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Abstract

The pentagram map is a completely integrable system defined on the moduli
space of polygons. The integrals for the system are certain weighted homogeneous
polynomials, which come in pairs: E1, O2, E2, O2, . . . In this paper we prove that
Ek = Ok for all k, when these integrals are restricted to the space of polygons which
are inscribed in a conic section. Our proof is essentially a combinatorial analysis of
the integrals.

1 Introduction

The pentagram map is a geometric iteration defined on polygons. This map is defined
over any field, but it is most easily described for polygons in the real projective plane.
Geometrically, the pentagram map carries the polygon P to the polygon Q, as shown in
Figure 1.

P

Q

Figure 1: The pentagram map
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The first reference we know, to some version of the pentagram map, is [M], where it is
studied for pentagons. The first author of this paper wrote a series of papers [S1], [S2],
and [S3] about the map, as defined for general n-gons. See also the recent papers [B],
[G], [OST1], [OST2], [Sol] and [ST].

The pentagram map is always defined for convex polygons, and generically defined
for all polygons. The pentagram map commutes with projective transformations and
induces a generically defined map T on the space Qn of cyclically labelled 1 n-gons modulo
projective transformations. T is periodic for n = 5, 6 but not periodic for n ≥ 7.

In [S3] we introduced a larger space Pn of so-called twisted n-gons , and then produced
polynomials

O1, ..., O[n/2], On, E1, ..., E[n/2], En : Pn → R

which are invariant under the pentagram map. We call these polynomials the monodromy
invariants. These invariants restrict to give invariants on Qn. See §2 for all relevant
definitions. The purpose of this paper is to prove the following result, which we noticed
numerically a long while ago.

Theorem 1.1 Ok(P ) = Ek(P ) for any n-gon P that is inscribed in a conic section and
any k = 1, ..., [n/2], n.

This result holds equally well for twisted polygons.
We view Theorem 1.1 as part of the ongoing effort to understand the structure of the

pentagram map. Here we put Theorem 1.1 in context. In [OST1] we constructed an
invariant Poisson bracket on Pn, which is compatible with the monodromy invariants.
Using these two compatible structures, we showed in [OST1] that the pentagram map is
a completely integrable system on Pn. We worked with Pn rather than with Qn because
the integrability question is easier there. In our recent paper [OST2], we show that the
pentagram map is, in fact, completely integrable on Qn, the main space of interest. The
equally recent paper [Sol] establishes this same result independently, by other methods.
In practical terms, this means that (at least for convex polygons) the generic orbit is dense
in a finite union of tori, and these tori have canonical flat structures which are invariant
under the pentagram map.

The pentagram map has connections to other subjects.

• Integrable PDEs: As is explained in [S3], and in more detail in [OST1], the penta-
gram map is a discretization of the Boussoinesq equation, a well-known integrable
partial differential equation. The Poisson bracket in [OST1] is a discretization of
an invariant bracket that arises in connection with the Boussoinesq equation, and
the monodromy invariants are2 discrete versions of the integrable hierarchy for the
Boissoinesq equation. See [B] for recent generalizations in this direction.

1Technically, one needs to consider the square of the map in order to get a canonically defined map
on labelled n-gons. However, if one is willing to break symmety, preferring (say) left over right, then the
map itself is defined on labelled n-gons.

2We have not yet worked out the precise connection between the monodromy invariants and the
Boussoinesq hierarchy.
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• Cluster Algebras: In [S3] we explained the connection between the pentagram map
and the so-called octahedral recurrence. This connection is explored more deeply,
and from a different point of view, in [G], where the pentagram map is shown to be
an example of a cluster algebra.

• Configuration Theorems: The pentagram map seems to interact nicely with poly-
gons that are inscribed in conic sections. We mention our paper [ST], in which
we describe some finite configuration theorems, à la Pappus, that we discovered in
connection with the pentagram map and inscribed polygons.

• Algebraic integrability: A recent paper [Sol] describes the pentagram map as a
discrete zero-curvature equation with a spectral parameter and the dynamics as a
linear dynamics on the Jacobian of the spectral curve.

Given the connections between the pentagram map and both integrable systems and
cluster algebras, as well as the beauty of the map as a stand-alone object, it seems
worthwhile getting information about the nature of the monodromy invariants.

Theorem 1.1 boils down to a countably infinite family of polynomial identities. The
polynomials involved are somewhat reminiscent of the symmetric polynomials, but they
have somewhat less symmetry then these. One novel feature of the theorem is that we
discovered not just the result but also the proof by way of computer experimentation.
We wrote a Java program to aid us with the combinatorics of the proof. This applet is
available on the first author’s website. Download the program at
http://www.math.brown.edu/∼res/Java/OEAPPLET.tar.
The program has a README file with basic instructions.

While our proof is mainly combinatorial, we think that perhaps there should be a
better proof based on geometry. Accordingly, we will describe our polynomials in three
ways – geometrically, combinatorially, and in terms of determinants. We will only use
the combinatorial description in our proof, but we hope that the other descriptions might
ring a bell for some readers. We tried quite hard to find a simple proof of Theorem 1.1,
but nothing seemed to work. We invite the reader to look for a simple proof!

Here is an overview of the paper. In §2 we define twisted polygons and the monodromy
invariants. In §3 we reduce Theorem 1.1 to a combinatorial problem. In §4 we solve this
combinatorial problem.

The second author would like to thank Brown University for its hospitality during his
sabbatical.

2 The Monodromy Invariants

The papers [S3] and [OST1] give a good account of the monodromy invariants. We
will follow 3 the notation of [OST1] for this paper. We will give three descriptions of

3The notation in the two papers is slightly different. After some detailed consideration of this matter,
we have decided that in future papers we will revert to the notation in [S3] because it is more symmetric.
However, we made that decision after adapting everything in this paper to the notation in [OST1].
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these invariants, one geometrical, one combinatorial, and one based on determinants.
The reader only interested in the proof of Theorem 1.1 need only pay attention to the
combinatorial definition. As we say in the introduction, we mention the other definitions
just in the hopes that it will ring a bell for some readers.

Because we are not using the geometric or determinental definitions in our proof, we
will not include the arguments that show the equivalence of the various definitions. The
paper [S3] has a proof that the geometric and combinatorial definitions coincide.

2.1 The Geometric Definition

Let RP
2 denote the real projective plane. All of what we say works over any field, but

we find it convenient to restrict our attention to R.
A twisted n-gon is a map φ : Z → RP

2 such that

φ(k + n) = M ◦ φ(k) ∀k. (1)

for some projective transformation T . Here M does not depend on k. When M is the
identity, the notion of a twisted n-gon translates in an obvious way into the notion of an
ordinary polygon. The map T is called the monodromy of φ.

Two twisted n-gons φ1 and φ2 are equivalent if there is some projective transformation
S such that S(φ1) = φ2. In this case, we have the equation SM1S

−1 = M2. In other
words, the monodromies of two equivalent twisted polygons are conjugate. We let Pn

denote the space of twisted n-gons.
We have the inverse cross ratio

[t1, t2, t3, t4] =
(t1 − t2)(t3 − t4)

(t1 − t3)(t2 − t4)
.

Suppose that φ is a twisted n-gon, with monodromy M . We let vi = φ(i). The label
i in Figure 2 denotes vi, and similarly for the other labels.

i+2

i

i−2

i−1 i+1

Figure 2: vertex labels
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We associate to each vertex vi two numbers:

xi = [vi−2, vi−1, ((vi−2, vi−1) ∩ (vi, vi+1), ((vi−2, vi−1) ∩ (vi+1, vi+2)],

yi = [vi+2, vi+1, ((vi+2, vi+1) ∩ (vi, vi−1), ((vi+2, vi+1) ∩ (vi−1, vi−2)].

Here (a, b) denotes the line determined by points a and b. For instance, xi is the inverse
cross ratio of the 4 white points in Figure 2. We call the invariants 4 x1, y1, x2, y2, ...
the corner invariants. These invariants form a periodic sequence of length 2n. That is
xk+n = xk and yk+n = yk for all k.

We define

On =
n∏

i=1

xi; En =
n∏

i=1

yi.

The other monodromy invariants are best defined in an indirect way. Recall that M
is the monodromy of our twisted polygon φ. We lift M to an element of GL3(R) which
we also denote by M . We define

Ω1 =
trace3(M)

det(M)
; Ω2 =

trace3(M−1)

det(M−1)
.

These quantities are independent of the lift of M and only depend on the conjugacy class
of M . Finally, these quantities are invariant under the pentagram map.

We define
Ω̃1 = O2

nEnΩ1; Ω̃2 = OnE
2
nΩ2.

It turns out that these quantities are polynomials in the corner invariants. The remaining
monodromy invariants are suitably weighted homogeneous parts of these polynomials.

We have a basic rescaling operation

Rt(x1, y1, x2, y2, ...) = (tx1, t
−1y1, tx2, t

−1y2, ...).

We say that a polynomial in the corner invariants has weight k if

R∗
t (P ) = tkP.

Here R∗
t denotes the obvious action of Rt on polynomials. In [S3] we show that

Ω̃1 = (
[n/2]∑

k=0

Ok)
3; Ω̃2 = (

[n/2]∑

k=0

Ek)
3.

Here Ok and Ek are the weight k polynomials in each sum, and [n/2] denotes the floor of
n/2. Note that O0 and E0 are just the constant function 1.

4The notation in [S3] uses x1, x2, x3, x4, ... in place of x1, y1, x2, y2... As we remarked in a previous
footnote, our future papers will revert to the notation in [S3].
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2.2 The Combinatorial Definition

In everything we say, the indices are taken cyclically, mod n. We introduce the monomials

Xi := xi yi xi+1. (2)

The monodromy polynomial Ok is built from the monomials xi for i = 1, ..., n and
Xj for j = 1, .., n. We call two monomials consecutive if they involve consecutive or
coinciding variables xi. More explicitly, we have the following criteria:

1. Xi and Xj are consecutive if j ∈ {i − 2, i − 1, i, i + 1, i + 2} ;

2. Xi and xj are consecutive if j ∈ {i − 1, i, i + 1, i + 2} ;

3. xi and xj are consecutive if j ∈ {i − 1, i, i + 1}.

Let O be a monomial obtained by the product of the monomials Xi and xj , that is,

O = Xi1 · · ·Xis xj1 · · ·xjt
.

Such a monomial is called admissible if no two of the monomials are consecutive. For
every admissible monomial, define the weight |O| = s + t and the sign sign(O) = (−1)t.
The sign just depends on the number of xi singletons appear in the monomial. We have

Ok =
∑

|O|=k

sign(O) O; k ∈
{
1, 2, . . . ,

[
n

2

]}
.

For example, if n ≥ 5 we obtain the following two polynomials:

O1 = −
∑

i

xi +
∑

i

xiyixi+1, O2 =
∑

|i−j|≥2

xixj −
∑

|j−i−0.5|≥2.5

(xiyixi+1)xj+1

The same formulas work for Ek, if we make all the same definitions with x and y
interchanged. More precisely, one builds the polynomials Ek from the monomials yi and
Yj := yj−1xjyj with the same restriction that no consecutive monomials are allowed and
the same definitions of the weight and sign.

We note that the dihedral symmetry

σ(xi) = y−i, σ(yi) = x−i (3)

interchanges the polynomials Ok and Ek.

A Sign Change: In this paper we will work with variants of the polynomials above.
The polynomials

O∗
k = (−1)kOk, E∗

k = (−1)kEk (4)

have certain advantages over Ok and Ek though, of course, they carry the same informa-
tion. It seems (but we do not know a proof) that O∗

k and E∗
k are always positive on convex

polygons. On the other hand, these alternate definitions do not interact as gracefully as
certain constructions in [S3] and in our forthcoming paper [OST2]. In this paper, we
will work with the invariants O∗

k and E∗
k , for no other reason that the fact that we set up

all our notation to work with these versions.

the electronic journal of combinatorics 18 (2011), #P171 6



2.3 The Determinantal Definition

Now we describe determinantal formulas for the monodromy invariants; these formulas
did not appear in our previous papers on the subject.

For positive integers k > l, we define the four-diagonal determinant

F k
l =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 xk Xk−1 0 0 . . . 0
1 1 xk−1 Xk−2 0 . . . 0
0 1 1 xk−2 Xk−2 . . . 0
. . . . . . . . . . . . . . . . . . . . .
0 . . . . . . . . . 1 1 xl+1

0 . . . . . . . . . 0 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where xi and yi are the corner invariants and Xi is as in (2). By convention,

F k
k+2 = 0, F k

k+1 = 1, F k
k = 1.

Then one has the following formula for the monodromy invariants Ok:

[n/2]∑

i=0

Oi = F n
1 + F n−1

0 − F n−1
1 + xnynx1F

n−1
2 . (5)

Similarly, for Ek, define

Gq
p =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 yp+1 Yp+2 0 0 . . . 0
1 1 yp+2 Yp+3 0 . . . 0
0 1 1 yp+3 Yp+4 . . . 0
. . . . . . . . . . . . . . . . . . . . .
0 . . . . . . . . . 1 1 yq

0 . . . . . . . . . 0 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Then one has:
[n/2]∑

i=0

Ei = Gn−1
0 + Gn

1 − Gn−1
1 + ynx1y1G

n−2
1 . (6)

Formulas (5) and (6) simplify if one considers an open version of the monodromy
invariants: instead of having a periodic “boundary condition” xi+n = xi, yi+n = yi, assume
that xi = 0 for i ≤ 0 and i ≥ n + 1, and yi = 0 for i ≤ −1 and i ≥ n. With this
“vanishing at infinity” boundary conditions, the monodromy invariants are given by a
single determinant:

[n/2]∑

i=0

Oi = F n
0 ,

[n/2]∑

i=0

Ei = Gn−1
−1 .
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3 Reduction to the Puzzle

Let RP
2 be the real projective plane and let RP

1 denote the projective line. Everything
we say works either in the context of ordinary polygons or twisted polygons. For brevity,
we will just say polygon.

A non-degenerate conic in RP
2 can be identified with RP

1 by way of the stereographic
projection from a point of the conic. This identification is unique up to a projective
transformation of the real projective line. That is, a different choice of the center of
projection amounts to a projective transformation of RP

1. If (. . . , v−1, v0, v1, . . .) is an
inscribed polygon, we can consider the vertices vi as points of the real projective line and
talk about their cross-ratios which are uniquely defined. Referring to the cross-ratio on
the projective line, we set:

pi = 1 − [vi−2, vi−1, vi, vi+1].

In the next lemma we express the corner invariants of an inscribed polygon in terms of
the quantities pi. Once we specify the inverse cross ratios {pi}, we produce an inscribed
twisted polygon having corner invariants {(xi, yi)}. Thus we have a map (pi) 7→ (xi, yi).
We denote this map by F .

Lemma 3.1 One has:

xi = [vi−2, vi−1, vi, vi+2], yi = [vi−2, vi, vi+1, vi+2]

and the map F is given by the formula

xi =
1 − pi

pi+1

, yi =
1 − pi+1

pi

. (7)

Proof: Consider Figure 3. Using the projection from point vi+1, we obtain:

xi = [vi−2, vi−1, A, B] = [(vi+1vi−2), (vi+1vi−1), (vi+1A), (vi+1B)] =

[vi−2, vi−1, vi, vi+2].

A similar projection from vi−1 yields the formula for yi. The expression for xi in terms of
pi and pi+1 follows now from the identity

[vi−2, vi−1, vi, vi+2] =
[vi−2, vi−1, vi, vi+1]

1 − [vi−1, vi, vi+1, vi+2]
,

and likewise for yi. ♠
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i

i−2 vi+2

i+1

v
i−1

v

B

A

v

v

Figure 3: Proof of Lemma 3.1

The dihedral group also acts on cyclic sequences (pi) by cyclic permutations and the
orientation-reversing involution σ′(pi) = p1−i. It follows from (7) that F ◦ σ′ = σ ◦ F
where σ is the involution (3). Hence F is a dihedrally equivariant map.

As we remarked in the previous chapter, we will work with O∗
k and E∗

k in place of Ok

and Ek. After xi and yi are replaced by pi via (7), the polynomials O∗
k and E∗

k become
Laurent polynomials in the variables pi. The identity E∗

n = O∗
n obviously holds since both

sides equal
∏

(1 − pi)/pi. We need to prove that E∗
k = O∗

k for k = 1, ..., [n/2]. We will
prove the following result.

Theorem 3.2 (Dihedral Balance) . If two monomials in the variables pi are related
by an orientation-reversing dihedral symmetry (for example, the involution σ′) then they
appear in O∗

k with the same coefficients.

Proof of Theorem 1.1: Since the map F is dihedrally equivariant and the orientation-
reversing involution on the variables (xi, yi) interchanges E∗

k and O∗
k, Theorem 3.2 shows

that O∗
k(P ) = E∗

k(P ) for any inscribed polygon P . But then Ok(P ) = Ek(P ) as well. ♠
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The remainder of the paper is devoted to proving Theorem 3.2. Let us compute the
monomials of O∗

k in terms of the p-variables. We find that

xi =
1

pi+1
−

pi

pi+1
(8)

and

− Xi = −
1

pipi+1pi+2

+
1

pi+1pi+2

+ 2
1

pipi+2

− 2
1

pi+2

−
pi+1

pipi+2

+
pi+1

pi+2

. (9)

We see that the variables p’s that appear in xi involve two indices, i and i + 1, and
the those in Xi involve three indices, i, i + 1 and i + 2. Pictorially, these terms can be
represented as follows: for xi, see Figure 4, and for Xi, see Figure 5. In these figures, the
presence of each term p in the numerator and denominator is represented by a shaded
square, and its absence by a white square.

i

−

i+1ii+1
Figure 4: pictorial representation of (8)

i

+2

i+2i+1i

+

i i+1 i+2

−

i+2i+1i

−

i+2i+1i

+

i+2i+1i

−2

i+2i+1
Figure 5: pictorial representation of (9)

According to Section 2.2, the polynomial O∗
k is the sum of all admissible products

of k terms, and each term is either xi or −Xj . The admissibility condition is that the
monomials xi or Xj involved are sufficiently distant; what it means precisely is that the
respective tiles in Figures 4 and 5, corresponding to these terms, do not overlap. This is
a crucial observation.

To summarize, each monomial in O∗
k, after the substitutions (8) and (9), is represented

by a collection of k tiles depicted in Figures 4 and 5, taken with the product of their
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respective coefficients. The tiles, that occupy two or three consecutive positions, are
placed around a circle having N positions available (if we are concerned with twisted
N -gons). There may be empty positions left between the tiles.

As a final preparation for the next section, we introduce the following notation: letter
A denotes a shaded square in the lower row of a tile (pi in denominator), letter B a shaded
square in the upper row (pi in numerator), and letter X an empty column in a tile. Thus,
the two tiles in Figure 4 correspond to the words XA and BA, and the six tiles in Figure 5
to AAA, XAA, AXA, XXA, ABA and XBA, respectively. We also use letter X to mean
an empty slot between the tiles.

In the next section we reformulate Theorem 3.2 as a statement about a kind of puzzle
involving words in letters {A, X, B}. After we formulate the combinatorial statement, we
prove it. The combinatorial result we prove implies Theorem 3.2, which in turn implies
Theorem 1.1.

4 The Puzzle

4.1 The Main Result

Now we are going to extract the main combinatorial information from the discussion at
the end of the last section.

We fix some integer N > 0 and consider the set of length N lists in the letters
{A, X, B}. We consider two lists the same if they are cyclic permutations of each other.
We say that a cyclic sentence is an equivalence class of such strings. To illustrate our
notation by way of example, (AXABA) denotes the equivalence class of AXABA. Here
N = 5. We let S denote the set of such sentences, with the dependence on N understood.

We single out certain strings of letters, and to each of these special words we assign a
coefficient and a weight. Here is the list.

word coefficient weight
X 1 0

XA 1 1
XAA 1 1
XBA 1 1
AXA 2 1
AAA −1 1
BA −1 1

ABA −1 1
XXA −2 1

We say that a parsing of a cyclic sentence is a description of the cyclic sentence as a
concatenation of words. For example

(ABA/XA); (XAA/BA)
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are the only two parsings of (ABAXA). We define the coefficient of a parsing to be the
product of the coefficients of the word. We define the weight of the parsing to be the sum
of the weights of the words. Both parsings above have coefficient −1 and weight 2.

For each cyclic sentence S, we define c(S, w) to be the total sum of the coefficients of
the weight w parsings of S. For instance, when S = (ABAXA), we have c(S, 2) = −2
and otherwise c(S, w) = 0. For a more streamlined equation, we define

|S| =
∞∑

w=0

c(S, w)tw.

Here |S| is a polynomial in t that encodes all the coefficients at once. For example

|(ABAXA)| = −2t2.

Let S denote the cyclic sentence obtained by reversing S. In view of Section 3, Theorem
3.2 is equivalent to the following result.

Theorem 4.1 (Cyclic) We have |S| = |S| for all cyclic sentences S.

The rest of this chapter is devoted to proving Theorem 4.1.

4.2 The Tight Puzzle

Before we tackle Theorem 4.1, we slightly modify our puzzle for the sake of convenience.

Lemma 4.2 Suppose that (W ) contains the string XB. Then |W | = 0.

Proof: No word ends in B, and so the string XB must continue as XBA. The oc-
curence of .../X/BA/... in any parsing contributes weight 1 and coefficient −1 whereas
the occurence of .../XBA/... contributes weight 1 and coefficient 1. If we have a parsing
that involves .../XBA/... we can create a new parsing by replacing the last .../XBA/...
with .../X/BA/.... These two parsings have the same weight and opposite coefficient, and
thereby cancel each other in the total sum. ♠

By Lemma 4.2, we can simply throw out any strings that contain XB, and we may
drop the word XBA from our list of words. There is a similar cancellation involving
XXA. Within a parsing, the occurence of .../X/XA/... has weight 1 and coefficient 1
whereas the occurence of .../XXA/... has weight 1 and coefficient −2. If we have a parsing
that involves .../XXA/... we can create a new parsing by replacing the last .../XXA/...
with .../X/XA/.... The new parsing cancels out “half” of the original. Thus, we may
consider an alternate puzzle where the parsing /X/XA/ is forbidden and the word list is
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word coefficient weight
X 1 0

XA 1 1
XAA 1 1
AXA 2 1
AAA −1 1
BA −1 1

ABA −1 1
XXA −1 1

All we have done is dropped XBA from the list and changed the weight of XXA from −2
to −1. We call this last puzzle the tight puzzle. Establishing Theorem 4.1 for the tight
puzzle is the same as establishing these results for the original one.

4.3 The Open Version

As an intermediate step to proving Theorem 4.1, we state a variant of the result. We
consider bi-infinite strings in the letters {A, B, X}, where there are only finitely many
As and Bs. We say that two such strings are equivalent if one of them is a shift of the
other one. We say that an open sentence is an equivalence class of such strings. We use
finite strings to denote sentences, with the understanding that the left and right of the
finite string is to be padded with an infinite number of Xs. Thus, ABAXA refers to the
bi-infinite sentence ...XXABAXAXX.... We define parsings just as in the cyclic case.
For instance, here are all the parsings of this sentence

• /ABA/XA/(−1)

• /XXA/BA/XA/(1)

(Recall that we have forbidden /X/XA.) The first of these have weight 2 and the last one
has weight 3. We have put the coefficients next to the parsings in each case. Our notation
is such that the left and right sides of each expression are padded with .../X/X/.... Based
on the list above, we have

|ABAXA| = −t2 + t3.

Here is the variant of Theorem 4.1 for open sentences.

Theorem 4.3 (Open) We have |S| = |S| for all open sentences S.

Theorem 4.1 implies Theorem 4.3 in a fairly direct way. For instance, suppose we are
interested in proving Theorem 4.3 for an open sentence S. We say that the span of S is
the combinatorial distance between the first and last non-X letter of S. For instance, the
span of ABAXA is 4. Supposing that S has span s, we simply create a cyclic sentence
of length (say) s + 10 by padding the nontrivial part of S with Xs and then taking the
cyclic equivalence class. Call this cyclic sentence S ′. We clearly have

|S| = |S ′| = |S
′
| = |S|.
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The middle equality is Theorem 4.1. The end inequalities are obvious.
Now we turn to the proof of Theorem 4.3. In the next result, W stands for a finite

string in the letters A, B, X.

Lemma 4.4 (Right Identities) The following identities hold.

1. |WAAA| + t|W | = 0.

2. |WXAA| − t|W | = 0.

3. |WXXA| + t|W | = 0.

4. |WAXA| − t|WA| − 2t|W | = 0.

5. |WABA| + t|WA| + t|W | = 0.

Proof: Consider Identity 1. Any parsing of WAAA must have the form W/AAA. But
AAA has weight 1 and coefficient −1. Hence c(WAAA, w) = −c(W, w − 1). Also
c(WAAA, 0) = 0. Identity 1 follows immediately from this. Identity 2 and Identity 3
have the same proof.

Consider Identity 4. There are two kinds of parsings of WAXA. One kind has
the form W/AXA and the other kind has the form /WA/XA. Note that AXA has
weight 1 and coefficient 2 and XA has weight 1 and coefficient 1. From this, we see that
c(WAXA, w) = 2c(W, w − 1) + c(WA, w − 1) for all w. Identity 4 follows immediately.
Identity 5 has the same proof. ♠

Discussion: If Theorem 4.3 really holds, then the “reverses” of all the identities above
should always hold. Let’s consider an example in detail. The reverse of Identity 2 above
is

|AAXW | − t|W | = 0,

for all strings W . However, taking W = ABA, the weight 3 parsings of AAXW are

• /XXA/AXA/BA/(2).

• /XAA/XA/BA/(−1).

As usual, our convention is to leave off the words .../X/X/... on both sides. Adding up
the coefficients, we see that c(AAXW, 3) = 1. At the same time, the only weight 2 parsing
of W is

• /XXA/BA/(1)

Hence c(W, 2) = 1. This accords with our supposed equality, but the 3 parsings in the one
case don’t obviously cancel out the 2 parsings in the other. In Lemma 4.4, the various
parsings matched up and cancelled each other in an obvious way. However, this does
not happen for the reverse identities. Nonetheless, we will prove the reverse identities of
Lemma 4.4.
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Lemma 4.5 (Left Identities) The following identities hold.

1. |AAAW | + t|W | = 0.

2. |AAXW | − t|W | = 0.

3. |AXXW | + t|W | = 0.

4. |AXAW | − t|AW | − 2t|W | = 0.

5. |ABAW | + t|AW | + t|W | = 0.

Proof: We will prove Identity 5. The other identities have the same proof. First of all,
we check computationally that Identity 5 holds (say) for all strings W having length at
most 3.

Suppose now that W is a shortest word for which we don’t know the result of this
lemma. We know that W has length at least 3, so we can write W = V R, where R has
length 3 and ends in A. Consider the case when R = AXA.

By induction, we have

|ABAV | + t|AV | + t|V | = 0. (10)

|ABAV A| + t|AV A| + t|V A| = 0. (11)

Using Identity 4 of Lemma 4.4 (three times) we have

t|V AXA| = t2|V A| + 2t2|V |. (12)

t|AV AXA| = t2|AV A| + 2t2|AV |. (13)

|ABAV AXA| = t|ABAV A| + 2t|ABAV |. (14)

When we add together the right hand sides of Equations 12, 13, 14, we get 0, thanks to
Equations 10 and 11. Hence, when we add the left hand sides of Equations 12, 13, 14, we
also get 0. But this last sum is exactly the identity we wanted to prove.

A similar argument works when R is any of the other 3-letter strings that appear in
Lemma 4.4. The only case we haven’t considered is the case when R = XBA, but these
strings are forbidden. ♠

Now that we have Lemma 4.4 and Lemma 4.5, our proof of Theorem 4.3 goes by
induction. First of all, we check Theorem 4.3 for all strings having span at most 3.
Suppose then that W is the shortest open sentence for which we do not know Theorem
4.3. We can write W = V R where R is some string of length 3 that ends in A.

Let’s consider the case when R = XAA. Then we have

|W | = |V XAA| = t|V | = t|V | = |AAXV | = |W |.

The second equality is Identity 2 of Lemma 4.4. The third equality is the induction
assumption. The fourth equality is Identity 2 of Lemma 4.5. A similar argument works
when R is any of the 3 letter strings in Lemma 4.4. The final case, R = XBA, is forbidden.

This completes the proof of Theorem 4.3.
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4.4 The Cyclic Case

We need to mention another convention before we launch into the cyclic case. Besides
cyclic and open sentences, there is one more case we can consider. We introduce the
notation [W ] to denote an open word whose parsings cannot be created by padding Xs
onto the left and right of W . We will illustrate what we have in mind by way of example.
Setting W = ABAXA, the parsings of the open string W are

/AXA/BA/; /XXA/X/ABA.

However, the second parsing involves two Xs that have been padded onto the left of W .
Only the first parsing of W is also a parsing of the locked string [W ]. We let |[W ]| be the
polynomial that encodes the weights and coefficients of all the parsings of [W ].

Lemma 4.6 Theorem 4.1 holds for any cyclic word W with no X in it.

Proof: To avoid some messy notation, we will consider an example. The example is
sufficiently complex that it should illustrate the general proof. Suppose that

W = (BA2BA5BA1BA7). (15)

Here, for instance A2 = AA. Any parsing of W must have the breaks

W = (BA/A1BA/A4BA/A0BA/A6).

The point is that we must have a break after each BA. From this, we see that

|W | = |[A6BA]| × |[ABA]| × |[A4BA]| × |[A0BA]|.

To get the list of exponents on the right hand side of this product, we simply decrement
each exponent in Equation 15 by one. But we would get the same list of exponents (per-
haps in a different order) when considering the reverse word W . ♠

Below we prove the following result.

Lemma 4.7 The relation

|(WX)| + 2|(WB)| − |W | = 0

holds for all open words W .

Lemma 4.7 allows us to finish the proof of Theorem 4.1. Our proof goes by induction
on the number of Xs in the word W . Let W be a word having the smallest number of
Xs, for which we do not know Theorem 4.1.

After cyclically permuting the letters in W , we can write W = V X. By Lemma 4.7,
we have

|(W )| = |(V X)| = −2|(V B)| + |V |.
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Applying Lemma 4.7 to W , we have

|(W ) = |(V X)| = −2|(V B)| + |V | = −2|V B| + |V |.

Setting Y = V B, we have

|(W )| = −2|(Y )| + |V | = −2|(Y )| + |V | = |(W )|.

The middle equality comes from Theorem 4.3 (to handle V ) and the induction assumption
(to handle Y .)

4.5 Some Auxilliary Relations

It remains only to prove Lemma 4.7. We will establish some auxilliary relations in this
section, and then use them in the next section to prove Lemma 4.7.

Lemma 4.8 For any string W ,

|XXW | = |W |.

Proof: This is a tautology. ♠

Lemma 4.9 For any string W ,

|W | = |[XW ]| − |[AXW ]|.

Proof: The proof makes use of the right identities from Lemma 4.4 and is similar to
the proof of Theorem 4.3. One first checks the statement for all strings of span three,
and then argues inductively on the span. The induction step is proved using the right
identities from Lemma 4.4 that hold verbatim for locked strings as well.

To illustrate the idea, we assume that W ends with AXA, that is, W = V AXA.
Then, by Identity 4 of Lemma 4.4,

|W | = |V AXA| = t|V A| + 2t|V |,

|[XW | = |[XV AXA]| = t|[XV A]| + 2t|[XV ]|,

and
|[AXW ]| = |[AXV AXA]| = t|AXV A| + 2t|[AXV ]|.

By the induction assumption,

|V A| = |[XV A]| − |[AXV A]|, |V | = |[XV ]| − |[AXV ]|,

and the result follows for W . ♠
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Lemma 4.10 For any string W ,

|(AXAW )| = 2t|[W ]| + |[XAWA]|.

Proof: Either a parsing of the cyclic word (AXAW ) contains the string AXA, or there
is a break after the first A in (AXAW ). The former case corresponds to the first term,
2t|[W ]|, and the latter case to the second, |[XAWA]|. ♠

Lemma 4.11 For any string W ,

|(ABAW )| = |[WABA]|.

Proof: There must be a break after second A in (ABAW ), and this provides a one-to-one
correspondence between the parsings of (ABAW ) and [WABA]. ♠

4.6 Proof of Lemma 4.7

Lemma 4.12 Lemma 4.7 holds if W does not start and end with A.

Proof: This is a case-by-case analysis. Suppose that W = V X for some word V . Then
(WX) = (V XX). Since we must have a break between V and XX, it follows that

|(V XX)| = |XXV | = |V | = |W |.

(the second equality holds by Lemma 4.8). On the other hand,

|(WB)| = |(V XB)| = 0

since the combination X/BA is prohibited. The claim of Lemma 4.7 follows. Similarly,
if W = XV for some word V then (WX) = (V XX), and the same argument applies. If
W = V B then then each term in the equality of Lemma 4.7 vanishes. The same holds if
W = BV . Finally, if W ends in B, all terms in Lemma 4.7 are trivial. ♠

The only remaining case is when W = AV A for some word V . What we need to prove
is

|(AXAV )| + 2|(ABAV )| − |AV A| = 0. (16)

By Lemma 4.10,
|(AXAV )| = 2t|[V ]| + |[XAV A]|.

By Lemma 4.11,
|(ABAV )| = |[V ABA]|.
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By Lemma 4.9,
|AV A| = |[XAV A]| − |[AXAV A]|.

Therefore, the left hand side of (16) equals

2t|[V ]| + |[XAV A]| + 2|[V ABA]| − |[XAV A]| + |[AXAV A]|. (17)

By Identity 5 of Lemma 4.4 for locked words,

|[V ABA]| = −t|[V A]| − t|[V ]|.

Finally,
|[AXAV A]| = 2t|[V A]|

since a parsing of [AXAV A] must start with AXA. It follows that (17) equals

2t|[V ]| + |[XAV A]| − 2t|[V A]| − 2t|[V ]| − |[XAV A]| + 2t|[V A]| = 0,

as needed.
This completes the proof of Lemma 4.7.
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