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Abstract

A colorful path in a graph G is a path with χ(G) vertices whose colors are differ-
ent. A v-colorful path is such a path, starting from v. Let G 6= C7 be a connected
graph with maximum degree ∆(G). We show that there exists a (∆(G)+1)-coloring
of G with a v-colorful path for every v ∈ V (G). We also prove that this result is
true if one replaces (∆(G) + 1) colors with 2χ(G) colors. If χ(G) = ω(G), then
the result still holds for χ(G) colors. For every graph G, we show that there exists
a χ(G)-coloring of G with a rainbow path of length ⌊χ(G)/2⌋ starting from each
v ∈ V (G).
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1 Introduction

Throughout this paper all graphs are simple. Let G be a graph and V (G) be the vertex
set of G. In a connected graph G, for any two vertices u, v ∈ V (G) let dG(u, v) denote the
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length of the shortest path between u and v in G. We denote the DFS tree in G rooted
at v by T (G, v) (which is defined in [2, p.139]). For every u ∈ V (G), each vertex on the
path between u and v in T (G, v) is called an ancestor of u. By Theorem 6.6 of [2], in
every DFS tree if w and w′ are adjacent, then one of them is ancestor of another.

In a graph G, a k-coloring of G is a function c : V (G) → {0, . . . , k − 1} such that
c(u) 6= c(v) for every adjacent vertices u, v ∈ V (G). The chromatic number of G denoted
by χ(G), is the smallest k for which G has a k-coloring. For simplicity we denote a
χ(G)-coloring of G by χ-coloring. For a coloring of graph G, we say path P of G is a
rainbow path if all vertices of P have different colors. A v-rainbow path is a rainbow path
starting from the vertex v. A v-colorful path is a rainbow path starting from the vertex
v with χ(G) vertices. The colorful paths and rainbow paths have been studied by several
authors, see [4], [5] and [6].

For each u ∈ V (G), let N(u) be the set of all vertices adjacent to u. We denote a cycle
of order n by Cn. Also we denotes the size of the maximum clique in G by ω(G). A good

cycle in a graph G is a cycle of order ℓ in which ℓ ≥ χ(G) and ℓ = 0 or ℓ = 1 (mod χ(G)).

2 The Existence of (∆(G)+1)-Colorings with Colorful

Paths

Let G be a graph. We recall that a path in G is said to represent all χ(G) colors if all the
colors 0, . . . , χ(G) − 1 appear on this path. The following problem was posed in [6].

Problem. Let G be a connected graph. Does there always exist a proper vertex col-
oring of G with χ(G) colors such that every vertex of G is on a path with χ(G) vertices
which represents all χ(G) colors?

The following conjecture was proposed in [1].

Conjecture. Let G 6= C7 be a connected graph. Then there exists a χ(G)-coloring of G
such that for every v ∈ V (G), there exists a v-colorful path.

In [1] it is shown that the local version of conjecture is true, that is for an arbitrary
v ∈ V (G), there exists a χ-coloring of G with a v-colorful path. We start with the
following theorem.

Theorem 1 Let G 6= C7 be a connected graph. If G contains a good cycle, then there is

a (∆(G) + 1)-coloring of G with a v-colorful path for every v ∈ V (G).

Proof. For complete graphs the assertion is trivial. Fig.1 shows a proper 3-coloring for
odd cycles except C7, with a v-colorful path for every v ∈ V (G). Thus assume that G is
neither an odd cycle nor a complete graph.

Assume that C is a good cycle of the minimum order k in G, with vertices v0, v1, . . .,
vk−1, such that k = 0 or k = 1 (mod χ(G)). For every i, 0 ≤ i ≤ k − 1, we color the
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Figure 1: Coloring of odd cycles not isomorphic to C7

vertex vi by i mod χ(G) using the colors 0, . . . , χ(G)− 1. In the case k = 1 (mod χ(G)),
we color vk−1 by the color χ(G) and call vk−1 by v∗. Note that because of the minimality
of the order of C, there is no edge between two vertices of the same color and for each
i, 0 ≤ i ≤ k − 1, there is a vi-colorful path on C. As a consequence of Brooks’ Theorem
(Theorem 14.4 of [2]), in the coloring of C we use at most ∆(G) + 1 colors. For each i,
0 ≤ i ≤ k − 1, let father of vi (for abbreviation F (vi)) be v((i+1) mod k).

Now, we provide an algorithm to color the remaining vertices of G with ∆(G)+1 colors
such that there is a v-colorful path for each v ∈ V (G). For simplicity, define Next(t) the
color (t + 1) mod (∆(G) + 1), for every t, 0 ≤ t ≤ ∆(G).

In each step of the algorithm, let u be one of the vertices with no color, but adjacent
to some colored vertices. Let c(N(u)) be the set of all colors appeared in the neighbors
of u. Since |c(N(u))| ≤ ∆(G), we can choose an available color t such that t /∈ c(N(u))
but Next(t) ∈ c(N(u)).

Let F (u) be one of the vertices in N(u) whose color is Next(t). Assign the color t to
u and continue the algorithm until all vertices are colored.

Obviously the algorithm produces a proper coloring c. Now, we show that there is a
u-colorful path. Consider the following sequence of the vertices Q(u) : q1, . . . , qχ(G) such
that q1 = u and for every i, 1 < i ≤ χ(G) : qi = F (qi−1). We prove that Q(u) is a
u-colorful path. We claim that the colors of q1, . . . , qχ(G) are distinct.
The proof is by contradiction. It can be easily checked that the following holds:

c(qi+1) =







c(qi) + 1 (mod (∆(G) + 1)) if qi /∈ C
c(qi) + 1 (mod χ(G)) if qi, qi+1 ∈ C\{v∗}
c(qi) + 1 (mod (χ(G) + 1)) if qi = v∗ or qi+1 = v∗.

Assume that for some a 6= b, c(qa) = c(qb). It is clear that for some i, a ≤ i < b,
c(qi) = 0. Let M = max{ i | i < b, c(qi) = 0 }. The colors of the vertices qM , qM+1, . . . , qb

are 0, 1, . . . , c(qb), respectively. Since the number of vertices of Q(u) is χ(G), we have
0 < c(qb) < χ(G).
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Now, let m = min{ i | a < i, c(qi) = 0 }. Since c(qa) 6= 0, we have m ≤ M . The
number of vertices in the sequence qM , . . . , qb is exactly c(qb) + 1. Since c(qm) = 0,
c(qm−1) ∈ {χ(G)−1, χ(G), ∆(G)}. So the number of vertices in the sequence qa, . . . , qm−1

is at least χ(G) − c(qa). Therefore the number of vertices of Q(u) should be at least
χ(G) + 1, a contradiction. The claim is proved. 2

Before stating our main results, we need to prove another theorem.

Lemma 1 Let G be a connected graph with no cycle of order χ(G). For a given vertex

v, there exists u ∈ V (G) such that 2χ(G) − 2 ≤ dT (G,v)(u, v).

Proof. Let T = T (G, v). If for every w ∈ V (G), 2χ(G) − 2 > dT (w, v), then we show
one can properly color the vertices of G using χ(G) − 1 colors. To see this we define
a coloring c as follows. For every w ∈ V (G), let c(w) = dT (w, v) (mod (χ(G) − 1)).
Assume that w1, w2 ∈ V (G) are adjacent and c(w1) = c(w2). Since T is a DFS tree, with
no loss of generality we can suppose that w1 is an ancestor of w2. Thus dT (w1, w2) =
0 (mod (χ(G)−1)). If dT (w1, w2) 6= χ(G)−1, then dT (w2, v) ≥ 2χ(G)−2; a contradiction.
Hence dT (w1, w2) = χ(G)−1. Since w1 and w2 are adjacent we find a cycle of order χ(G);
a contradiction. 2

The following theorem proves the assertion of Theorem 1 for the graphs with no good
cycle.

Theorem 2 Let G 6= C7 be a connected graph. If G has no good cycle, then there is a

(∆(G) + 1)-coloring of G with a v-colorful path for every v ∈ V (G).

Proof. As we see in the proof of Theorem 1, the assertion holds for odd cycles except
C7. Thus assume that G is not an odd cycle. Let v be an arbitrary vertex of G and
T = T (G, v). By Lemma 1, there exists a vertex u such that 2χ(G) − 2 ≤ dT (u, v).
Let P : v = p0, p1, . . . , pk = u be the path between v and u in T . Let Q represent
the set of vertices of G whose ancestors(including the vertex itself) are not in the set
{pχ(G)−1, pχ(G), . . . , pk}. Define S = Q\P (See Fig.2).

For each w ∈ V (G)\S, color w with dT (w, v) mod χ(G). Since there are no good
cycles in G, therefore the coloring of V (G)\S is proper. For each w ∈ Q\S, there is a
w-colorful path in V (G)\S going downward in T through P , by passing from each vertex
to its child in P . For each w ∈ V (G)\Q, there is a w-colorful path in V (G)\S going
upward in T by passing from each vertex to its parent.

So for each w ∈ V (G)\S, there is a w-colorful path. All uncolored vertices are
contained in S. We color them in such a way that for each w ∈ S there exists a
vertex w′ ∈ N(w), where c(w′) = Next(c(w)). Recall that for a color t, Next(t) =
(t + 1) mod (∆(G) + 1). We denote w′ by F (w). Since T is a DFS tree there are no edges
between S and V (G)\Q. Therefore F (w) ∈ Q. Such coloring can be obtained using the
algorithm discussed in the proof of Theorem 1. Now, we show that for each w ∈ S, there
exists a w-colorful path.
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Figure 2: The DFS tree T , rooted at v. This figure illustrates only the edges of T .

For every i, 0 ≤ i ≤ k − 1, let F (pi) = pi+1. Consider the sequence of the vertices
Q(w) : q0(= w), . . . , qχ(G)−1, where F (qi) = qi+1, for every i, 0 ≤ i < χ(G) − 1. Note that
for each i, 0 ≤ i < χ(G)− 1, c(qi+1) is either Next(c(qi)) or c(qi) + 1 (mod χ(G)). Hence
there are no vertices with the same color in Q(w). Therefore Q(w) is a w-colorful path. 2

The following theorem shows that for every graph G the conjecture is true for ∆(G)+1
colors instead of χ(G) colors. In [1] it was proved that the conjecture is true for χ(G) +
∆(G) − 1 colors. The following theorem is an improvement of this result.

Theorem 3 Let G 6= C7 be a connected graph. Then there is a (∆(G) + 1)-coloring of G
with a v-colorful path, for every v ∈ V (G).

Proof. If G 6= C7 contains a good cycle, then by Theorem 1 there is a (∆(G)+1)-coloring
of G with a v-colorful path, for every v ∈ V (G). Thus, we may assume that G does not
have a good cycle. In this case, Theorem 2 shows that there is a (∆(G) + 1)-coloring of
G with the same properties. 2

3 The Existence of (2χ(G))-Colorings with Colorful

Paths

Let c be a χ-coloring of a given graph G. Let Gc be a directed graph with the same vertex
set of G which has a directed edge from u to v if and only if (i) u and v are adjacent in
G; and (ii) c(v) = c(u) + 1 (mod χ(G)).
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Lemma 2 Let c be a χ-coloring of a connected graph G. For a given subgraph H of G,

there exists a χ-coloring c′, such that for every v ∈ V (H), c′(v) = c(v) and for every

u ∈ V (G), there is a directed path from u to at least one of the vertices of V (H) in Gc′.

Proof. For an arbitrary χ-coloring of G like c, a vertex u in Gc is called nice if there
exists a directed path from u to a vertex of H . Assuming that we have a χ-coloring c,
we give a polynomial-time algorithm to obtain the coloring c′ from c, such that all the
vertices are nice. Let c′ = c and let S ∈ V (G) be the set of all vertices of G which are not
nice in c′. We will decrease |S|, by modifying c′ in each iteration of the algorithm. After
at most |V | iterations, all the vertices would be nice.

In each iteration, we do as follows:
Let c′i, for i, 1 ≤ i < χ(G), be the coloring of G such that:

c′i(v) =

{

c′(v) if v /∈ S
c′(v) + i (mod χ(G)) if v ∈ S.

Since G is connected, at least one of these colorings is not proper. Assume that t is the
smallest natural number for which c′t is not proper. By the definition of S, there is no
directed edge from S to V (G)\S in Gc′ . Hence c′1 is proper. Now, consider the proper
coloring c′t−1. Since c′t is not proper, there are two adjacent vertices u ∈ S and v /∈ S such
that c′t−1(u) + 1 = c′t−1(v) (mod χ(G)). Therefore u is also a nice vertex in Gc′t−1

. Now,
let c′ be c′t−1 and continue with the next iteration (note that the vertices of G\S remain
nice in c′ and u becomes a nice vertex).
After at most |V | iterations the algorithm will find a coloring c′ such that all vertices
are nice, and each iteration can be implemented in O(|V |+ |E|) time (by considering the
edges between S and G\S). 2

We denote the χ-coloring c′, given in the proof of Lemma 2, by C(G, H, c). Next
theorem shows that for every graph G the conjecture holds if one replaces χ(G) colors
with 2χ(G) colors.

Theorem 4 Let G be a connected graph. Then there exists a 2χ(G)-coloring of G with

a v-colorful path for every v ∈ V (G).

Proof. Let H = C when there is a cycle C of order χ(G) or χ(G) + 1, otherwise let
H be the path with 2χ(G) − 1 vertices according to Lemma 1. In either case, choose an
arbitrary vertex of H and call it by v∗. Let c be a χ-coloring of G and set c′ = C(G, v∗, c).
Now we recolor vertices of H with at most χ(G) new colors χ(G), . . . , 2χ(G) − 1 such
that:

• If H is a cycle, then color vertices of H\v∗ with one of the colors χ(G), . . . , 2χ(G)−1.
Color v∗ as the same as its color in C(G, v∗, C).

• If H : p0, . . . , p2χ(G)−2 is a path, then color pi with χ(G) + (i mod χ(G)).
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We first claim that c′ is a proper coloring. This is trivial in the first case. In the case
H is a path P , if there are two adjacent vertices u, v ∈ V (G) with the same color in c′,
then u, v ∈ V (P ), because V (G)\H is properly colored with the colors 0, . . . , χ(G) − 1
and H is colored with the colors χ(G), . . . , 2χ(G) − 1. Let pi = u and pj = v. With
no loss of generality suppose that i < j. Note that in the coloring of P , we should have
i = j (mod χ(G)). So the vertices pi, . . . , pj form a cycle of order χ(G)+1, a contradiction.

Now, we show that for each v ∈ V (G), there is a v-colorful path in c′.

Case 1. H is a cycle with the vertices D : v0, . . . , vk, where k = χ(G) − 1 or χ(G).
Let v be an arbitrary vertex of G. If v ∈ D, then it is clear that there is a v-colorful
path in D. If v /∈ D, then by Lemma 2, there exists a directed path starting from v and
ending to v∗ in Gf , where f = C(G, v∗, c). Call this path by Q : q0(= v), . . . , qk(= v∗). If
k ≥ χ(G)− 1, then q0, . . . , qχ(G)−1 is a v-colorful path. So assume that k < χ(G)− 1. Let
i be the smallest index such that qi ∈ D. Consider the qi-colorful path in D and call it
by Q′ : q′0(= qi), . . . , q

′
χ(G)−1. We claim that Q′′ : q0, . . . , qi, q

′
1, . . . , q

′
χ(G)−i−1 is a v-colorful

path. The vertices of D are differently colored with the colors c(v∗), χ(G), . . . , 2χ(G)− 1.
Since k < χ(G)− 1, there are no vertices colored with c(v∗) in {q0, . . . , qi}. Therefore Q′′

is a v-colorful path.

Case 2. H is a path P . Let v be an arbitrary vertex of G. If v ∈ V (P ), then ac-
cording to the length of P , there is a v-colorful path in P . If v /∈ V (P ), then by Lemma 2,
there is a directed path starting from v and ending to v∗ in Gf , where f = C(G, v∗, c). Call
this path by Q : q0(= v), . . . , qk(= v∗). Let i be the smallest index such that qi ∈ V (P ). If
i ≥ χ(G)−1, then q0, . . . , qχ(G)−1 is a v-colorful path. If i < χ(G)−1, then consider the qi-
colorful path in P and call it by Q′ : q′0(= qi), . . . , q

′
χ(G)−1. Then q0, . . . , qi, q

′
1, . . . , q

′
χ(G)−i−1

is a v-colorful path and the proof is complete. 2

4 Long Rainbow Paths in χ(G)-Colorings

The following theorem shows that for every graph G with χ(G) = ω(G), the conjecture
is true.

Theorem 5 Let G be a graph with ω(G) = χ(G). Then there exists a χ(G)-coloring of

G with a v-colorful path for every v ∈ V (G).

Proof. Assume that M = {v1, . . . , vχ(G)} is a maximum clique in G. We claim that
the assertion holds for the coloring f = C(G, M, c), where c is an arbitrary coloring of
G. By Lemma 2, for every v ∈ V (G), there exists a directed path in Gf , starting from
v and ending in M . Call this path by P : p1, . . . , pk. Let M ′ = {u1, . . . , uχ(G)−k} be a
subset of M such that for every j, 1 ≤ j ≤ χ(G) − k, c(uj) /∈ {c(p1), . . . , c(pk)}. Clearly,
p1, . . . , pk, u1, . . . , uχ(G)−k is a v-colorful path. 2

the electronic journal of combinatorics 18 (2011), #P17 7



In the previous theorems, we proved the existence of v-colorful paths (rainbow paths
of length χ(G)), for every v ∈ V (G), using a set of colors with different sizes. We close
this paper by showing that there are some χ-colorings of G in which there exist long
v-rainbow paths, for every v ∈ V (G).

Theorem 6 Let G be a connected graph. Then there is a χ(G)-coloring of G in which

for every v ∈ V (G), there exists a v-rainbow path of length ⌊χ(G)
2

⌋.

Proof. Let c be a χ-coloring of G. As a consequence of Proposition 5 in [3], there is a
path P : p0, . . . , pχ(G)−1 such that

c(pi) =

{

i if 0 ≤ i ≤ m
χ(G) + m − i if m + 1 ≤ i ≤ χ(G) − 1,

where m = ⌊χ(G)−1
2

⌋. Let c′ = C(G, P, c). By Lemma 2, for every v ∈ V (G), there is a
path Q(v) : v = q1, . . . , qk = ps, where c′(qi+1) = c′(qi) + 1 (mod χ(G)) for 1 ≤ i < k.
With no loss of generality, assume that qk ∈ V (P ) and qi /∈ V (P ) for each i, 1 ≤ i ≤ k−1.

Let Q′(v) : q′1, . . . , q
′

k+⌊
χ(G)

2
⌋

be the path of length k + ⌊χ(G)
2

⌋ − 1 such that

q′i =







qi if 1 ≤ i ≤ k

ps+(i−k) if k + 1 ≤ i ≤ k + ⌊χ(G)
2

⌋ and s ≤ m

ps−(i−k) if k + 1 ≤ i ≤ k + ⌊χ(G)
2

⌋ and m < s.

We claim that the first ⌊χ(G)
2

⌋+ 1 vertices of Q′(v) form a v-rainbow path. We prove this
in the case s ≤ m. The other case(s > m) is similar.

Let t be the integer that q′t = pm. If t ≥ ⌊χ(G)
2

⌋ + 1, then it is clear that there is a

v-rainbow path of length ⌊χ(G)
2

⌋. Thus assume that t ≤ ⌊χ(G)
2

⌋. We have

• c′(q′i+1) = c′(q′i) + 1, for i, 1 ≤ i < t; and

• c′(q′i) = c′(q′i+1) + 1, for i, t + 1 ≤ i ≤ ⌊χ(G)
2

⌋.

Therefore, c′(q′i) ∈ {0, . . . , m} for i, 1 ≤ i ≤ t, and c′(q′i) ∈ {m + 1, . . . , χ(G) − 1} for i,

t + 1 ≤ i ≤ ⌊χ(G)
2

⌋+ 1. Hence the color of the vertices of q′1, . . . , q
′

⌊χ(G)
2

⌋+1
are distinct and

this path is a v-rainbow path. 2
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