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Abstract

The study of the number of independent sets in a graph has a rich history.
Recently, Kahn proved that disjoint unions of Kr,r’s have the maximum number
of independent sets amongst r-regular bipartite graphs. Zhao extended this to all
r-regular graphs. If we instead restrict the class of graphs to those on a fixed
number of vertices and edges, then the Kruskal-Katona theorem implies that the
graph with the maximum number of independent sets is the lex graph, where edges
form an initial segment of the lexicographic ordering. In this paper, we study three
related questions. Firstly, we prove that the lex graph has the maximum number
of weighted independent sets for any appropriate weighting. Secondly, we solve the
problem of maximizing the number of independents sets in graphs with specified
independence number or clique number. Finally, for m ≤ n, we find the graphs
with the minimum number of independent sets for graphs with n vertices and m
edges.

1 Introduction

The study of independent sets in graphs has a long and rich history. We write I(G) for the
set of independent sets in a graph G and i(G) = |I(G)| for the number of independent
sets. Much recent research has focused on the problem of maximizing the number of
independent sets in graphs with certain restrictions. For example, Kahn [9] gave the
following upper bound for regular bipartite graphs.

Theorem 1.1 (Kahn). Let G be an r-regular bipartite graph on n vertices. Then

i(G) ≤
(
2r+1 − 1

)n/2r
.

The result is sharp for disjoint unions of copies of Kr,r. Zhao [19] proved a conjecture
of Kahn by extending Theorem 1.1 to all r-regular graphs. Kahn was also interested in
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weighted independent sets. Assign a weight of λk (for some λ > 0) to an independent
set of size k and set iλ(G) to be the total weight of all independent sets in G. Kahn also
showed that if G is an r-regular bipartite graph on n vertices, and λ ≥ 1, then

iλ(G) ≤ iλ(Kr,r)
n/2r.

Galvin and Tetali [7] extended this result to all positive weights.
In this paper, we will be concerned with the number of independent sets in graphs

from a variety of graph classes. As noted in [4], one can prove, as a consequence of the
Kruskal-Katona theorem [11, 10], that the graph on n vertices having m edges that has
the largest number of independent sets is the lex graph, denoted L(n, m), which we define
in the next section.

Theorem 1.2. If G is a graph on n vertices and m edges, then

i(G) ≤ i(L(n, m)).

This result was also proved by Wood [17], though he was working in the framework of
counting cliques, i.e., complete subgraphs.

This paper will focus on three independent set enumeration problems. In Section 2,
we extend Theorem 1.2 to the enumeration of independent sets of fixed size and deduce a
theorem about weighted independent set enumeration. We also note some consequences
for homomorphism enumeration. In Section 3, we extend our study to classes of graphs
determined by bounds on their independence number and clique number. In Section 4,
we will study the problem of minimizing the number of independent sets among graphs
of fixed order and size.

2 Consequences of the Kruskal-Katona theorem

The Kruskal-Katona theorem [11, 10] has many consequences for the study of independent
sets in graphs. We summarize some of them in this section, after introducing the lex
orderings.

Definition 1. The lexicographic (or lex ) ordering on subsets of N is defined as follows.
Given A, B ⊆ N we say A precedes B in lex, written A ≺L B, if min(A4B) ∈ A.

Further, we define the lex graph with n vertices and m edges, denoted L(n, m), to
be the graph with vertex set [n] and edge set the first m elements of

(
[n]
2

)
under the lex

ordering. The first few elements of the lex order on
(
[n]
2

)
are

{1, 2} , {1, 3} , {1, 4} , . . . , {1, n} , {2, 3} , {2, 4} , . . . , {2, n} , {3, 4} , . . . ,

and so the lex graph evolves by successively saturating the vertices 1, 2, 3, . . . , n in order.

Our concern will mostly be with the lex ordering restricted to the level sets
(
[n]
k

)
. The

Kruskal-Katona theorem says that among all subsets of
(
[n]
k

)
of given size the one with the
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smallest “upper shadow” on levels above k is the initial segment of lex1. The following
definition makes the notion of shadow precise.

Definition 2. If A ⊆
(
[n]
k

)
and ` ≥ k then the upper `-shadow of A is the collection

∂ `(A) =

{
B ∈

(
[n]

`

)
: for some A ∈ A we have B ⊇ A

}
.

Theorem 2.1 (Kruskal-Katona). If A ⊆
(
[n]
k

)
has size a and L(a) ⊆

(
[n]
k

)
is the initial

segment of size a in the lex order on
(
[n]
k

)
then for all ` ≤ k we have∣∣∂ `(A)

∣∣ ≥ ∣∣∂ `(L(a))
∣∣.

We derive below some consequences of Theorem 2.1 for extremal problems in indepen-
dent set enumeration. The study of independent sets of a fixed size has generated interest
when the graphs considered are regular, but seem to have not been well-studied if the
graphs have a fixed number of edges. Carroll, Galvin, and Tetali [2] gave asymptotics on
the maximum number of independent sets of a fixed size in regular graphs. Theorem 2.2
shows that the lex graph maximizes the number of independent sets of a fixed size, and so
also maximizes weighted independent set counts for arbitrary weight functions depending
only on the size of the set.

Definition 3. If w : N ∪ {0} → [0,∞) is any function and G is a graph then we set

iw(G) =
∑

I∈I(G)

w(|I|).

If k ∈ N ∪ {0} then in particular we define wk by wk(i) = 1(i = k), and

ik(G) = iwk
(G) = |{I ∈ I(G) : |I| = k}| .

Theorem 2.2. Let G be a graph on n vertices with m edges. If w : N ∪ {0} → [0,∞) is
any function then

iw(G) ≤ iw(L(n, m)).

Proof. It clearly suffices to prove the special case where w = wk for some k ∈ N, since any
other w can be expressed as a positive linear combination of these. We may also assume

that V (G) = [n]. Now let Ik =
{

A ∈
(
[n]
k

)
: A is independent in G

}
and ik = |Ik|. We

have I ∈ Ik iff I ∈
(
[n]
k

)
\ ∂ k(E(G)), so

ik =

(
n

k

)
−

∣∣∂ k(E(G))
∣∣ ≤ (

n

k

)
−

∣∣∂ k(L(n, m))
∣∣ = ik(L(n, m)).

1The Kruskal-Katona theorem is more usually stated in terms of lower shadows, and initial segments
in the colex order, defined for finite subsets of N by A ≺C B if max(A4B) ∈ B. The two forms are
equivalent by a double reversal: complementation of sets and reversing the ordering on [n].
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A natural set of weight functions arises by considering independent set enumeration as
a special case of homomorphism enumeration. For graphs G and H, let Hom(G, H) be the
set of homomorphisms from G to H and hom(G, H) = |Hom(G, H)|. Letting HI be the
path on two vertices, with one vertex looped and the other unlooped (and vertices labeled
as in Figure 1), we see that i(G) = hom(G, HI). This is because there is a one-to-one
correspondence between independent sets A and homomorphisms φ, given by φ−1({a}) =
A. In the context of statistical mechanics, it is natural to weight homomorphisms in the

a b

Figure 1: The graph HI

following manner: each vertex x in H is assigned a weight β(x). Then we “count” the
number of homomorphisms from G to a graph H with weight function β : V (H) → [0,∞)
as follows:

homβ(G, H) =
∑

φ∈Hom(G,H)

∏
v∈G

β(φ(v)).

This is the partition function of G for the model specified by H. Note that if β ≡ 1, then
homβ(G, H) = hom(G, H). Let βλ be the weight function on HI defined as follows.

βλ(x) =

{
λ if x = a

1 if x = b.

Finally, note that iλ(G) = homβλ(G, HI). Note that an independent set of size k is
assigned weight λk. Thus, the following is a corollary of Theorem 2.2.

Corollary 2.3. If G is a graph on n vertices and m edges and λ > 0, then

iλ(G) ≤ iλ(L(n, m)).

For more general image graphs H, the problem of finding the graph G with a given
number of vertices and edges that maximizes hom(G, H) is usually difficult. In [4], the
authors solved the case where H is the Widom-Rowlinson graph, a P3 with every vertex
looped. In [5], the similar case where one end vertex of the P3 is unlooped is solved. For
one class of image graphs, it follows from Corollary 2.3 that the lex graph is an extremal
graph. Let S(p, q) be the clique-looped split graph Kp ∨ Eq, in which each vertex of the
Kp is looped.

Corollary 2.4. Let H = S(p, q) for p, q ≥ 1 and G be a graph with n vertices and m
edges. Then

hom(G, H) ≤ hom(L(n, m), H).

Proof. Set λ = p/q. Then, we have hom(G, H) = qniλ(G) and so the result follows from
Corollary 2.3.
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3 Classes defined by other parameters

While independent sets in regular graphs and graphs of fixed size have been well studied,
there has been less work on the problem of maximizing the number of independent sets in
classes of graphs defined by other graph parameters. In this section, we investigate classes
defined by bounds on the independence number, α(G), and the clique number, ω(G).

The first problem we attack is that of determining

max {i(G) : n(G) = n, α(G) ≤ α} .

Definition 4. If G is any graph and S is a subset of V (G), we let i(G; S) be the number
of independent sets in G containing S, and similarly ik(G; S) be the number of such
independent sets of size k.

We will prove the following theorem.

Theorem 3.1. If G is a graph with n vertices and α(G) ≤ α, then

i(G) ≤ i(Tn,α),

where Tn,α is the Turán graph with α parts. That is,

i(G) ≤ i (Kn1 ∪Kn2 ∪ · · · ∪Knα) ,

where
∑

ni = n and n1 ≤ n2 ≤ · · · ≤ nα ≤ n1 + 1.

This follows from a more detailed result that among all graphs with independence
number at most α, the complement of the Turán graph Tn,α has the maximum number
of independent sets of each fixed size. This result is equivalent, by complementation, to
the result of Zykov [20] which states that among all graphs with ω(G) ≤ α, the Turán
graph Tn,α has the maximum number of cliques of each fixed size. This result has been
independently proved by many people, including Erdős [6], Sauer [15], Hadžiivanov [8],
and Roman [14]. We give here a direct proof that is substantially shorter than earlier
ones. Our proof is based on the fifth proof of Turán’s theorem (the origin of which seems
to be unknown) in Proofs from the Book [1].

Theorem 3.2. If G is a graph with n vertices and α(G) ≤ α and 0 ≤ k ≤ n, then

ik(G) ≤ ik (Kn1 ∪Kn2 ∪ · · · ∪Knα) ,

where
∑

ni = n and n1 ≤ n2 ≤ · · · ≤ nα ≤ n1 + 1.

Proof. Let G have n vertices, α(G) ≤ α, ik(G) maximal, and, subject to these conditions,
e(G) maximal. It suffices to show that G is of the form Km1 ∪Km2 ∪ · · · ∪Kmα for some
mi ≥ 0 since for such G,

ik(G) =
∑

A⊆([α]
k )

∏
j∈A

mj ≤ ik (Kn1 ∪Kn2 ∪ · · · ∪Knα) .
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We begin by showing that adjacency is an equivalence relation on V (G). The symmetry
and reflexivity of ∼ are obvious, so transitivity is all that needs to be proved. Suppose
that u ∼ v ∼ w, but u 6∼ w. We consider two cases depending on the relative sizes of
ik(G; u), ik(G; v), and ik(G; w).

If ik(G; u) > ik(G; v) (or ik(G; w) > ik(G; v)), then we change G by deleting v and
then cloning u. To be precise, we form G′ by deleting v from G and adding a new vertex
u′ where NG′(u′) = NG(u)∪ {u} \ {w}. No independent set in G′ contains both u and u′,
since u ∼ u′, and so α(G) ≤ α. Further,

ik(G) = ik(G)− ik(v) + ik(u) > ik(G),

contradicting the maximality of G.
On the other hand, if ik(G; v) ≥ ik(G; u), ik(G; w), then we consider the graph in which

we delete u and w and clone v twice. That is, we form G′′ from G − u − w by adding
vertices v′ and v′′ joined to each other, v, and NG(v) \ {u, w}. Again, no independent set
in G′′ contains any two of v, v′, and v′′ since they are mutually adjacent, so α(G′′) ≤ α.
We have

ik(G
′′) = ik(G− u− w) + 2ik(G; v)

= ik(G)− ik(G; u)− ik(G; w) + ik(G; u, w) + 2ik(G; v).

If ik(G; u, w) > 0, then ik(G
′′) > ik(G), a contradiction. On the other hand, if ik(G; u, w) =

0, then G + uw has the same number of k-independent sets as G, but more edges, con-
tradicting the edge-maximality of G.

The next natural problem is that of computing

max {i(G) : n(G) = n, ω(G) ≥ ω} .

Unfortunately, this question is trivial since once your graph has an ω-clique, it need not
have any other edges, and so the extremal graph is Kω ∪ En−ω. However, the question
becomes interesting if one insists that G has copies of Kω “everywhere.” For a graph G
and a vertex v ∈ V (G), we define

ω(G; v) = max {|K| : K is a clique in G containing v} .

Theorem 3.3. If G is a graph on n vertices such that ω(G; v) ≥ ω for every v ∈ V (G),
then

i(G) ≤ i
(
K1, 1, . . . , 1| {z }

ω−1

,n−ω+1

)
= 2n−ω+1 + ω − 1.

Before proving Theorem 3.3, we need to introduce quasi-threshold graphs and com-
pressions that make our graphs “more quasi-threshold.”

Definition 5. A graph is quasi-threshold if, inductively, it is a single vertex, a disjoint
union of two non-empty quasi-threshold graphs, or the join of a vertex and a quasi-
threshold graph.
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Theorem 3.4 (Chvátal, Hammer [3]). A graph is quasi-threshold if for every pair of
adjacent vertices x and y, the closed neighborhoods of x and y are nested, i.e., either
N(x) ∪ {x} ⊆ N(y) ∪ {y} or N(y) ∪ {y} ⊆ N(x) ∪ {x}.

Our proof of Theorem 3.3 proceeds by repeatedly applying a compression operator
that produces nested closed neighborhoods.

Definition 6. Let G be a graph with vertex set V (G), and suppose x ∼ y. The choice
of x and y defines a natural partition of V (G) \ {x, y} into four parts: vertices which
are adjacent only to x, vertices adjacent only to y, vertices adjacent to both and vertices
adjacent to neither. We write

Axȳ = {v ∈ V (G) \ {x, y} : v ∼ x, v 6∼ y} ,

Axy = {v ∈ V (G) \ {x, y} : v ∼ x, v ∼ y} , and

Ax̄y = {v ∈ V (G) \ {x, y} : v 6∼ x, v ∼ y} .

The compression of G from x to y, denoted Gx→y, is the graph obtained from G by
deleting all edges between x and Axȳ and adding all edges from y to Axȳ.

Lemma 3.5. If G is a graph and x ∼ y, then i(G) ≤ i(Gx→y). Also, if x and y do not have
nested closed neighborhoods, we have d2(G) < d2(Gx→y), where d2(G) =

∑
v∈V (G)(d(v))2.

Proof. See [4].

Proof of Theorem 3.3. If n = ω, the result is trivial, so we assume n > ω. We will select
G from the class of graphs with ω(G; v) ≥ ω for all v ∈ V (G) and i(G) maximal. Among
these, we select a graph with the fewest number of edges. Among all such graphs, we pick
one with d2(G) maximal. We first note that every edge of G is in a Kω, for if e were not,
then G− e would be a candidate with fewer edges.

We now show that G is quasi-threshold. Consider a pair x, y with x ∼ y (unless ω = 0
in which case the result is trivial). If the closed neighborhoods of x and y are not nested,
then applying Lemma 3.5 we have i(Gx→y) ≥ i(G), e(Gx→y) = e(G), and d2(Gx→y) >
d2(G). Thus, if we can show that ω(Gx→y; v) ≥ ω for all v ∈ V (Gx→y) = V (G), we have
contradicted the choice of G. Let v ∈ V (G) with v 6= x. Certainly there exists K ⊂ V (G)
inducing a clique with v ∈ K. If x 6∈ K, then K is also a clique in Gx→y. If both x and y
are in K, then K \ {x, y} ⊆ Axy, so K is also a clique in Gx→y. Also, if x ∈ K but y 6∈ K,
then K ′ = K − x + y is a clique in Gx→y. Finally, if v = x, by our earlier observation,
there is a clique K ′′ containing the edge xy. Since all of the elements of K ′′ are in Axy,
we have that K ′′ is a clique in Gx→y. Thus, G is quasi-threshold.

By the definition of quasi-threshold, G is either a union of non-empty quasi-threshold
graphs or the join of a vertex and a quasi-threshold graph. In the first case, where
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G = G1 ∪G2 with n(G1) = n1 and n(G2) = n2, we have

i(G) = i(G1)i(G2)

≤ (2n1−ω+1 + ω − 1)(2n2−ω+1 + ω − 1)

= 2n−2ω+2 + (ω − 1)
(
2n1−ω+1 + 2n2−ω+1

)
+ (ω − 1)2

≤ 2n−2ω+2 + (ω − 1)
(
2n−2ω+1 + 2

)
+ (ω − 1)2

= (ω + 1)
(
2n−2ω+1 + ω − 1

)
.

For ω > 2, it is straightforward to show that this final expression is strictly less than
2n−ω+1 + ω − 1. For ω = 2, we still have strict inequality unless n = 4. In this case,
i(2K2) = i(K1,3) = 9.

In the case where G = x ∨ G′, every vertex in G′ is contained in an (ω − 1)-clique.
Thus,

i(G) = i(G′) + 1 ≤ 2n−1−(ω−1)+1 + (ω − 1)− 1 + 1 = 2n−ω+1 + ω − 1,

completing the proof.

4 Minimizing the number of independent sets

Another natural question to ask relates to minimizing the number of independent sets in
a graph of fixed order and size.

Problem 1. Which graphs have the minimum number of independent sets amongst graphs
on n vertices and m edges?

Somewhat unexpectedly, the problem is related to the problem of maximizing the
number of maximal independent sets. Historically, this problem was studied in the com-
plement, following a question first posed by Erdős and Moser, see [13]. Let f(n) be the
maximum number of maximal independent sets in an n-vertex graph. Note that there is
no restriction on the number of edges in the graph. The question was resolved indepen-
dently by Miller and Muller [12] and by Moon and Moser [13]. Short proofs of this result
were recently given by Vatter [16] and Wood [18].

Theorem 4.1. If n ≥ 2, then

f(n) =


3n/3 if n ≡ 0 (mod 3),

4 · 3bn/3c−1 if n ≡ 1 (mod 3),

2 · 3bn/3c if n ≡ 2 (mod 3).

Further, they showed that the extremal graphs are unions of triangles, with possibly
at most one K2 or K4. It turns out that in the case where 3 divides n, the graph that
maximizes the number of maximal independent sets actually minimizes the number of
independent sets over graphs with n edges.
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The aim of this section is to solve Problem 1 when m ≤ n. We begin by proving a
series of lemmas that will essentially define the extremal graphs. Our first lemma will be
used to show that all components of an extremal graph must be unicyclic. We do this
by eliminating dense components, which imply the existence of isolated vertices in this
regime. We extend our previous notation and write i(G; x̄) for the number of independent
sets in G not containing x. Similarly, if G is a graph, and x and y are vertices of G, we
write i(G; x, ȳ) for the number of independent sets containing x, but not y, and so on.
We begin by proving a simple proposition.

Proposition 4.2. If G is a graph, S ⊂ V (G), and x 6∈ S is a vertex of G, then

i(G; S, x) ≤ i(G; S, x̄).

Proof. Let I0 be the collection of independent sets containing S but not x, and I1 be
the collection of independents sets containing S and x. The map φ : I1 → I0 defined by
φ(I) = I \ {x} is an injection.

Armed with this proposition, we can prove a lemma that implies that graphs with at
most n edges cannot have components with more than one cycle.

Lemma 4.3. Suppose that G contains an edge e = xy and an isolated vertex z. Then
i(G) ≥ i(G− xy + xz).

Proof. Let H = G−z−e and note that i(G) = 2(i(H; x̄, ȳ)+ i(H; x, ȳ)+ i(H; x̄, y)). Also
in terms of G, we note that i(G−xy+xz) = 2i(H; x̄, ȳ)+2i(H; x̄, y)+i(H; x, ȳ)+i(H; x, y).
Thus,

i(G)− i(G− xy + xz) = 2(i(H; x̄, ȳ) + i(H; x, ȳ) + i(H; x̄, y))

− 2i(H; x̄, ȳ)− 2i(H; x̄, y)− i(H; x, ȳ)− i(H; x, y)

= i(H; x, ȳ)− i(H; x, y)

≥ 0,

since i(H; x, y) ≤ i(H; x, ȳ) by Proposition 4.2.

Thus, by repeatedly applying Lemma 4.3, we may assume that our extremal graphs
do not have components with more than one cycle. In fact, this lemma is enough to show
the result for m ≤ n/2. The extremal example consists of independent edges and isolated
vertices. In the regime n/2 < m ≤ n, things get a bit more interesting. In the proof,
we will show that our components are unicyclic. The components, then, each consist
of a cycle with trees off of the cycle. We now prove a series of lemmas to narrow the
possibilities for the structure of these trees. The vertex labels in each lemma refer to the
associated figure. Recall that a cutvertex for a graph G is a vertex x such that G− x has
more components than G.

Lemma 4.4. Suppose G is graph containing a cutvertex x such that G − x contains a
new P3-component of the type in Figure 2. Then i(G) ≥ i(G− xy + wy).
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x y z w x y z w
→

H H

Figure 2: Lemma 4.4

Proof. We compare G to G − xy + wy, effectively disconnecting the pendant path and
replacing it with a disjoint triangle. Let H = G− w − y − z. We have

i(G)− i(G− xy + wy) = 3i(H; x) + 5i(H; x̄)− 4i(H)

= i(H; x̄)− i(H; x)

≥ 0,

by Proposition 4.2.

Lemma 4.5. Suppose G is graph containing a cutvertex x such that G − x contains a
new P3-component of the type in Figure 3. Then i(G) ≥ i(G− wx + yz).

x w

y

z x w

y

z
→

H H

Figure 3: Lemma 4.5

Proof. Again, we compare the graphs in the lemma, and note that we are replacing a
pendant tree with a disjoint triangle. Let H = G− w − y − z. We see that

i(G)− i(G− wx + yz) = 4i(H; x) + 5i(H; x̄)− 4i(H)

= i(H; x̄)

≥ 0.

Lemma 4.6. Suppose G is a graph containing a cutvertex x such that G− x contains a
new isolated vertex and a new P2-component as in Figure 4. Then i(G) ≥ i(G − xy −
xw + wy + wz).
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x

w

y z
x

w

y z

→

H H

Figure 4: Lemma 4.6

Proof. We are again essentially replacing the two pendant paths by a disjoint triangle.
Let H = G− y − z − w. We see that

i(G)− i(G− xy − xw + wy + wz) = 2i(H; x) + 6i(H; x̄)− 4i(H)

= 2i(H; x̄)− 2i(H; x)

≥ 0,

by Proposition 4.2.

Lemma 4.7. Suppose G is a graph with leaves u and v having a common neighbor. (See
Figure 5.) Then i(G) ≥ i(G− xv + uv).

x

u

v
x

u

v

→

H H

Figure 5: Lemma 4.7

Proof. Here, we replace two short leaf paths with one longer leaf path. Let H = G−u−v.
We have

i(G)− i(G− xv + uv) = 4i(H; x̄) + i(H; x)− 3i(H; x̄)− 2i(H; x)

= i(H; x̄)− i(H; x)

≥ 0,

by Proposition 4.2.

Lemma 4.8. Let G be a graph with leaf v adjacent to a vertex u of degree three as in
Figure 6. Then i(G) ≥ i(G− uy + vy).
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H

x

u

y

v

y

u

x
v→

H

Figure 6: Lemma 4.8

Proof. Let H = G− u− v. We see that

i(G)− i(G− uy + vy) = 3i(H; x̄, ȳ) + 2(i(H; x, ȳ) + i(H; x̄, y) + i(H; x, y))

− 3i(H; x̄, ȳ)− 2(i(H; x̄, y) + i(H; x, ȳ))− i(H; x, y)

= i(H; x, y)

≥ 0.

Lemma 4.9. Suppose G contains the structure from Figure 7 where x and y are allowed
to be adjacent or non-adjacent. Then i(G) ≥ i(G− xu− yw + uw + vw).

x

y

u v

w

x

y

u v

w

→

H H

Figure 7: Lemma 4.9

Proof. Again, we are replacing leaf paths with a disjoint triangle. Let H = G−u−v−w.
We see that

i(G)− i(G− xu− yw + uw + vw) = 6i(H; x̄, ȳ) + 3i(H; x, ȳ) + 2i(H; x̄, y)

+ 2i(H; x, y)− 3i(H)

= 3i(H; x̄, ȳ)− i(H; x, ȳ)− i(H; x, y)

≥ 0,

by Proposition 4.2.

Our next lemma states that there is a relationship between the number of independent
sets in paths and cycles and the Fibonacci numbers. We let Fn be the nth Fibonacci
number so that F1 = 1, F2 = 1, and Fn = Fn−1 + Fn−2 for n ≥ 3. Similarly, Ln is the
nth Lucas number, i.e., L1 = 1, L2 = 3, and Ln = Ln−1 + Ln−2 for n ≥ 3. It is easy to
see that Ln = Fn−1 + Fn+1 for n ≥ 2. The following lemma is well-known. We include a
proof for completeness.
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Lemma 4.10. For any integer n ≥ 1, we have i(Pn) = Fn+2. For any integer n ≥ 3, it
is the case that i(Cn) = Ln.

Proof. The first half follows from the fact that i(P1) = 2 = F3, i(P2) = 3 = F4, and the
fact that

i(Pn) = i(Pn−1) + i(Pn−2),

which follows by considering independent sets containing an endpoint, and those that do
not. For the second half, note that

i(Cn) = i(Pn−1) + i(Pn−3) = Fn+1 + Fn−1 = Ln.

Lemma 4.11. If n is an integer with n ≥ 6, then i(Cn) ≥ i(C3 ∪ Cn−3).

Proof. We have

i(Cn) = Ln = 3Ln−3 + 2Ln−4 > 4Ln−3 = i(C3)i(Cn−3) = i(C3 ∪ Cn−3).

Lemma 4.12. Let G consist of a Cn, with n ≥ 4, together with a pendant path of length
two. (See Figure 8). Then i(G) ≥ i(C3 ∪ Cn−1).

Cn

x

w

y

v u

y

x

w v u

Cn−1

→

Figure 8: Lemma 4.12

Proof. We have
i(G) = 2Ln + Fn+1 = 8Fn−1 + 3Fn−2,

and
i(C3 ∪ Cn−1) = 4Ln−1 = 4Fn−1 + 8Fn−2.

Thus,
i(G)− i(C3 ∪ Cn−1) = 4Fn−1 − 5Fn−2 > 0.
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G i(G) G′ i(G′)
C4 ∪ C5 77 3C3 64
C4 ∪ C4 49 C3 ∪ C5 44
C5 ∪ C5 121 2C3 ∪ C4 112
C5 ∪ P2 33 C3 ∪ P4 28
C4 ∪ P2 21 C3 ∪ P3 20
C4 ∪ P3 35 C3 ∪ P4 28
C4 ∪ P4 56 2C3 ∪ P2 48
C5 ∪ P3 55 2C3 ∪ P2 48
C5 ∪ P4 88 2C3 ∪ P3 80

2P3 25 P4 ∪ P2 24
P3 ∪ P4 40 C3 ∪ 2P2 36
P4 ∪ P4 64 C3 ∪ P3 ∪ P2 60

Table 1: A comparison of small graphs. In each case, i(G) > i(G′).

Figure 9: The compatibility graph for components of an extremal graph

Before stating the main theorem, we must define the extremal graphs. Our lemmas
will allow us to show that each component of the extremal graph is either a vertex or
one of P2, P3, P4, C3, C4, or C5. Some combinations of these components are ruled out.
Table 1 lists the incompatible combinations of these graphs, giving in the second column
a replacement having fewer independent sets. Figure 9 shows the compatibility graph
for these, where edges (including loops) are between small graphs that can exist together
as components of an extremal graph. Let Z be the set of all graphs, each component
of which is either a vertex or one of P2, P3, P4, C3, C4, or C5, such that each pair of
components is compatible according to the graph in Figure 9. We prove that for each n
and 0 ≤ m ≤ n, there is a unique element of Z with n vertices and m edges, which we
denote Z(n, m). Essentially, if 0 ≤ m < n/2, then Z(n, m) consists of independent edges
and isolated vertices. As m increases from n/2 to n, there are no longer any isolated
vertices, and Z(n, m) consists mainly of independent edges and triangles, along with at
most one P3 or P4. When m = n, the graph Z(n, m) is disjoint triangles, along with at
most one C4 or C5.
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Proposition 4.13. For each n and 0 ≤ m ≤ n, there is a unique element of Z with n
vertices and m edges.

Proof. The claim is trivial when m ≤ n/2 or m = n. For n/2 < m < n the number of
path components is equal to n−m, so, counting vertices, we have

3c + 2(n−m) + ε = n, i.e., 3c + ε = 2m− n,

where c is the number of triangles and ε = 0, 1, 2 corresponds to the presence of only P2’s,
one P3, or one P4. This determines c and ε.

We are finally able to state and prove the main theorem of this section.

Theorem 4.14. Let n be a positive integer and m be an integer with 0 ≤ m ≤ n. If G is
a graph on n vertices and m edges, then

i(G) ≥ i(Z(n, m)).

Proof. Suppose that G is a graph on n vertices and m edges. If m ≤ n/2 and G contains
any component that is not an edge or an isolated vertex, then we can apply Lemma 4.3
repeatedly to any edge of a component with more than one edge until we are left with
Z(n, m).

If n/2 < m ≤ n, then we can apply Lemma 4.3 repeatedly so that every component
of G is unicyclic or a tree, since the existence of a component with more than one cycle
implies the existence of an isolated vertex in this regime. Each unicyclic component of
G consists of a cycle with pendant trees off of the cycle. We define a leaf path as a path
starting at a leaf with all internal vertices having degree two. If any leaf path is of length
three or more, we can apply Lemma 4.4. Thus, every leaf path has length one or two. If
there are two of length two with the same endpoint, we can apply Lemma 4.9. If there
is one of length two and one of length one, we can apply Lemma 4.6. If there are two of
length one, we can apply either Lemma 4.5 or Lemma 4.7. When applying Lemma 4.7,
we may create one of the earlier situations again, and so can go through the same process
again. At every stage, the number of vertices in the 2-core minus the number of leaves
goes strictly up, so the process must eventually terminate; we show that we end up with
Z(n, m).

At this point, we are left with a graph in which every unicyclic component consists of
a cycle with pendant paths of length one or two. If there are any cycle vertices of degree
three with one pendant path of length one, then we can apply Lemma 4.8. If there is
more than one pendant path of length two, then we can apply Lemma 4.9. Thus, the
unicyclic components that are left are either cycles or have one pendant path of length
two. In the latter case, we can apply Lemma 4.12. So, every unicyclic component left is
a cycle and we can apply Lemma 4.11 until all cycles are of length at most five.

To finish, we simply use the results compiled in Table 1 to get that the graph contains
no pair of incompatible components. This implies that G is Z(n, m), which completes the
proof of the theorem.
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The problem of minimizing i(G) over graphs with n vertices and m edges remains
open for m > n. We conjecture that if m = n

r

(
r
2

)
and r divides n, then the extremal

graph is n
r
Kr.
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