $k \ne j$. Since $x_j, x_k \in V_2$, we can find a special edge $x_j w_1$ such that $w_1 \ne u$. Next, there is a special edge $x_k w_2$ such that $w_2 \notin \{u, w_1\}$ and $c(x_k w_2) \ne c(x_j w_1)$. Hence we have a rainbow matching $M \cup \{x_j w_1, x_k w_2, y_j u\} \setminus \{x_j y_j, x_k y_k\}$, which is a contradiction. Thus Claim 5 holds. \Box

Now consider a vertex y_j , where $1 \leq j \leq p$. By Claims 3,4, and 5, we know that if y_j has a neighbor $u \in V_1 \cup \{y_1, \ldots, y_p\}$, then $p < c(y_j u) \leq t$. Thus $|V(M)| - |V(G')| \geq d(y_j) - (t-p)$. It follows that $2t - p \geq \delta - (t-p)$. Hence $t \geq \frac{\delta + 2p}{3} \geq \frac{2\lceil \frac{2\delta}{5} \rceil + \delta}{3} \geq \lfloor \frac{3\delta}{5} \rfloor$, which is a contradiction. This completes the whole proof of Theorem 5.

3 Proof of Theorem 6

Let $\delta = \delta(G)$. If $\delta \leq 3$, it is easy to check that our theorem holds. So now we assume that $\delta \geq 4$. Suppose our conclusion is not true. Let M be a maximum rainbow matching of size t. Then $t \leq \lfloor \frac{2\delta}{3} \rfloor - 1$. Suppose that $E(M) = \{e_1, e_2, \ldots, e_t\}$ and $e_i = x_i y_i$. Moreover, without loss of generality, we assume that $c(e_i) = i$. Put $V_1 = V - V(M)$. A color is called a *new* color if it is not in c(M) and we call an edge *uv* special if $v \in V(M)$, $u \in V_1$ and c(uv) is a new color. For $v \in V(M)$, let $d_s(v)$ denote the number of the special edges incident with v. Let $V_2 = \{v | v \in V(M), d_s(v) \geq 3\}$. We have the following claim.

Claim 1. For each edge $x_iy_i \in E(M)$, if $d_s(x_i) + d_s(y_i) \ge 3$, then either $d_s(x_i) = 0$ or $d_s(y_i) = 0$.

Proof. Otherwise, suppose that $d_s(x_i) + d_s(y_i) \ge 3$ and $d_s(x_i), d_s(y_i) \ge 1$. Then either $d_s(x_i) \ge 2$ or $d_s(y_i) \ge 2$. Assume that $d_s(x_i) \ge 2$. As $d_s(y_i) \ge 1$, we choose a special edge $y_i u$. By $d_s(x_i) \ge 2$, there is a special edge $x_i w$ such that $c(x_i w) \ne c(y_i u)$. Clearly, $u \ne w$, because G is triangle-free. Now $M \cup \{x_i w, y_i u\} \setminus x_i y_i$ is a rainbow matching of size t + 1, a contradiction.

Claim 2. $|V_2| \ge \lceil \frac{\delta}{3} \rceil$.

Proof. Let $x \in V_1$. If there is an edge xy such that $c(xy) \notin c(M)$, then $y \in V(M)$. Otherwise, there is a rainbow matching $M \cup xy$ of size t+1, which is a contradiction. Let E_s denote the set of all the special edges. Since each vertex in V_1 has degree at least δ , $|E_s| \ge (\delta - t)|V_1| \ge (\lceil \frac{\delta}{3} \rceil + 1)|V_1|$. Note that $|V_1| = |V(G)| - |V(M)| \ge 2\delta - 2(\lfloor \frac{2\delta}{3} \rfloor - 1) \ge \frac{2\delta}{3} + 2 \ge 3$ (recall that if G is triangle-free, then $|V(G)| \ge 2\delta$). On the other hand, by Claim 1, for each edge $x_i y_i \in E(M)$, if $d_s(x_i) + d_s(y_i) \ge 3$, then $d_s(x_i) = 0$ or $d_s(y_i) = 0$. So $d_s(x_i) + d_s(y_i) \le |V_1|$. Thus by Claim 1, $|E_s| \le |V_2||V_1| + 2(|E(M)| - |V_2|)$. So we have the following inequality: $(\lceil \frac{\delta}{3} \rceil + 1)|V_1| \le |V_2||V_1| + 2(|E(M)| - |V_2|)$. Hence

$$|V_2| \ge \frac{\left(\left\lceil \frac{\delta}{3} \right\rceil + 1\right)|V_1| - 2|E(M)|}{|V_1| - 2} \ge \frac{\left(\left\lceil \frac{\delta}{3} \right\rceil + 1\right)|V_1| - 2\left(\left\lfloor \frac{2\delta}{3} \right\rfloor - 1\right)}{|V_1| - 2}$$
$$= \left\lceil \frac{\delta}{3} \right\rceil + 1 - \frac{2\left\lfloor \frac{2\delta}{3} \right\rfloor - 2\left\lceil \frac{\delta}{3} \right\rceil - 4}{|V_1| - 2}$$
$$\ge \left\lceil \frac{\delta}{3} \right\rceil.$$

For each edge e of M, at most one end vertex of e is in V_2 . Thus, without loss of generality, we assume that $V_2 = \{x_1, x_2, \ldots, x_p\}$, where $p = |V_2| \ge \lceil \frac{\delta}{3} \rceil$. Let G' denote the subgraph induced by $\{y_1, y_2, \ldots, y_p\}$.

Claim 3. There is a vertex $v \in V_2$ such that $d_s(v) \ge 5$.

Proof. Otherwise, we have that each vertex $v \in V(M)$ has $d_s(v) \leq 4$. By Claim 1, it holds that for each edge $x_i y_i \in E(M)$, $d_s(x_i) + d_s(y_i) \leq 4$. Then $|E_s| \leq 4(\lfloor \frac{2\delta}{3} \rfloor - 1)$. On the other hand, $|E_s| \geq |V_1|(\lceil \frac{\delta}{3} \rceil + 1) \geq (\lceil \frac{2\delta}{3} \rceil + 2)(\lceil \frac{\delta}{3} \rceil + 1)$. It follows that $4(\lfloor \frac{2\delta}{3} \rfloor - 1) \geq (\lceil \frac{2\delta}{3} \rceil + 2)(\lceil \frac{\delta}{3} \rceil + 1)$. Hence $2\delta^2 - 12\delta + 54 \leq 0$, which is a contradiction.

Without loss of generality, we assume that $d_s(x_1) \ge 5$. By Claim 1, $d_s(y_1) = 0$.

Claim 4. If y_1 has a neighbor $y \in V(G') \cup V_1$, then $c(y_1y) \in c(M)$ and $c(y_1y) \notin \{1, 2, \ldots, p\}$.

Proof. We distinguish the following two cases:

Case 1. Assume that y_1 has a neighbor, say $y = y_2 \in V(G')$. We prove it by contradiction. Firstly, suppose that $c(y_1y_2)$ is a new color. Then we can find two independent special edges x_1w_1 and x_2w_2 such that $c(x_1w_1), c(x_2w_2) \notin c(M) \cup \{c(y_1y_2)\}$ and $c(x_1w_1) \neq c(x_2w_2)$. We can do this, because $d_s(x_1) \geq 5$ and $d_s(x_2) \geq 3$. Now we obtain a rainbow matching $M \cup \{x_1w_1, x_2w_2, y_1y_2\} \setminus \{x_1y_1, x_2y_2\}$ of size t + 1, which is a contradiction.

Next, suppose that $c(y_1y_2) \cap \{1, 2, ..., p\} \neq \emptyset$. Since G is properly colored, $c(y_1y_2) \neq 1, 2$. Without loss of generality, we assume that $c(y_1y_2) = 3$. As $d_s(x_3), d_s(x_2) \geq 3$ and $d_s(x_1) \geq 5$, we can easily find three special edges x_1w_1, x_2w_2, x_3w_3 to form a rainbow matching. Hence $M \cup \{x_1w_1, x_2w_2, x_3w_3, y_1y_2\} \setminus \{e_1, e_2, e_3\}$ is a rainbow matching of size t+1.

Case 2. y_1 has a neighbor $y \in V_1$. We prove it by contradiction. Firstly, suppose that $c(y_1y)$ is a new color. Then there is a special edges x_1w_1 such that $c(x_1w_1) \neq c(y_1y)$, because $d_s(x_1) \geq 5$. Now we obtain a rainbow matching $M \cup \{x_1w_1, y_1y\} \setminus \{x_1y_1\}$ of size t+1, which is a contradiction.

Next, suppose that $c(y_1y) \cap \{1, 2, \ldots, p\} \neq \emptyset$. Since G is properly colored, $c(y_1y) \neq 1$. Without loss of generality, we assume that $c(y_1y) = 2$. As $d_s(x_2) \geq 3$ and $d_s(x_1) \geq 5$, we can easily find two independent special edges x_1w_1, x_2w_2 such that $w_2 \neq y$ to form a rainbow matching. Hence we can obtain a rainbow matching $M \cup \{x_1w_1, x_2w_2, y_1y\} \setminus \{e_1, e_2\}$ of size t + 1. This contradiction completes the proof of Claim 4.

Now consider the vertex y_1 . By Claims 3,4 and $d_s(y_1) = 0$, we know that if y_1 has a neighbor $u \in V_1 \cup \{y_1, \ldots, y_p\}$, then $c(y_1u) \in c(M)$ and $c(y_1u) \notin \{1, 2, \ldots, p\}$. Thus $|\{x_1, \ldots, x_p\}| + |\{e_{p+1}, \ldots, e_t\}| \ge d(y_1) - (t-p)$. It follows that $t \ge \delta - (t-p)$. Hence $t \ge \frac{\delta+p}{2} \ge \frac{\lfloor\frac{\delta}{3}\rfloor+\delta}{2} \ge \lfloor\frac{2\delta}{3}\rfloor$, which is a contradiction. This completes the whole proof.

Acknowledgement

I would like to thank the referee for the careful review and the valuable comments. This research was supported by NSFC Grants (61070230,11026184,10901097), IIFSDU (2009hw001), RFDP(20100131120017) and SRF for ROCS.

References

- [1] B. Alspach, Problem 89, Discrete Math. 69 (1988) 106.
- [2] R. P. Anstee and L. Caccetta, Orthogonal matchings, *Discrete Math.* 179 (1998) 37–47.
- [3] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Macmillan Press, New York, 1976.
- [4] R. A. Brualdi and H. J. Ryser, Combinatorial Matrix Theory, Cambridge University Press, Cambridge, UK, 1991.
- [5] H. J. Ryser, Neuere probleme der kombinatorik, Vorträge über Kombinatorik Oberwolfach, Mathematisches Forschungsinstitut Oberwolfach, July 1967.
- [6] T. D. LeSaulnier, C. Stocker, P.S. Wenger and D.B. West, Rainbow Matching in Edge-Colored Graphs, *Electron. J. Combin.* 17 (2010), #N26.
- [7] P. Hatami and P. W. Shor, A lower bound for the length of a partial transversal in a Latin square, J. Combin. Theory Ser. A 115 (2008), 1103-1113.
- [8] M. Kano and X. Li, Monochromatic and heterochromatic subgraphs in edge-colored graphs – a survey, *Graphs Combin.* 24 (2008), 237–263.
- [9] S. K. Stein, Transversals of Latin squares and their generalizations, *Pacific J. Math.* 59 (1975), 567–575.
- [10] R. Stong, Orthogonal Matchings, *Discrete Math.* **256** (2002), 515–518.
- [11] I. M. Wanless, Transversals in Latin squares: A survey, in R. Chapman (ed.), Surveys in Combinatorics 2011, London Math. Soc. Lecture Note Series 392, Cambridge University Press, 2011, pp403–437.