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Abstract

A k-majority tournament is realized by 2k−1 linear orders on the set of vertices,
where a vertex u dominates v if u precedes v in at least k of the orders. Various
properties of such tournaments have been studied, among them the problem of find-
ing the size of a smallest dominating set. It is known that 2-majority tournaments
are dominated by 3 vertices and that k-majority tournaments are dominated by
O(k log k) vertices. However, precise values are not known even for k = 3. We
establish new upper bounds for the size of a smallest dominating set in k-majority
tournaments that considerably improve upon previous bounds for small k. In par-
ticular our result shows that 3-majority tournaments are dominated by at most 12
vertices.

1 Introduction

A k-majority tournament is a finite tournament, T = (V, E), which is realized by 2k − 1
linear orders (lists) on the set of vertices. For every two vertices u, v ∈ V , (u, v) ∈ E if and
only if the index of u is smaller than the index of v in at least k of the lists. k-majority
tournaments arise in social choice theory, where each vertex may represent a candidate,
and the lists represent the ranking of the candidates by different voters.

The connection between k-majority tournaments and general tournaments has been
explored. The function k0(n) denotes the least integer k, such that every tournament
with n vertices may be represented as a k-majority tournament by 2k− 1 ordered lists on
V . McGarvey [3] showed that k0 is well-defined for every n, and Erdős and L. Moser [2]
showed k0(n) = O(n/ log n).

A dominating set in T is a subset W ⊆ V , such that for every vertex v ∈ V \W there
exists a vertex u ∈ W such that (u, v) ∈ E. It was first demonstrated in [2], that there
exist tournaments whose smallest dominating set is arbitrarily large, however, somewhat
surprisingly, for k-majority tournaments that is not the case. In [1] it is shown that for k-
majority tournaments the size of a smallest dominating set is bounded by a function of k,
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k 2 3 4 5 6 7
F(k) 3 12 44 160 587 2177

Table 1: Some upper bounds for small k

regardless of the size of the tournament, thus proving a conjecture of H.A. Kierstead and
W.T. Trotter. For each k, let F(k) be the supremum of the size of a smallest dominating
set in a k-majority tournament. Alon et al. [1] proved that F(2) = 3, that F(3) ≥ 4, and
using results regarding the VC dimension of hypergraphs showed that F(k) = O(k log k),
and that F(k) = Ω(k/ log k), for all k. However, the absolute constant for the former is
shown in [1] to be larger than 80.

The main results in this paper demonstrate upper bounds for F(k) which are ex-
ponential in k, but yield significantly improved bounds for small k, as demonstrated in
Table 1. For instance, it is shown that F(3) ≤ 12. The upper bounds are achieved by
using a skewed bipartite variation of the dominating set problem. This variation is also
explored to some extent, and in addition, the main result provides an explicit proof to
the conjecture of Kierstead and Trotter, as an alternative to the one given in [1] by other
methods.

1.1 Notation

Given two distinct sets of vertices A and B, we write A → B if A dominates B, meaning
for every v ∈ B there exists u ∈ A such that (u, v) ∈ E. Note that in a tournament it is
always the case that A → B or B → A. If A = {a} and A → B we write a → B, and
vice versa. For a linear order L on a set of vertices, let L(u) denote the index of a vertex
u. A vertex u is said to beat a vertex v in L if L(u) < L(v) (u is ranked higher than v
in L). Given a subset A ⊂ V and a linear order L, the list induced by A is obtained by
deleting V \ A from L, and retaining the order between the vertices of A.

2 A variation on the dominating set problem

Problem 1. Bipartite domination : Given two positive integers x, y, what is the smallest
h = h(x, y) such that for every tournament T = (V, E), and partition V = A ∪ B, for
which |A| = x, |B| = y, there exists a subset |C| ≤ h, such that C ⊆ A and C → B, or
C ⊆ B and C → A?

Note that h is well-defined as being dependent on x, y, as the number of tournaments
of order x + y is finite, and hence the number of partitions as above is finite, and it is
always the case that either A → B or B → A. Theorem 1 implies that the restriction of
h(x, y) to k-majority tournaments is bounded by a function of k alone. Hence, we may
denote by F (k) the size of the smallest dominating set that is guaranteed to exist for
the bipartite domination problem in k-majority tournaments, regardless of the size and
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partition of the vertex set. The following lemma demonstrates that the dominating set
problem in a tournament is reducible to the bipartite domination problem.

Lemma 1. F(k) ≤ F (k).

Proof. Let T = (V, E) be a k-majority tournament. A 2-product of a tournament T =
(V, E) is a tournament T ∗ which is composed of two disjoint copies of T , such that if v∗

is a copy of v and u ∈ V , u 6= v, then (u, v∗) ∈ E(T ∗) iff (u, v) ∈ E, else (v∗, u) ∈ E(T ∗).
In addition, ∀w ∈ V , (w,w∗) ∈ E(T ∗). Let T ∗ be the 2-product of T . Clearly, k-
majority tournaments are closed under the 2-product construction, by inserting a copy of
each vertex directly under it in each list. If D is a solution to the bipartite domination
problem in T ∗, where the partition consists of the two distinct copies of T , then the
sources of the vertices of D in V constitute a dominating set of T .

The following variant of majority tournaments will prove useful for generating bounds
for the size of dominating sets.

Definition 1. A (t,m)-asymmetric bipartite majority tournament (ABMT), T = (V, E),
consists of m ordered lists on a set V , an integer t, such that 1 ≤ t ≤ m, a disjoint
ordered pair of sets (A, B) satisfying V = A∪B, and a set of edges E, such that for every
u ∈ A, v ∈ B, (u, v) ∈ E if and only if u beats v in at least t lists, else (v, u) ∈ E.

Note that a (t,m)-ABMT given by (A, B) and L1, . . . , Lm, is identical to the (m −
t + 1, m)-ABMT given by (B, A) and L1, . . . , Lm. The notion of an ABMT is useful if we
know, for instance, that the vertices of a set A beat all vertices of a set B in specific lists,
as in that case we may discard those lists and examine a certain ABMT in the remaining
lists so that the edges between the vertices of the two sets are preserved.

The bipartite domination problem may be generalized in ABMT’s. We will show by
induction that the following proposition holds :

Proposition 1. There exists a function, F ∗ : N × N → N , such that for every (t,m)-
ABMT given by (A, B) and m lists, there exists a subset C ⊆ A, |C| ≤ F ∗(t,m), and
C → B, or there exists a subset D ⊆ B, |D| ≤ F ∗(m− t + 1, m), and D → A.

From Lemma 1 and the definition of F (k) :

F(k) ≤ F (k) ≤ F ∗(k, 2k − 1). (1)

At this stage we do not know yet whether F ∗ can be defined, as for given t,m there may
be an infinite sequence of (t,m)-ABMT’s for which F ∗(t,m) is unbounded. Note that the
inequality in Equation 1 is due to the minimality of F (k).

We will need the following definition for the inductive construction of the recurrence.

Definition 2. Let T = (V, E) be a (t,m)-ABMT, given by lists L1, . . . , Lm, let V = A∪B
be a partition of V , and let 1 ≤ i ≤ m. The (a, b) domination scheme of (A, B) in Li, is
a pair (δA, δB), such that δA and δB are the greatest indices in Li which satisfy :
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Figure 1: The two options for an (a, b) domination scheme.

1. There exists a subset C of A satisfying |C| ≤ a, such that Li(x) ≥ δA for every
x ∈ C, and such that C → y whenever y ∈ B satisfies Li(y) < δA.

2. There exists a subset D of B satisfying |D| ≤ b, such that Li(x) ≥ δB for every
x ∈ D, and such that D → y whenever y ∈ A satisfies Li(y) < δB.

For any i, given the (a, b) domination scheme of (A, B) in Li, we will use the following
notation as in Figure 1 : B1 = {x ∈ B, Li(x) < δA}, A1 = {x ∈ A, Li(x) ≥ δA}, A2 =
{x ∈ A, Li(x) < δB}, B2 = {x ∈ B, Li(x) ≥ δB}. Denote by ∆A the union of all sets such
as C in definition 2, and denote by ∆B the union of all sets such as D. Note that in
certain cases, such as a list where all vertices of A beat all vertices of B some of the
defined sets may be empty, but it is not hard to check that in those cases the proofs to
follow are simplified.

Lemma 2. Let T = (V, E) be a (t,m)-ABMT given by (A, B) and lists L1, . . . , Lm, and
let (δA, δB) be the (a, b) domination scheme of (A, B) in Li, for some 1 ≤ i ≤ m. Assume
w.l.o.g. that δA ≥ δB (as on the left in Figure 1). Denote by v the vertex with index δB.
Then one of the following is true :

1. v ∈ A, v → ∆B.

2. v ∈ B, δB < δA, ∆A → v.

3. v ∈ B, δB = δA, v → ∆A.

Proof. 1. If v ∈ A, then it cannot be the case that there is a vertex u ∈ ∆B such that
u → v, otherwise, by definition, there is a subset D ⊆ ∆B, u ∈ D, and D dominates
all vertices of A with index less or equal to δB, and therefore δB should be greater
than it is.
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2. If v /∈ A then v ∈ B. If δB < δA, then by definition there exists a set C ⊆ ∆A such
that C → v.

3. If v ∈ B and δB = δA, then in a similar fashion to case 1, it cannot be that there
exists a vertex w ∈ ∆A such that w → v, and therefore v → ∆A.

The main result that follows proves the existence of F ∗ by showing that Proposition 1
holds for a class of functions that satisfy a certain recurrence.

Theorem 1. Let F ∗ : N ×N → N be a function for which :

1. ∀m ≥ 1, F ∗(1, m) = m, F ∗(m, m) = 1.

2. ∀t > 1,∀m > t, F ∗(t,m) = 1 + F ∗(t,m− 1) + F ∗(t− 1, m− 1).

Then F ∗ satisfies Proposition 1.

Proof. Let T = (V, E) be a (t,m)-ABMT given by (A, B) and lists L1, . . . , Lm.

1. If t = 1 : Let ai be the element of A with minimal index in Li, i = 1 . . . m. If
{a1, . . . , am} does not dominate B, that means by the definition of (t,m)-ABMT’s
that there is an element b ∈ B that does not have a greater index than ai in Li,
for all 1 ≤ i ≤ m, and since ai is the minimal vertex of A in each Li, then b beats
all vertices of A in all m lists. Thus, we either have found a set of m elements of
A that dominate B, or one element of B that dominates A. The case t = m is
symmetric, and the same proof applies. Hence, for the cases t = 1 or t = m, F ∗

satisfies Proposition 1.

2. If m > t > 1 : We will prove the result by induction on m. The basis of the
induction is the case m = 3, which will be resolved further on. Assume that the
equality and Proposition 1 are true for all m ≤ x, and let m = x+1. Let (δA, δB) be
the (F ∗(t,m− 1), F ∗(m− t+1, m− 1)) domination scheme of (A, B) in L1. Denote
by v the vertex with index δB in L1. Consider the following cases :

(a) δA > δB. (As on the left in Figure 1.) Note that in this case B1 ∪B2 = B.

i. If v ∈ A, then from case 1 in Lemma 2, v → ∆B.
There is a set CA ⊆ ∆A, |CA| ≤ F ∗(t,m−1), and CA → B1. Let L∗2, . . . , L

∗
m

be the induced lists given by A2∪B2 \∆B, and let G be the (t−1, m−1)-
ABMT given by (A2, B2 \∆B) and L∗2, . . . , L

∗
m.

By the induction hypothesis, it must be the case that A2 → B2 \ ∆B

in G with at most F ∗(t − 1, m − 1) vertices, otherwise there is a subset
DB ⊆ B2 \∆B of size at most F ∗(m− t + 1, m− 1) that dominates A2 in
G, however by the definition of ∆B, and since ∆B ∩DB = ∅ that would be
a contradiction, since if DB → A2 in G, then DB → A2 in T . (Because the
domination of vertices in A2 by vertices in DB takes place in L∗2, . . . , L

∗
m,

and therefore also in L2, . . . , Lm.)
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Therefore, there exists a subset A3 ⊆ A2, such that A3 → B2\∆B in G, and
|A3| ≤ F ∗(t−1, m−1). Since all vertices of A3 beat all vertices of B2\∆B in
L1, then A3 → B2\∆B in T . Thus, {v}∪CA∪A3 → ∆B∪B1∪(B2\∆B) = B
in T , and :
| {v} |+ |CA|+ |A3| ≤ 1 + F ∗(t,m− 1) + F ∗(t− 1, m− 1).

ii. If v ∈ B, then from case 2 in Lemma 2, ∆A → v, meaning there is a vertex
w ∈ ∆A such that w → v, and for some set CA, w ∈ CA ⊆ ∆A, CA → B1,
and |CA| ≤ F ∗(t,m− 1).
Since v ∈ B2, the only reason why δB is not greater than it is, can be that
there is no set DB ⊆ ∆B \ {v}, DB ≤ F ∗(m− t+1, m− 1), and DB → A2.
Define G as the (t − 1, m − 1)-ABMT given by (A2, B2 \ {v}) and the
induced lists L∗2, . . . , L

∗
m. It must be that A2 → B2 \{v} in G with at most

F ∗(t− 1, m− 1) vertices, or there is a set of size F ∗(m− t + 1, m− 1) in
B2 \ {v} that dominates A2 in G, and therefore in T , contradicting the
inexistence of DB. Let A3 ⊆ A2 be the set such that A3 → B2 \ {v} in G
(and therefore in T as in case 2(a)i), and |A3| ≤ F ∗(t − 1, m − 1). Thus,
CA ∪ A3 → B1 ∪B2 = B, and :
|CA|+ |A3| ≤ F ∗(t,m− 1) + F ∗(t− 1, m− 1).

(b) δA < δB. (As on the right in Figure 1.) Following similar arguments as in
case 2a, while v is assigned to be the vertex with index δA, results in a set
DB, |DB| ≤ F ∗(m − t + 1, m − 1), such that DB → A2, and if v ∈ B, then
v → ∆A, and B1 → A1 \ ∆A with at most F ∗(m − t,m − 1) vertices in the
(m− t,m− 1)-ABMT given by (B1, A1 \∆A) in the induced lists L∗2, . . . , L

∗
m,

or in the case that v ∈ A, B1 → A1 \ {v} with at most F ∗(m − t,m − 1)
vertices in the (m − t,m − 1)-ABMT given by (B1, A1 \ {v}) in the induced
lists L∗2, . . . , L

∗
m. Thus, the case v ∈ B is the worse of the two, therefore A is

dominated in T by a subset of B of size at most :

| {v} |+ |DB|+F ∗(m− t,m−1) ≤ 1+F ∗(m− t+1, m−1)+F ∗(m− t,m−1).

(c) δA = δB. In this case, as shown in cases 3, 1 in Lemma 2, either v ∈ A and
v → ∆B, or v ∈ B and v → ∆A. In the first case we follow case 2(a)i, and in
the second case we follow case 2b when v ∈ B.

(d) The inductive basis is for m = 3. In this case the (2, 3)-ABMT is a 2-
majority tournament in which we solve the bipartite domination problem.
By 1, F ∗(2, 2) = 1, meaning we are employing a (1, 1) domination scheme,
therefore due to symmetry we can assume δA > δB, and by following case 2(a)i
and plugging m = 3 we obtain F ∗(2, 3) = 1 + F ∗(2, 2) + F ∗(1, 2) = 4.

Given a (t,m)-ABMT, for m > t > 1, we have shown that there either exists a subset
C ⊆ A, C → B, |C| ≤ 1+F ∗(t,m−1)+F ∗(t−1, m−1) = F ∗(t,m), or there exists
D ⊆ B, D → A, |D| ≤ 1+F ∗(m−t+1, m−1)+F ∗(m−t,m−1) = F ∗(m−t+1, m),
as required.
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Combining 1 and 2, the result holds for all m ≥ t ≥ 1, and therefore for all (t,m)-ABMT’s.
Hence, F ∗ satisfies Proposition 1.

3 Upper bounds for F(k)

The results provide upper bounds for F(k) which are exponential in k. However, for small
k (see Table 1), these bounds are rather small. We may already use Theorem 1 to generate
bounds for F(k), but the following result reduces F ∗(2, m) by m− 2, and F ∗(m− 1, m)

by 1. (Those values may be easily calculated from Theorem 1 to be m(m+1)
2

− 2, 2m − 2
respectively.)

Theorem 2. Let F ∗ : N ×N → N be a function for which :

1. ∀m ≥ 1, F ∗(1, m) = m, F ∗(m, m) = 1.

2. ∀m ≥ 3, F ∗(2, m) = m(m−1)
2

, F ∗(m− 1, m) = 2m− 3

3. ∀t > 2,∀m > t + 1, F ∗(t,m) = 1 + F ∗(t,m− 1) + F ∗(t− 1, m− 1).

Then F ∗ satisfies Proposition 1.

Proof. The only change in F ∗ is for t = 2, m− 1. We prove the result by induction on m.
Let T = (V, E) be a (2, m)-ABMT given by (A, B) and lists L1, . . . , Lm. As in Theorem 1,
by plugging t = 2, (δA, δB) is the (F ∗(2, m− 1), F ∗(m− 1, m− 1)) domination scheme of
(A, B) in L1. By Theorem 1, (δA, δB) is a (F ∗(2, m− 1), 1) domination scheme.

The improvement is obtained by a transitivity argument. Assume δA > δB. As similar
to Theorem 1, if v ∈ A, where v is the vertex with index δB in L1, then v → ∆B. In
addition there exists a set CA ⊆ ∆A, |CA| ≤ F ∗(2, m− 1), and CA → B1. Let L∗2, . . . , L

∗
m

be the induced lists given by A2 ∪B2 \∆B. Denote by G the (1, m− 1)-ABMT given by
(A2, B2 \∆B) and L∗2, . . . , L

∗
m. As in Theorem 1, there exists a subset A3 ⊆ A2, such that

A3 → B2 \∆B in G, and |A3| ≤ F ∗(1, m− 1) = m− 1.
As in case 1 in Theorem 1, the vertices of A3 that dominate B2 \ ∆B in G may be

taken as {a2, . . . , am}, being the vertices of A2 with minimal index in L2, . . . , Lm, and
since ∆B → A2 in T , then every element of A2 is beaten by each element of ∆B in all
the lists L2, . . . , Lm. (Since ∆B consists of vertices that participate in a set of size 1 that
dominates A2 in T .) v → ∆B in T , so v has a smaller index than every element in ∆B

in at least one of the lists {L2, . . . , Lm} (in addition to L1), and therefore a smaller index
than ai in Li, for some 2 ≤ i ≤ m. By transitivity, v dominates all vertices of B2 \ ∆B

that ai dominates in L1, Li, so v may replace ai in the set that dominates B2 \ ∆B in
T . Denote by A3 = {a2, . . . , ai−1, v, ai+1, . . . , am}. Since all vertices of A2 and v have a
smaller index than B2 \ ∆B in L1, then A3 → B2 \ ∆B in T . Therefore, since v → ∆B,
then A3 ∪ CA → B1 ∪ (B2 \∆B) ∪∆B = B. Therefore :

|A3|+ |CA| ≤ m−1+F ∗(2, m−1) = m−1+ (m−1)(m−2)
2

= (m−1)(m−2)+2(m−1)
2

= m(m−1)
2

.
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If v ∈ B, then following the same arguments as in the parallel case in Theorem 1, we
define G as the (1, m−1)-ABMT given by (A2, B2 \{v}) and the induced lists L∗2, . . . , L

∗
m,

resulting in CA ∪ A3 → B in T (in this case A3 = {a2, . . . , ai, . . . , am}). Thus :

|A3|+ |CA| ≤ F ∗(1, m− 1) + F ∗(2, m− 1) = m− 1 + F ∗(2, m− 1) = m(m−1)
2

.
If δA < δB then, as in Theorem 1, by plugging t = 2 and using the induction hypothesis,

A is dominated in T by a subset of B of size at most :
1+F ∗(m−1, m−1)+F ∗(m−2, m−1) = 2+F ∗(m−2, m−1) = 2+2(m−1)−3 = 2m−3.
The case δA = δB is dealt with as in Theorem 1. The induction base is for m = 3, for

which we compute the value of F ∗(2, 3). As in case 2d in Theorem 1, due to symmetry,
w.l.o.g. we may follow the case δA > δB as above, and produce a dominating set of size
3×2
2

= 3, which validates the induction basis and improves the previous value by 1.
Thus, given a (2, m)-ABMT defined by (A, B) and lists L1, . . . , Lm, we have shown

that there exists either a subset of A of size at most m(m−1)
2

that dominates B, or a subset
of B of size at most 2m− 3 that dominates A, as required.

It is interesting to note that for 2-majority tournaments, the result in [1] produces a
dominating set of size at most three, however, given a partition of the vertex set V = A∪B,
it may be that of the dominating set two vertices are in A and one in B. The following
corollary shows that the dominating set may always be chosen to be contained either in
A or in B.

Corollary 1. F (2) = 3.

Proof. From Equation 1, Lemma 1, and the fact that F(2) = 3 :
3 = F(2) ≤ F (2) ≤ F ∗(2, 3) = 3.

It is now easy to see how to compute bounds for F(k), as the following Corollary
demonstrates.

Corollary 2. F(3) ≤ 12.

Proof. From Equation 1, F(3) ≤ F (3) ≤ F ∗(3, 5). Therefore, by Theorem 2 :
F(3) ≤ F ∗(3, 5) = 1 + F ∗(3, 4) + F ∗(2, 4) = 1 + (2× 4− 3) + 4×3

2
= 1 + 5 + 6 = 12.

It may be possible to obtain a closed form inequality for our upper bound for F(k),
however, for small k, one obtains the bounds listed in Table 1 using a straightforward
computer program.

4 Further remarks

1. Theorem 4 in [1] shows an upper bound of O(k log(k)) for F(k) by using a two-person
zero-sum game on the set of vertices, such that the sum of incoming probabilities on
each vertex is at least 1

2
. It is possible to design a game on a bipartite tournament

with similar qualities to prove a similar bound for F (k).
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2. It is now known that 4 ≤ F(3) ≤ 12. It may be possible to reduce the gap by
checking sufficiently large random 3-majority tournaments.

3. It is not a difficult exercise to construct a 2-majority tournament with a partition
of its vertex set in to sets of equal size such that both parts dominate each other,
but only one side of the partition dominates the other with F (2) = 3 vertices, while
the other side needs all its vertices in order to dominate.
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[2] P. Erdős and L. Moser, On the representation of directed graphs as unions of orderings,
Magyar Tud. Akad. Mat. Kutató Int. Közl. 9 (1964), 125–132.
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