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Throughout this paper all graphs are simple. Let G be a graph and V(G) be the vertex
set of G. In a connected graph G, for any two vertices u,v € V(G) let dg(u,v) denote the
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Abstract

A colorful path in a graph G is a path with y(G) vertices whose colors are differ-
ent. A v-colorful path is such a path, starting from v. Let G # C7 be a connected
graph with maximum degree A(G). We show that there exists a (A(G)+1)-coloring
of G with a v-colorful path for every v € V(G). We also prove that this result is
true if one replaces (A(G) + 1) colors with 2x(G) colors. If x(G) = w(G), then
the result still holds for x(G) colors. For every graph G, we show that there exists
a X(G)-coloring of G with a rainbow path of length |x(G)/2] starting from each
v e V(Q).
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length of the shortest path between u and v in G. We denote the DFS tree in G rooted
at v by T'(G,v) (which is defined in [2, p.139]). For every u € V(G), each vertex on the
path between u and v in T(G,v) is called an ancestor of u. By Theorem 6.6 of [2], in
every DFS tree if w and w’ are adjacent, then one of them is ancestor of another.

In a graph G, a k-coloring of G is a function ¢ : V(G) — {0,...,k — 1} such that
c(u) # c(v) for every adjacent vertices u,v € V(G). The chromatic number of G denoted
by x(G), is the smallest k& for which G has a k-coloring. For simplicity we denote a
X(G)-coloring of G by x-coloring. For a coloring of graph G, we say path P of G is a
rainbow path if all vertices of P have different colors. A v-rainbow path is a rainbow path
starting from the vertex v. A v-colorful path is a rainbow path starting from the vertex
v with x(G) vertices. The colorful paths and rainbow paths have been studied by several
authors, see [, [B] and [6].

For each u € V(G), let N(u) be the set of all vertices adjacent to u. We denote a cycle
of order n by C,,. Also we denotes the size of the maximum clique in G by w(G). A good
cycle in a graph G is a cycle of order ¢ in which ¢ > x(G) and ¢ = 0 or £ = 1 (mod x(Q)).

2 The Existence of (A(G)+1)-Colorings with Colorful
Paths

Let G be a graph. We recall that a path in G is said to represent all x(G) colors if all the
colors 0,...,x(G) — 1 appear on this path. The following problem was posed in [6].

Problem. Let G be a connected graph. Does there always exist a proper vertex col-
oring of G with x(G) colors such that every vertex of GG is on a path with x(G) vertices
which represents all x(G) colors?

The following conjecture was proposed in [IJ.

Conjecture. Let G # C;7 be a connected graph. Then there exists a x(G)-coloring of G
such that for every v € V(G), there exists a v-colorful path.

In [T] it is shown that the local version of conjecture is true, that is for an arbitrary
v € V(G), there exists a x-coloring of G with a wv-colorful path. We start with the
following theorem.

Theorem 1 Let G # C; be a connected graph. If G contains a good cycle, then there is
a (A(G) + 1)-coloring of G with a v-colorful path for every v € V(G).

Proof. For complete graphs the assertion is trivial. Fig.1 shows a proper 3-coloring for
odd cycles except C7, with a v-colorful path for every v € V(G). Thus assume that G is
neither an odd cycle nor a complete graph.

Assume that C is a good cycle of the minimum order k£ in GG, with vertices v, v1, . . .,
Uk—1, such that k = 0 or k = 1(mod x(G)). For every i, 0 < ¢ < k — 1, we color the

THE ELECTRONIC JOURNAL OF COMBINATORICS 18 (2011), #P17 2



1 1
2 2
0 0

(c+ 1)mod SCLI(CC +2)mod 3

Figure 1: Coloring of odd cycles not isomorphic to Cr

vertex v; by ¢ mod x(G) using the colors 0, ..., x(G) — 1. In the case k = 1 (mod x(G)),
we color vg_1 by the color x(G) and call vi_; by v*. Note that because of the minimality
of the order of C', there is no edge between two vertices of the same color and for each
1, 0 < i <k — 1, there is a v;-colorful path on C. As a consequence of Brooks’ Theorem
(Theorem 14.4 of [2]), in the coloring of C' we use at most A(G) + 1 colors. For each 1,
0<i<k—1,let father of v; (for abbreviation F'(v;)) be v((i41)mod k)-

Now, we provide an algorithm to color the remaining vertices of G with A(G)+1 colors
such that there is a v-colorful path for each v € V(G). For simplicity, define Next(t) the
color (t + 1) mod (A(G) + 1), for every ¢, 0 <t < A(G).

In each step of the algorithm, let u be one of the vertices with no color, but adjacent
to some colored vertices. Let ¢(N(u)) be the set of all colors appeared in the neighbors
of u. Since |¢(N(u))| < A(G), we can choose an available color ¢ such that ¢ ¢ ¢(N(u))
but Next(t) € c¢(N(u)).

Let F'(u) be one of the vertices in N(u) whose color is Next(t). Assign the color ¢ to
u and continue the algorithm until all vertices are colored.

Obviously the algorithm produces a proper coloring c¢. Now, we show that there is a

u-colorful path. Consider the following sequence of the vertices Q(u) : g1, ..., ¢y such
that ¢ = u and for every i, 1 < ¢ < x(G) : ¢ = F(g;—1). We prove that Q(u) is a
u-colorful path. We claim that the colors of ¢y, ..., q,(q) are distinct.

The proof is by contradiction. It can be easily checked that the following holds:

c(q) +1 (mod (A(G) +1)) ifg ¢ C
c(giv1) = § (@) + 1 (mod x(G) if ¢;, giy1 € C\{v*}
c(g)+ 1 (mod (x(G)+1)) if ¢; =v* or g4 = v*.

~— —

Assume that for some a # b, ¢(q,) = ¢(qp). It is clear that for some i, a < i < b,
c(g;) = 0. Let M = max{i|i <b,c(q;) =0}. The colors of the vertices qns, qars1s-- -, @
are 0,1,...,c(q), respectively. Since the number of vertices of Q(u) is x(G), we have

0 < elgs) < x(G).
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Now, let m = min{i|a < i,¢(¢;) = 0}. Since ¢(q,) # 0, we have m < M. The
number of vertices in the sequence qy,...,q is exactly c(g,) + 1. Since c(g,) = 0,
c(gm-1) € {x(G)—1,x(G),A(G)}. So the number of vertices in the sequence qq, . .., ¢mn_1
is at least x(G) — ¢(q,). Therefore the number of vertices of Q(u) should be at least
X(G) + 1, a contradiction. The claim is proved. a

Before stating our main results, we need to prove another theorem.

Lemma 1 Let G be a connected graph with no cycle of order x(G). For a given vertex
v, there exists u € V(G) such that 2x(G) — 2 < dpg ) (u, v).

Proof. Let T'= T(G,v). If for every w € V(G), 2x(G) — 2 > dyp(w,v), then we show
one can properly color the vertices of G using x(G) — 1 colors. To see this we define
a coloring ¢ as follows. For every w € V(G), let c¢(w) = dp(w,v) (mod (x(G) — 1)).
Assume that wy, ws € V(G) are adjacent and c(w;) = c¢(ws). Since T is a DFS tree, with
no loss of generality we can suppose that w; is an ancestor of ws. Thus dr(wy,ws) =
0 (mod (x(G)—1)). If dp(wy,we) # x(G)—1, then dy(ws, v) > 2x(G)—2; a contradiction.
Hence dr(wy,ws) = x(G)—1. Since w; and wy are adjacent we find a cycle of order x(G);
a contradiction. O

The following theorem proves the assertion of Theorem [l for the graphs with no good
cycle.

Theorem 2 Let G # C; be a connected graph. If G has no good cycle, then there is a
(A(G) 4 1)-coloring of G with a v-colorful path for every v € V(G).

Proof. As we see in the proof of Theorem [Il, the assertion holds for odd cycles except
C7. Thus assume that G is not an odd cycle. Let v be an arbitrary vertex of G and
T = T(G,v). By Lemma [l there exists a vertex u such that 2x(G) — 2 < dr(u,v).
Let P : v = po,p1,...,pr = u be the path between v and w in T. Let () represent
the set of vertices of G whose ancestors(including the vertex itself) are not in the set

{Pv@)=1:Px(@)> - - - s P }- Define S = Q\ P (See Fig.2).

For each w € V(G)\S, color w with dr(w,v) mod x(G). Since there are no good
cycles in G, therefore the coloring of V(G)\S is proper. For each w € Q\S, there is a
w-colorful path in V(G)\S going downward in 7" through P, by passing from each vertex
to its child in P. For each w € V(G)\Q, there is a w-colorful path in V(G)\S going
upward in T by passing from each vertex to its parent.

So for each w € V(G)\S, there is a w-colorful path. All uncolored vertices are
contained in S. We color them in such a way that for each w € S there exists a
vertex w’ € N(w), where c¢(w’) = Next(c(w)). Recall that for a color t, Next(t) =
(t4+1) mod (A(G)+1). We denote w’ by F(w). Since T is a DFS tree there are no edges
between S and V(G)\Q. Therefore F(w) € Q). Such coloring can be obtained using the
algorithm discussed in the proof of Theorem [ Now, we show that for each w € S, there
exists a w-colorful path.
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Pix@)-1)
Px(@)
Dix(G)+1)

pr(= e

Figure 2: The DFS tree T', rooted at v. This figure illustrates only the edges of T

For every i, 0 < i < k — 1, let F(p;) = pis1. Consider the sequence of the vertices
Q(w) : go(=w), ..., ¢yc)-1, where F(g;) = git1, for every i, 0 < i < x(G) — 1. Note that
for each 7, 0 < i < x(G) — 1, ¢(gi+1) is either Next(c(q;)) or ¢(¢;) + 1 (mod x(G)). Hence
there are no vertices with the same color in Q(w). Therefore Q(w) is a w-colorful path. O

The following theorem shows that for every graph G the conjecture is true for A(G)+1
colors instead of x(G) colors. In [I] it was proved that the conjecture is true for x(G) +
A(G) — 1 colors. The following theorem is an improvement of this result.

Theorem 3 Let G # C; be a connected graph. Then there is a (A(G) + 1)-coloring of G
with a v-colorful path, for every v € V(G).

Proof. If G # C; contains a good cycle, then by Theorem [ there is a (A(G)+1)-coloring
of G with a v-colorful path, for every v € V(G). Thus, we may assume that G does not
have a good cycle. In this case, Theorem B shows that there is a (A(G) + 1)-coloring of
G with the same properties. O

3 The Existence of (2y(G))-Colorings with Colorful
Paths

Let ¢ be a x-coloring of a given graph G. Let G, be a directed graph with the same vertex
set of G which has a directed edge from w to v if and only if (i) v and v are adjacent in
G; and (ii) c¢(v) = ¢(u) + 1 (mod x(G)).

THE ELECTRONIC JOURNAL OF COMBINATORICS 18 (2011), #P17 )



Lemma 2 Let ¢ be a x-coloring of a connected graph G. For a given subgraph H of G,
there exists a x-coloring ¢, such that for every v € V(H), c(v) = c(v) and for every
u € V(G), there is a directed path from u to at least one of the vertices of V(H) in G .

Proof. For an arbitrary y-coloring of G like ¢, a vertex u in G, is called nice if there
exists a directed path from u to a vertex of H. Assuming that we have a y-coloring c,
we give a polynomial-time algorithm to obtain the coloring ¢’ from ¢, such that all the
vertices are nice. Let ¢ = c and let S € V(G) be the set of all vertices of G which are not
nice in ¢. We will decrease |S|, by modifying ¢’ in each iteration of the algorithm. After
at most |V| iterations, all the vertices would be nice.
In each iteration, we do as follows:
Let ¢, for i, 1 < i < x(G), be the coloring of G such that:

N L) ifve¢gsS
c(v) = { d() +1i (mod x(G)) ifves.

Since G is connected, at least one of these colorings is not proper. Assume that ¢ is the
smallest natural number for which ¢ is not proper. By the definition of S, there is no
directed edge from S to V(G)\S in G.. Hence ¢] is proper. Now, consider the proper
coloring ¢, ;. Since ¢, is not proper, there are two adjacent vertices u € S and v ¢ S such
that ¢, ;(u) +1 = c¢;_,(v) (mod x(G)). Therefore u is also a nice vertex in G, . Now,
let ¢ be ¢,_; and continue with the next iteration (note that the vertices of G\ S remain
nice in ¢ and u becomes a nice vertex).

After at most |V/| iterations the algorithm will find a coloring ¢ such that all vertices
are nice, and each iteration can be implemented in O(|V| + |E|) time (by considering the
edges between S and G\S). O

We denote the x-coloring ¢/, given in the proof of Lemma B, by C(G, H,c). Next
theorem shows that for every graph G the conjecture holds if one replaces x(G) colors
with 2x(G) colors.

Theorem 4 Let G be a connected graph. Then there exists a 2x(G)-coloring of G with
a v-colorful path for every v € V(G).

Proof. Let H = C when there is a cycle C of order x(G) or x(G) + 1, otherwise let
H be the path with 2x(G) — 1 vertices according to Lemma [Il In either case, choose an
arbitrary vertex of H and call it by v*. Let ¢ be a x-coloring of G and set ¢ = C(G, v*, ¢).
Now we recolor vertices of H with at most x(G) new colors x(G),...,2x(G) — 1 such
that:

e If H isa cycle, then color vertices of H\v* with one of the colors x(G), ..., 2x(G)—1.
Color v* as the same as its color in C(G, v*, C).

o If H :po,...,pac)—2 is a path, then color p; with x(G) + (¢ mod x(G)).
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We first claim that ¢’ is a proper coloring. This is trivial in the first case. In the case
H is a path P, if there are two adjacent vertices u,v € V(G) with the same color in ¢,
then u,v € V(P), because V(G)\H is properly colored with the colors 0,..., x(G) — 1
and H is colored with the colors x(G),...,2x(G) — 1. Let p; = uw and p; = v. With
no loss of generality suppose that ¢ < j. Note that in the coloring of P, we should have
i = j (mod x(G)). So the vertices p;, . .., p; form a cycle of order x(G)+1, a contradiction.

Now, we show that for each v € V(G), there is a v-colorful path in ¢

Case 1. H is a cycle with the vertices D : wp,...,v, where kK = x(G) — 1 or x(G).
Let v be an arbitrary vertex of G. If v € D, then it is clear that there is a v-colorful
path in D. If v ¢ D, then by Lemma Bl there exists a directed path starting from v and
ending to v* in Gy, where f = C(G,v*, ¢). Call this path by Q : go(=v),...,q(=v*). If
k> x(G) —1, then qo, . .., ¢y(c)-1 is a v-colorful path. So assume that £ < x(G) — 1. Let
7 be the smallest index such that ¢; € D. Consider the ¢;-colorful path in D and call it
by Q' : ¢\(= q),- .. ,q;((G)_l. We claim that Q" : qo, ..., ¢, ¢, .- ,q;((G)_i_l is a v-colorful
path. The vertices of D are differently colored with the colors ¢(v*), x(G),...,2x(G) — 1.
Since k < x(G) — 1, there are no vertices colored with ¢(v*) in {qo, ..., q;}. Therefore Q"
is a v-colorful path.

Case 2. H is a path P. Let v be an arbitrary vertex of G. If v € V(P), then ac-
cording to the length of P, there is a v-colorful path in P. If v ¢ V(P), then by Lemma 2],
there is a directed path starting from v and ending to v* in G, where f = C(G,v*, ¢). Call
this path by @ : go(=v), ..., q(= v*). Let i be the smallest index such that ¢; € V(P). If
i > x(G)—1, then qo, . .., ¢y()-1 is a v-colorful path. If i < x(G)—1, then consider the g¢;-
colorful path in P and call it by Q" : ¢4(= @), - - - ,q;(G)_l. Then qo, ..., ¢, ¢, -, q;((G)_Z._l
is a v-colorful path and the proof is complete. O

4 Long Rainbow Paths in y(G)-Colorings

The following theorem shows that for every graph G with x(G) = w(G), the conjecture
is true.

Theorem 5 Let G be a graph with w(G) = x(G). Then there exists a x(G)-coloring of
G with a v-colorful path for every v € V(G).

Proof. Assume that M = {vi,..., vy} is a maximum clique in G. We claim that
the assertion holds for the coloring f = C(G, M, c), where ¢ is an arbitrary coloring of
G. By Lemma B for every v € V(G), there exists a directed path in Gy, starting from
v and ending in M. Call this path by P : py,...,pr. Let M' = {us,...,uyc)-x} be a
subset of M such that for every j, 1 < j < x(G) —k, c(u;) ¢ {c(p1),...,c(pr)}. Clearly,
D1y Phs UL, - - - Uy(@)—k 18 & v-colorful path. O
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In the previous theorems, we proved the existence of v-colorful paths (rainbow paths
of length x(G)), for every v € V(G), using a set of colors with different sizes. We close
this paper by showing that there are some y-colorings of G in which there exist long
v-rainbow paths, for every v € V(G).

Theorem 6 Let G be a connected graph. Then there is a x(G)-coloring of G in which
for every v € V(G), there exists a v-rainbow path of length | %5 (@ )J

Proof. Let ¢ be a x-coloring of G. As a consequence of Proposition 5 in [3], there is a
path P :po,...,py@)-1 such that

(pi) = ) Hfo<i<m
Wil = (@) +m—i ifm+1<i<y(G)-1,

where m = L@J Let ¢ = C(G, P,c). By Lemma B for every v € V(G), there is a
path Q(v) : v = qu,...,q = ps, where (¢;+1) = (@) + 1 (mod x(G)) for 1 < i < k.
With no loss of generality, assume that ¢, € V(P) and ¢; ¢ V(P) for each i, 1 <i < k—1.
Let Q'(v):q},..., q]gﬂ@J be the path of length &k + L@J — 1 such that

q = Dos+(i—k) ifh+1<i<k+| (7 | and s <m
Ps—(i—k) ifk+1<i<k+ |5~ and m <s.

We claim that the first L XD | 41 vertices of Q'(v) form a v-rainbow path. We prove this
in the case s < m. The other case(s > m) is similar.

Let ¢t be the integer that ¢ = p,,. If t > LX(G)J + 1, then it is clear that there is a
v-rainbow path of length L@J Thus assume that ¢ < LX(G |. We have

o (¢ ) =C(q)+1,fori, 1 <i<t;and
d(g)=7d(gq)+ 1, fori, t+1<i< L@J

Therefore, /(¢}) € {0,...,m} fori, 1 <i <t and d(¢)) € {m+1,...,x(G) — 1} for 1,
t+1<i< LX(G)j + 1. Hence the color of the vertices of ¢, . .. ’q/LX(G>J+1 are distinct and
e

this path is a v-rainbow path. O
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