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Abstract

For a sum of the form
∑

k F (n, k)G(n, k), we set up two systems of equations
involving shifts of F (n, k) and G(n, k). Then we solve the systems by utilizing
the recursion of F (n, k) and the method of undetermined coefficients. From the
solutions, we derive linear recurrence relations for the sum. With this method, we
prove many identities involving Bernoulli numbers and Stirling numbers.

1. Introduction

Finding recurrence relations is a basic method for proving identities. Fasenmyer [4–6]
proposed a systematic method to find linear recurrence relations for hypergeometric sums.
Wilf and Zeilberger [10–13] provided an efficient algorithm, called Zeilberger’s algorithm,
to construct linear recurrence relations for hypergeometric sums. Chyzak [2] extended
Zeilberger’s algorithm to holonomic systems. Kauers [8] presented algorithms for sums
involving Stirling-like sequences. Chyzak, Kauers and Salvy [3] further considered non-
holonomic systems.

In this paper, we focus on deriving a linear recurrence relation for the sum

f(n) =
∞

∑

k=−∞

F (n, k)G(n, k), (1.1)

where n = (n1, . . . , nr) and F (n, k), G(n, k) are two functions of n and k. Our approach
can be described as follows. We first take a finite subset S of Z

r+1 as the set of shifts of
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the variables n and k. Then we make an ansatz
∑

(α,β)∈S

λα,β(n, k)F (n − α, k − β) = 0, (1.2)

where λα,β(n, k) are functions to be determined. Denote

AS = {α ∈ Z
r : there exists β ∈ Z such that (α, β) ∈ S}

and
Sα = {β ∈ Z : (α, β) ∈ S}.

For each α ∈ AS, we take a finite subset S ′
α

of Z
r and make an ansatz

∑

β∈Sα

λα,β(n, k + β)F (n − α, k)G(n, k + β)

=
∑

γ∈S′

α

cα,γ(n)F (n − γ, k)G(n − γ, k), (1.3)

where cα,γ(n) are functions which are independent of k and need to be determined. The
system of equations consisting of (1.2) and (1.3) for all α ∈ AS is called a coupling
system. Suppose that we obtain a solution (λα,β(n, k), cα,γ(n)) to the coupling system
such that cα,γ(n) are not all zeros. Then (by Lemma 2.1) we are led to a non-trivial
linear recurrence relation for f(n):

∑

α∈AS

∑

γ∈S′

α

cα,γ(n)f(n − γ) = 0. (1.4)

We mainly investigate the case in which F (n, k) is independent of n1, n2, . . . , ns and

S ′
α
⊂ {α + ℓ1e1 + · · · + ℓses : ℓi ∈ Z, i = 1, 2, . . . , s},

where each ei ∈ Z
r is the unit vector whose i-th component is 1. In this case, Equation

(1.3) reduces to
∑

β∈Sα

λα,β(n, k + β)G(n, k + β) =
∑

γ∈S′

α

cα,γ(n)G(n − γ, k). (1.5)

We call such a coupling system a split system. We will see that both Sister-Celine’s
method and Zeilberger’s algorithm fall into the framework of split systems.

We use the above method to prove identities of sums involving special combinatorial
sequences. We first split the summand into a product of two terms F (n, k) and G(n, k)
so that F (n, k) depends on as few variables as possible and satisfies a simple recurrence
relation. Then by solving the equations (1.2) and (1.5), we get a recurrence relation for
the sum. Finally we prove the identity by checking the initial values. Notice that the
method given in [3] treats the summand as a whole.

The paper is organized as follows. In Section 2, we prove the recursion (1.4) and the
existence of non-trivial solutions to a kind of split systems. In Section 3, we consider the
case in which λα,β(n, k) are given a priori. In Section 4, we study the split systems in
which λα,β(n, k) can be expressed in terms of cα,γ(n).
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2. Split systems

We follow the notation of Section 1. The following lemma is valid for a general coupling
system.

Lemma 2.1 Suppose that λα,β(n, k) and cα,γ(n) satisfy (1.2) and (1.3). Then (1.4)
holds.

Proof. By direct calculation, we see that

0 =

∞
∑

k=−∞

∑

(α,β)∈S

λα,β(n, k)F (n − α, k − β)G(n, k)

=
∑

α∈AS

∞
∑

k=−∞

∑

β∈Sα

λα,β(n, k + β)F (n − α, k)G(n, k + β)

=
∑

α∈AS

∞
∑

k=−∞

∑

γ∈S′

α

cα,γ(n)F (n − γ, k)G(n − γ, k)

=
∑

α∈AS

∑

γ∈S′

α

cα,γ(n)f(n − γ).

From now on until the end of the paper, we always assume that the coupling systems
are split.

Consider the split system with r = 1, F (n, k) = 1,

S = {(j, j) : 0 ≤ j ≤ J} and S ′
j = {0, 1, 2, . . . , I}, ∀ 0 ≤ j ≤ J,

where I, J are two non-negative integers. Then (1.5) reduces to

λj,j(n, k + j)G(n, k + j) =
I

∑

i=0

cj,i(n)G(n − i, k),

so that

λj,j(n, k) =
I

∑

i=0

cj,i(n)G(n − i, k − j)/G(n, k).

Now substitute the above equation into (1.2). We finally obtain an equation

J
∑

j=0

I
∑

i=0

cj,i(n)G(n − i, k − j) = 0,

which is the same as the one appearing in Sister-Celine’s method. Now consider the split
system with r = 1, F (n, k) = 1,

S = {(0, 0), (0, 1)} and S ′
0 = {0, 1, . . . , I}.
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By equation (1.2), we derive that λ0,0(n, k) = −λ0,1(n, k). Thus, (1.5) reduces to

λ0,1(n, k + 1)G(n, k + 1) − λ0,1(n, k)G(n, k) =
I

∑

i=0

ci(n)G(n − i, k),

which is the skew recurrence relation appearing in Zeilberger’s algorithm. Therefore, both
Sister-Celine’s method and Zeilberger’s algorithm fall into the framework of split systems.

The following theorem ensures the existence of non-trivial solutions to a kind of split
systems.

Theorem 2.2 Suppose that F (n, k) is independent of n1, . . . , ns and satisfies a non-
trivial linear recurrence relation

F (n, k) =
∑

(α,β)∈R

aα,β(n, k)F (n − α, k − β), (2.1)

where R is a finite subset of

{(0, . . . , 0, ns+1, . . . , nr, k) ∈ Z
r+1}

and aα,β(n, k) are rational functions of n and k. Assume that G(n, k) is a proper hy-
pergeometric term (see [10] for the definition). Then there exist S and S ′

α
such that the

corresponding split system has a non-trivial solution (λα,β(n, k), cα,γ(n)) with λα,β(n, k)
being polynomials in k.

Proof. We will set up a system of linear equations on λα,β(n, k) and cα,γ(n) according to
(1.2) and (1.5). Then the theorem follows from the fact that the number of unknowns is
larger than that of equations.

Assume that

λα,β(n, k) =
D

∑

ℓ=0

λα,β,ℓ(n)kℓ. (2.2)

We take

S = {(0, . . . , 0, ns+1, . . . , nr, k) : 0 ≤ k ≤ I0, 0 ≤ nj ≤ Ij , j = s + 1, . . . , r}

and
S ′

α
= {α + ℓ1e1 + · · · + ℓses : 0 ≤ ℓi ≤ Ii, i = 1, 2, . . . , s}.

Then the corresponding split system leads to a system of linear equations on λα,β,ℓ(n)
and cα,γ(n). We will derive an upper bound for the number of equations in terms of D
and I0, I1, . . . , Ir.

We first consider (1.2). Without loss of generality, we may assume that each element
in R is strictly greater than the zero vector in the lexicographic order. Let

SR = {(α, β) ∈ S : there exists (α′, β ′) ∈ R such that (α, β) + (α′, β ′) 6∈ S} (2.3)
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be the boundary set with respect to the recurrence relation (2.1). By iterating use of the
recursion (2.1), we can express the terms F (n − α, k − β) with (α, β) ∈ S in terms of
those with (α, β) ∈ SR. Therefore,

∑

(α,β)∈S

λα,β(n, k)F (n − α, k − β) =
∑

(α,β)∈SR

µα,β(n, k)F (n − α, k − β), (2.4)

where
µα,β(n, k) = λα,β(n, k) +

∑

(α′,β′)∈S\SR

Aα,β,α′,β′(n, k)λα′,β′(n, k), (2.5)

and Aα,β,α′,β′(n, k) are linear combinations of terms of the form
∏

i

aαi,βi
(n − δi, k − δi).

By setting all µα,β(n, k) to zeros, we reduce (1.2) to a system of linear equations on
λα,β(n, k). The number of equations of the system equals the cardinality of SR, which
is bounded by a multi-variable polynomial P1 in I0, Is+1, . . . , Ir of total degree r − s. By
multiplying the common denominators, we transfer the coefficients of the system into
polynomials in k. The degrees of these polynomials are bounded by P2 = C(I0 +1)(Is+1 +
1) · · · (Ir +1), where C is a constant. Now substituting (2.2) into the system and equating
the coefficient of each power of k to zero, we finally obtain a system of linear equations
on λα,β,ℓ(n). The number of equations of the new system is bounded by P1(P2 + D + 1).

We next consider (1.5). Dividing G(n, k) on both sides and multiplying the common
denominators, we are led to a system of linear equations on λα,β(n, k) and cα,γ(n). The
number of equations of the system is equal to the cardinality of AS, which is (Is+1 +
1) · · · (Ir+1) . Since G(n, k) is a proper hypergeometric term, the coefficients of the system
are polynomials in k whose degrees are bounded by a linear function P3 of I0, I1, . . . , Ir

(see [11]). Once again, we substitute (2.2) into the system and equate the coefficient of
each power of k to zero. This leads to a system of linear equations on λα,β,ℓ(n) and cα,γ(n).
The number of equations of the new system is bounded by (P3+D+1)(Is+1+1) · · · (Ir+1).

Finally, we combine the equations deduced from (1.2) and (1.5) together. The total
number of equations is bounded by

E = P1(P2 + D + 1) + (P3 + D + 1)(Is+1 + 1) · · · (Ir + 1).

While the total number of unknowns is

U = (I0 + 1)(Is+1 + 1) · · · (Ir + 1)(D + 1) + (I1 + 1) · · · (Ir + 1).

The leading coefficient of E in variable D is a polynomial in I0, Is+1, . . . , Ir of total degree
r − s. While the leading coefficient of U in variable D is (I0 + 1)(Is+1 + 1) · · · (Ir + 1).
Hence U > E holds for sufficiently large I0, I1, . . . , Ir and D, which implies that the split
system has a non-trivial solution.

Remark. For s > 1, the product (I1 + 1) · · · (Ir + 1) which is the number of unknowns
cα,γ(n) will be larger than E for sufficiently large I1, . . . , Is. Thus we derive that cα,γ(n)
are not all zeros. But for s = 1, we could not ensure that cα,γ(n) are not all zeros.
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3. Split systems with given λ

In this section, we consider split systems in which λα,β(n, k) are given a priori. Assume
that F (n, k) is independent of n1, . . . , ns and satisfies a linear recurrence relation of the
form (2.1). We take

S = R ∪ {0}

and set

λα,β(n, k) =

{

aα,β(n, k), (α, β) ∈ R,

−1, (α, β) = 0.

It is straightforward to see that those λα,β(n, k) satisfy (1.2). The remaining task is to
solve (1.5). Noting that G(n, k) is clearly equal to itself, we need only solve the following
equations:

∑

β∈Rα

aα,β(n, k + β)G(n, k + β) =
∑

γ∈S′

α

cα,γ(n)G(n − γ, k), α ∈ AR, (3.1)

where
AR = {α : there exists β ∈ Z such that (α, β) ∈ R},

and Rα = {β ∈ Z : (α, β) ∈ R}. Each solution {cα,γ(n)} to (3.1) leads to a recurrence
relation

f(n) =
∑

α∈AR

∑

γ∈S′

α

cα,γ(n)f(n − γ)

for

f(n) =
∞

∑

k=−∞

F (n, k)G(n, k).

We illustrate the method by an identity involving Bernoulli numbers Bk.

Example 3.1 We have

m
∑

k=0

(

m

k

)

Bn+k = (−1)m+n

n
∑

k=0

(

n

k

)

Bm+k. (3.2)

Chen and Sun [1] found a recurrence relation satisfied by both sides based on the
integral representation of Bk. Here we provide a proof in the framework of split systems.
Proof. Let

F (n, m, k) =

(

m

k

)

and G(n, m, k) = Bn+k.

We see that F (n, m, k) is independent of n and

F (n, m, k) = F (n, m − 1, k) + F (n, m − 1, k − 1).
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In this case, (3.1) becomes

G(n, m, k) + G(n, m, k + 1) =
∑

ℓ

cℓ(n, m)G(n − ℓ, m − 1, k). (3.3)

Observing that

G(n, m, k) = G(n, m − 1, k) and G(n, m, k + 1) = G(n + 1, m − 1, k),

we obtain a solution c0 = c−1 = 1 to (3.3). Therefore, the sum

f(n, m) =

m
∑

k=0

(

m

k

)

Bn+k

satisfies the recurrence relation

f(n, m) = f(n, m − 1) + f(n + 1, m − 1). (3.4)

Similarly, by taking

F (n, m, k) = (−1)n

(

n

k

)

and G(n, m, k) = (−1)mBm+k,

we derive that the sum

g(n, m) = (−1)m+n

n
∑

k=0

(

n

k

)

Bm+k

satisfies
g(n, m) = −g(n − 1, m) + g(n − 1, m + 1),

which is equivalent to (3.4).
Finally, from the identity

∞
∑

n=0

Bn

xn

n!
=

x

ex − 1
= e−x −x

e−x − 1
,

we see that

Bn = (−1)n

n
∑

k=0

(

n

k

)

Bk,

that is, (3.2) holds for m = 0. Hence by the recurrence relation (3.4), (3.2) holds for all
m, n ≥ 0.

By a similar argument as above, we prove most of the identities in [1]. We always take
F to be a binomial coefficient which satisfies a triangular recurrence relation. As another
example, we derive the recurrence relation satisfied by both sides of a convolution identity
for Bernoulli numbers.
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Example 3.2 We have [1, Theorem 4.4]

n
∑

j=0

(

n

j

)

Bk+jBm+n−j

= −
k!m!

(m + k + 1)!
(n + δ(m, k)(m + k + 1))Bm+n+k

+
m+k
∑

r=0

(−1)r Bm+k+1−r

m + k + 1 − r
(−1)k

(

k + 1

r

) (

k + 1 − r

k + 1
n −

rm

k + 1

)

Bn+r−1

+

m+k
∑

r=0

(−1)r Bm+k+1−r

m + k + 1 − r
(−1)m

(

m + 1

r

) (

m + 1 − r

m + 1
n −

rk

m + 1

)

Bn+r−1, (3.5)

where

δ(m, k) =











−1, if (m, k) = (0, 0),

0, if mk = 0 but (m, k) 6= (0, 0),

1, otherwise.

We first consider the sum L(m, n, k) on the left hand side. Let

F (m, n, k, j) =

(

n

j

)

and G(m, n, k, j) = Bk+jBm+n−j.

We have
F (m, n, k, j) = F (m, n − 1, k, j) + F (m, n − 1, k, j − 1).

Observing that

G(m, n, k, j) = G(m + 1, n − 1, k, j) and G(m, n, k, j + 1) = G(m, n − 1, k + 1, j),

we derive that

L(m, n, k) = L(m + 1, n − 1, k) + L(m, n − 1, k + 1),

which is equivalent to

L(m, n + 1, k) = L(m + 1, n, k) + L(m, n, k + 1).

Now let us consider the right hand side of (3.5). We split the first sum into the
difference of

n

m+k
∑

r=0

(−1)r Bm+k+1−r

m + k + 1 − r
(−1)k

(

k

r

)

Bn+r−1 = n · R1(m, n, k)

and

m
m+k
∑

r=0

(−1)r Bm+k+1−r

m + k + 1 − r
(−1)k

(

k

r − 1

)

Bn+r−1 = m · R2(m, n, k).
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By taking F =
(

k

r

)

and F =
(

k

r−1

)

, respectively, we derive that

Ri(m, n, k) = −Ri(m + 1, n, k − 1) + Ri(m, n + 1, k − 1), i = 1, 2,

which is equivalent to

Ri(m, n + 1, k) = Ri(m + 1, n, k) + Ri(m, n, k + 1), i = 1, 2.

Similarly, let

R3(m, n, k) =

m+k
∑

r=0

(−1)r Bm+k+1−r

m + k + 1 − r
(−1)m

(

m

r

)

Bn+r−1,

R4(m, n, k) =

m+k
∑

r=0

(−1)r Bm+k+1−r

m + k + 1 − r
(−1)m

(

m

r − 1

)

Bn+r−1,

we have
Ri(m, n + 1, k) = Ri(m + 1, n, k) + Ri(m, n, k + 1), i = 3, 4.

Let

R5(m, n, k) = −
k!m!

(m + k + 1)!
(n + δ(m, k)(m + k + 1))Bm+n+k,

by direct calculation, we derive that

R5(m, n + 1, k) = R5(m + 1, n, k) + R5(m, n, k + 1).

Finally, let R(m, n, k) be the right hand side of (3.5). Replacing the index of summa-
tion r in R2(m + 1, n, k) and R4(m, n, k + 1) by r + 1, we see that

R(m, n + 1, k) − R(m + 1, n, k) − R(m, n, k + 1)

= R1(m, n + 1, k) + R2(m + 1, n, k) + R3(m, n + 1, k) + R4(m, n, k + 1)

= 0.

Hence both sides of (3.5) satisfy the same recurrence relation.

We can also apply this method to sums involving Stirling numbers (Eulerian numbers,
respectively). Let S1(n, k) and S2(n, k) be the Stirling numbers of the first kind and the
second kind, respectively. It is well-known that

S1(n, k) = −(n − 1)S1(n − 1, k) + S1(n − 1, k − 1),

S2(n, k) = kS2(n − 1, k) + S2(n − 1, k − 1).

With these recursions, we prove identities (6.15)–(6.19), (6.28), (6.29), (6.38), and (6.39)
of [7]. Here are two examples.
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Example 3.3 Find a recurrence relation for the sum [7, Identity (6.28)]

f(l, m, n) =
n−m
∑

k=l

(

n

k

)

S2(k, l)S2(n − k, m).

Let

F (l, m, n, k) =

(

n

k

)

and G(l, m, n, k) = S2(k, l)S2(n − k, m).

We have
F (l, m, n, k) = F (l, m, n − 1, k) + F (l, m, n − 1, k − 1).

In this case, (3.1) becomes

G(l, m, n, k) + G(l, m, n, k + 1) =
∑

i,j

ci,j(l, m, n)G(l − i, m − j, n − 1, k). (3.6)

Substituting

S2(n − k, m) = mS2(n − 1 − k, m) + S2(n − 1 − k, m − 1)

and
S2(k + 1, l) = lS2(k, l) + S2(k, l − 1)

into the left hand side of (3.6), we find a solution

c0,0 = (m + l), c1,0 = c0,1 = 1.

Thus,

f(l, m, n) = (m + l)f(l, m, n − 1) + f(l, m − 1, n − 1) + f(l − 1, m, n − 1).

Example 3.4 We have [7, Identity (6.19)]

m
∑

k=0

(

m

k

)

kn(−1)m−k = m!S2(n, m). (3.7)

Proof. Let

F (m, n, k) = kn and G(m, n, k) = (−1)m−k

(

m

k

)

.

We have
F (m, n, k) = kF (m, n − 1, k).

We take S ′
0,1 = {(0, 1), (1, 1)} so that (3.1) becomes

kG(m, n, k) = c0(m, n)G(m, n − 1, k) + c1(m, n)G(m − 1, n − 1, k).

the electronic journal of combinatorics 18 (2011), #P170 10



Dividing both sides by G(m, n, k), we derive that

k = c0(m, n) − c1(m, n)
m − k

m
,

which has a solution
c0(m, n) = c1(m, n) = m.

Therefore, the sum

f(m, n) =

m
∑

k=0

(

m

k

)

kn(−1)m−k

satisfies
f(m, n) = mf(m, n − 1) + mf(m − 1, n − 1).

It is easy to check that m!S2(n, m) satisfies the same recursion and that

f(m, 0) = δm,0 = m!S2(0, m).

The proof follows by induction on n.

4. Partially λ-free split systems

In this section, we consider a kind of split systems in which λα,β(n, k) can be expressed
in terms of cα,γ(n).

Suppose that F (n, k) is independent of n1, . . . , ns and satisfies a recurrence relation
of the form (2.1). The proof of Theorem 2.2 provides us a method to construct a solution
to (1.2). Given an arbitrary shift set S, let SR be the boundary set defined by (2.3). For
each (α, β) ∈ S \ SR, let λα,β(n, k) be an arbitrary function. For each (α, β) ∈ SR, we
set

λα,β(n, k) = −
∑

(α′,β′)∈S\SR

Aα,β,α′,β′(n, k)λα′,β′(n, k),

where Aα,β,α′,β′(n, k) is given as in (2.4) and (2.5). Then these λα,β(n, k) form a solution
to (1.2).

Denote the free functions λα,β(n, k), (α, β) ∈ S \ SR by λ1, λ2, . . .. Suppose that the
equations corresponding to (1.5) can be ordered such that the first equation involves only
λ1 and there is exactly one term containing λ1, the second equation involves only λ1, λ2

and there is exactly one term containing λ2, and so on. Then we can express λi’s as
linear combinations of cα,γ(n). Finally, substituting these expressions for λi into the rest
equations of (1.5), we obtain a system of linear equations on cα,γ(n). We call such a split
system a partially λ-free split system.

We illustrate the method by a summation involving Stirling numbers.

Example 4.1 Find a recurrence relation for the sum [7, Identity (6.26)]

f(n, m) =

m
∑

k=−n

(

m − n

m + k

)(

m + n

n + k

)

S1(m + k, k).
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Let

F (n, m, k) = S1(m + k, k) and G(n, m, k) =

(

m − n

m + k

)(

m + n

n + k

)

.

Then
F (n, m, k) = −(m + k − 1)F (n, m − 1, k) + F (n, m, k − 1). (4.1)

Taking
S = {(0, 0, 0), (0, 1, 0), (0, 0, 1)},

we see that SR = {(0, 1, 0), (0, 0, 1)} and there is exactly one free function λ0,0,0(n, m, k).
Denote the function by λ(k) for short. We have

λ0,1,0(n, m, k) = (m + k − 1)λ(k) and λ0,0,1(n, m, k) = −λ(k).

Then (1.5) becomes
{

(m + k − 1)λ(k)G(n, m, k) =
∑

i ci(n, m)G(n − i, m − 1, k)

λ(k)G(n, m, k) − λ(k + 1)G(n, m, k + 1) =
∑

j dj(n, m)G(n − j, m, k).

From the first equation, we derive that

λ(k)G(n, m, k) =
∑

i

ci(n, m)G(n − i, m − 1, k)/(m + k − 1).

Substituting this expression into the second equation, we obtain

∑

i

ci(n, m)

(

G(n − i, m − 1, k)

m + k − 1
−

G(n − i, m − 1, k + 1)

m + k

)

=
∑

j

dj(n, m)G(n − j, m, k).

By setting i, j ∈ {−1, 0, 1}, we find a non-trivial solution

c−1 = 0, c0 =
(m − n)(m − n − 1)

m + n − 1
C, c1 = (m − n)C,

d−1 =
n − m

m + n − 1
C, d0 = −

2n − 1

m + n − 1
C, d1 = C,

and

λ(k) =
(m + k)(−m + k)

(n + k − 1)(m + n − 1)(m + n)
C,

where C is an arbitrary constant with respect to k. Hence, the sum f(n, m) satisfies the
recurrence relation

(m − n)(m − n − 1)f(n, m − 1) + (m − n)(m + n − 1)f(n − 1, m − 1)

− (2n − 1)f(n, m) + (n − m)f(n + 1, m) + (m + n − 1)f(n − 1, m) = 0.

We conclude by an example involving Stirling numbers and harmonic numbers.
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Example 4.2 Let Hk =
k
∑

i=1

1
i

be the k-th harmonic number. Find a recurrence relation

for the following sum [9]

f(m, n) =
m

∑

k=1

Hm−k(m − k)!(−1)m−k+1

(

m

k − 1

)

S1(k − 1, n).

Let F (m, n, k) = S1(k − 1, n) and

G(m, n, k) = Hm−k(m − k)!(−1)m−k+1

(

m

k − 1

)

.

Then
F (m, n, k) = F (m, n − 1, k − 1) − (k − 2)F (m, n, k − 1).

Taking
S = {(0, 0, 0), (0, 0, 1) (0, 1, 0), (0, 1, 1), (0, 2, 1)},

we see that
SR = {(0, 0, 1), (0, 1, 1), (0, 2, 1)}.

Hence, we have two free functions λ0,0,0(m, n, k) and λ0,1,0(m, n, k). Denote them by λ(k)
and µ(k) for short. We have

λ0,0,1(m, n, k) = (k − 2)λ(k), λ0,1,1(m, n, k) = −λ(k) + (k − 2)µ(k),

and λ0,2,1(m, n, k) = −µ(k). Then (1.5) becomes



































−µ(k + 1)G(m, n, k + 1) =
∑

i ci(m, n)G(m − i, n − 2, k),

µ(k)G(m, n, k) + (−λ(k + 1) + (k − 1)µ(k + 1))G(m, n, k + 1)

=
∑

j dj(m, n)G(m − j, n − 1, k),

λ(k)G(m, n, k) + (k − 1)λ(k + 1)G(m, n, k + 1)

=
∑

ℓ eℓ(m, n)G(m − ℓ, n, k).

Set i, j, ℓ ∈ {−1, 0, 1}, express Hm−k+t in terms of Hm−k, and compare the coefficients of
Hm−k. We find a non-trivial solution

c−1 = 0, c0 = 0, c1 = C,

d−1 = 0, d0 = −2C, d1 = −2(m − 1)C,

e−1 = C, e0 = (2m − 1)C, e1 = (m − 1)2C,

and

µ(k) = −
(k − 1)C

m
, λ(k) =

(k − 2)Hm−k − 2m + k − 2

mHm−k(m − k + 2)
(k − 1)C,
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where C is an arbitrary constant with respect to k. Therefore, the sum f(m, n) satisfies
the recurrence relation

(2m − 1)f(m, n) + f(m − 1, n − 2) − 2f(m, n − 1) − 2(m − 1)f(m − 1, n − 1)

+ f(m + 1, n) + (m − 1)2f(m − 1, n) = S1(m − 1, n).

The non-homogenous part S1(m − 1, n) comes from the boundary values.
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