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Abstract

We derive explicit expressions for the generating series of the fundamental solu-
tions of the Ar quantum Q-system of Di Francesco and Kedem [Non-commutative

integrability, paths and quasi-determinants, Adv. in Math. 228(1) (2011) 97–152],
expressed in terms of any admissible initial data. These involve products of quantum
multinomial coefficients, coded by the initial data structure.

1 Introduction

The study of some discrete integrable systems, taking the form of recursion relations, i.e.
evolution equations in a discrete time n ∈ Z with suitable conservation laws, has recently
shed some new light [3] on the positivity conjecture of cluster algebras [8]. Indeed, admis-
sible sets of initial data for such systems are particular clusters in some specific, non-finite
type cluster algebras, whereas a correspondingly restricted set of cluster mutations are
implemented by the update of initial data via local application of the evolution equation.
The still open general positivity conjecture for cluster algebras of [8], when restricted to
these particular clusters, implies the following property: the solutions of such systems
are Laurent polynomials with non-negative integer coefficients of any of their admissible
initial data.

In [3], this was proved for the so-called Q-system for Ar, by expressing solutions as
partition functions for weighted paths on some target graphs, the weights being explicit
Laurent monomials of initial data. An extremely useful tool for such representations is the
notion of (multiply branching) continued fraction. We were able to prove that mutations of
initial data are implemented by local rearrangement of the continued fraction expressions
for the generating series of fundamental solutions of the Q-system. An alternative proof
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was subsequently given in [9] within the context of Toda systems and double Bruhat cells.
This was then extended to the so-called T -systems in [5] for initial data forming periodic
stepped surfaces, and finally to the most general initial data in [2], by use of a manifestly
positive network path formulation. In all these cases, positivity follows from a form of
discrete path integral representation of the solutions.

The cluster algebra structure has a natural quantum version [1], in which cluster vari-
ables obey quantum commutation relations within each cluster. This led to the natural
definition of quantum Q-systems [7]. In an analogous spirit, it was shown in [5] that the
T -system may be viewed as a Q-system, involving non-commutative (time-ordered) vari-
ables. An even broader non-commutative version is known for the fully non-commutative
A1 Q-system, for which Laurent positivity was conjectured by M. Kontsevich, and sub-
sequently proved in [6]. The latter proof relies on an extension of the previous path
formulations to paths with non-commutative step weights: the partition function of such
paths is the sum over paths of the product of step weights taken in the same order as
the steps are taken. In [7], such paths were used to investigate non-commutative versions
of the Q-systems. In particular, a compact formulation in terms of non-commutative
continued fractions was obtained.

Except in very specific cases, very few explicit expressions of cluster variables in terms
of fundamental data are known. For the (classical) Ar Q-system, such expressions were
derived in [4] for the generating series of its fundamental solutions.

The aim of this note is to generalize these expressions for the generating series of the
fundamental solutions of the quantum Ar Q-system, by using the non-commutative con-
tinued fraction expressions of [7]. The results are summarized in our main Theorem 3.12
below, which expresses these generating functions for any admissible initial data as ex-
plicit series with coefficients that are Laurent polynomials with coefficients in Z+[q, q−1],
where q is the parameter of the quantum deformation.

Acknowledgments: We thank R. Kedem for helpful discussions and the Mathematical
Sciences Research Institute, Berkeley, for hospitality during the program “Random Matrix
Theory, Interacting Particle Systems and Integrable Systems” (fall 2010) during which
this work was initiated.

2 The quantum Ar Q-system: definitions

2.1 The system

Let λi = i(r + 1 − i), i = 1, 2, . . . , r and q ∈ C∗. The Ar quantum Q-system [7] is an
evolution equation for variables Ri,j , i ∈ [1, r] and j ∈ Z, elements of a non-commuting
unital algebra:

qλi Ri,j+1Ri,j−1 = R2
i,j + Ri+1,jRi−1,j (i ∈ [1, r], j ∈ Z) (2.1)

with R0,j = Rr+1,j = 1 for all j ∈ Z.
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2.2 Initial data

This is a three-term recursion relation in the variable j, which allows to determine all
Ri,j in terms of any initial data covering two consecutive values of j. Initial data are
indexed by Motzkin paths m = (m1, . . . , mr) with mi+1 − mi ∈ {0, 1,−1}. They read
x

m
=

(
Ri,mi

, Ri,mi+1

)
i∈[1,r]

, and are transformed into each-other via (forward/backward)

mutations µ±
i that act on the Motzkin paths via

(
µǫ

i(m)
)

j
= mj + ǫδj,i, ǫ = ±, whenever

the result is itself a Motzkin path. The fundamental initial data corresponds to the null
Motzkin path m0 = (0, 0, . . . , 0).

Within each such set of initial data, the variables R obey the following commutation
relations:

Ri,jRk,m = q(m−j)Λi,kRk,mRi,j (2.2)

where
Λi,k = Min(i, k)

(
r + 1 − Max(i, k)

)
(2.3)

2.3 Commuting limit

Setting q = 1, in which case all Ri,j variables commute, we recover the (commuting) Ar

Q-system:
Ri,j+1Ri,j−1 = R2

i,j + Ri+1,jRi−1,j (i ∈ [1, r], j ∈ Z) (2.4)

with R0,j = Rr+1,j = 1 for all j ∈ Z.

2.4 Quantum cluster algebra for the Ar Q-system

2.4.1 Cluster algebra and quantum cluster algebra

A cluster algebra of finite rank n without coefficients is a commuting algebra generated
by invertible variables forming n-vectors x(t) = (x1(t), x2(t), . . . , xn(t)) attached to the
vertices t of an infinite n-valent tree with edges labeled 1, 2, . . . , n around each vertex.
Vectors x(t) and x(u) corresponding to vertices t, u connected by an edge labeled k are
related by a mutation relation of the form:

xi(u) = xi(u) for i 6= k

xk(u)xk(t) =

n∏

i=1

xi(t)
[Bi,k(t)]+ +

n∏

i=1

xi(t)
[−Bi,k(t)]+ (2.5)

where B(t) is an n × n skew-symmetrizable matrix, called the exchange matrix, with
entries in Z, attached to the vertex t, and subject to the mutation relation

Bi,j(u) = −Bi,j(t) if i = k or j = k

Bi,j(u) = Bi,j(t) + sgn(Bi,k(t)) [Bi,k(t)Bk,j(t)]+ otherwise (2.6)

where [x]+ = Max(x, 0). In the following we’ll be dealing only with cluster algebras with
skew-symmetric exchange matrices. In that case, we may represent each matrix B(t) as
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a quiver with n vertices corresponding to the cluster variables, and with B(t)i,j = the
number of arrows from vertex i to vertex j whenever B(t)i,j ≥ 0.

A cluster algebra is entirely specified by the pair (x(t0), B(t0)) of cluster variables and
exchange matrix at an initial vertex t0, also called fundamental seed.

The cluster algebras have the Laurent property, that any cluster variable xk(t) may be
expressed as a Laurent polynomial of the cluster variables at any other vertex u of the tree.
It was conjectured in [8] that these polynomials have non-negative integer coefficients.

A quantum cluster algebra [1] of rank n is a non-commuting version of the former
defined as follows. Starting from an ordinary cluster algebra data, we introduce an extra
n × n integer matrix Λ(t0), forming with B(t0) a “compatible pair”, namely such that
Λ(t0)B(t0) = d, a diagonal matrix with positive integer entries. The matrix Λ(t0) encodes
the quantum commutation relations obeyed by the initial cluster variables x(t0), with
xi(t0)xj(t0) = qΛi,j(t0)xj(t0)xi(t0), where q is a fixed central element of the algebra. The
mutation of cluster variables is defined via an analogous, non-commuting formula, while
that of exchange matrices remains the same (2.6). Compatibility fixes Λ(t) for every
vertex t as well.

Quantum cluster algebras also satisfy an analogous Laurent property. The positivity
conjecture claims that the coefficients of the Laurent polynomials belong to Z+[q, q−1].

2.4.2 Cluster algebra for the commuting Ar Q-system

The cluster algebra for the (commuting) Ar Q-system [10] has rank 2r, and a fundamental
seed made of the cluster x0 ≡ x

m0 = (R1,0, R2,0, . . . , Rr,0, R1,1, . . . , Rr,1), and of the 2r×2r

skew-symmetric exchange matrix B0 ≡ B
m0 =

(
0 −C
C 0

)
, C the Cartan matrix of Ar,

with entries
Ci,j = 2δi,j − δ|j−i|,1 (i, j ∈ [1, r]) (2.7)

All the initial data x
m

are clusters in this cluster algebra. They are obtained
from x0 via iterated cluster (forward or backward) mutations of the form µ±

i above,
namely leaving all cluster variables unchanged except Ri,mi

→ Ri,mi+2 = (R2
i,mi+1 +

Ri+1,mi+1Ri−1,mi+1)/Ri,mi
(µ+

i ) or Ri,mi+1 → Ri,mi−1 = (R2
i,mi

+ Ri+1,mi
Ri−1,mi

)/Ri,mi+1

(µ−
i ), when all three terms are cluster variables in the original cluster. With our choice of

fundamental seed, the first r variables always have even indices m while the r next have
odd ones. The following is a sequence of forward mutations applied successively on the
fundamental initial data x

m0 in the case r = 3:

3 µ µ µ+ + +

0 1 20 1 20 1 2 30 1

m

α

1

2
2 11
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Here, each dot (m, α) ∈ Z
2 represents a cluster variable Rα,m, and the corresponding

Motzkin path is the set of leftmost dots in the pairs.
The (skew-symmetric) exchange matrix B

m
for each Motzkin path m was computed

explicitly in [3]. As explained above, it can be represented as a quiver with 2r vertices
indexed by the initial data indices (mi, i) and (mi + 1, i). Here’s the example for r = 3:

3

3

2

1

3

2

1

3

1

2 1

where we have represented the vertices on the same Z2 grid (m, α) as for initial data above,
and where arrows indicate various forward mutations of the corresponding index. Here,
we have only represented the exchange matrices for a fundamental set of Motzkin paths
modulo a global translation by (1, 0), namely the set Mr = {(mα)α∈[1,r]|Minα(mα) = 0}.
The exchange matrix is actually quasi-periodic, namely: B

m+1 = −B
m

, where we denote
by m + 1 the Motzkin path (m1 + 1, m2 + 1, . . . , mr + 1).

More generally, the exchange matrix B
m

is constructed as follows1. Given the Motzkin
path m = (mα), we simply represent its vertices and their translates by the vector (1, 0) on
the (m, α) plane, and we represent either of the three following local arrow configurations,
depending on whether the Motzkin path is locally ascending (mα+1 = mα + 1), flat
(mα+1 = mα), or descending (mα+1 = mα − 1):

The resulting quiver encodes the skew-symmetric matrix B
m

.
Finally, let us mention the following Lemma (see Ref.[3] for details), used crucially in

the following.

Lemma 2.1. Any Motzkin path m with mi ≥ 0 for all i ∈ [1, r] may be attained from m0

via iteration of forward mutations of the form µ+
i acting at each intermediate step on a

Motzkin path m in either of the two following local configurations around i:

1This construction is due to R. Kedem.
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• Case (i): mi−1 = mi = mi+1 − 1

• Case (ii): mi−1 = mi = mi+1

2.4.3 Quantum cluster algebra for the quantum Ar Q-system

The quantum cluster algebra corresponding to our quantum Q-system (2.1) has the fun-
damental seed x0 = ((Ri,0)

r
i=1, (Ri,1)

r
i=1), and the same exchange matrix B0 as in the com-

muting case. The commutation relations (2.2) correspond to taking the initial compatible
pair (Λ0, B0) such that Λ0 = (r+1)B−1

0 . The compatibility implies that Λ
m

= (r+1)B−1
m

for all Motzkin paths m, and we have explicitly (Λ
m

)(i,m),(j,p) = (p − m)Λi,j in terms of
the matrix Λ of eq.(2.3), for all pairs (i, m) and (j, p) of cluster indices in x

m
, which leads

to the commutations (2.2).

3 Quantum system solution for R1,n via continued

fractions

3.1 Generating functions

We set Rn ≡ R1,n. To each Motzkin path m = (m1, m2, . . . , mr), we associate the
generating function

F
m

(t) =
∞∑

n=0

tnRn+m1R
−1
m1

(3.1)

We also use the “rerooted” generating function

G
m

(t) =

∞∑

n=0

tnRn+m1+1R
−1
m1+1 (3.2)

3.2 Continued fraction expressions

For some variables x1, x2, . . . , x2r+1 elements of a non-commuting algebra, let
J1(x1, x2, . . . , x2r+1) be the “non-commutative Jacobi-type (finite) continued fraction” de-
fined inductively by

Js(x2s−1, x2s, . . . , x2r+1) =
(
1 − x2s−1 − Js+1(x2s+1, x2s+2, . . . , x2r+1)x2s

)−1

(1 ≤ s ≤ r + 1)

Jr+2 = 0

For some central scalar parameter t, the function J1(tx1, . . . , tx2r+1), expanded as a for-
mal power series of t, may be interpreted combinatorially as the generating series for
“quantum” paths on the weighted graph Γr depicted in Figure 3.1, from and to the origin
vertex 1, each path being weighted by the product of its step weights taken in the order
they are traversed and with an extra weight t per step along each edge pointing toward
the origin.
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r+1

x5

x4

x1

x2

x3

1 2 3 r1

x2r−1

x2r

x2r+1

1 1
...

Figure 3.1: The weighted graph Γr, with r +1 vertices labeled 1, 2, . . . , r +1. For each oriented
edge e, we have indicated the corresponding step weight w(e), namely: w(i → i) = x2i−1

(i = 1, 2, . . . , r + 1), w(i → i + 1) = x2i, w(i + 1 → i) = 1 (i = 1, 2, . . . , r).

Definition 3.1. To each Motzkin path m we attach a sequence of “weights” y(m) =
(y1(m), . . . , y2r+1(m)) via the following induction under forward mutation µ+

i (m) = m′,
depending on whether m is in cases (i) or (ii) of Lemma 2.1 above. For short we write
yi(m) = yi and yi(m

′) = y′
i. First, we have y′

j = yj for j 6= 2i− 1, 2i, 2i+1 (case (i)) and
j 6= 2i − 1, 2i, 2i + 1, 2i + 2 (case (ii)), while:

Cases (i) and (ii) :






y′
2i−1 = y2i−1 + y2i

y′
2i = y2i+1y2i(y2i−1 + y2i)

−1

y′
2i+1 = y2i+1y2i−1(y2i−1 + y2i)

−1

Case(ii) : y′
2i+2 = y2i+1y2i−1(y2i−1 + y2i)

−1 (3.3)

This determines the y’s entirely in terms of the initial data y(m0). We have the
following Theorems.

Theorem 3.2. ([7]) For the fundamental initial data with m = m0 = (0, 0, . . . , 0), the
solution to the quantum Ar Q-system satisfies the following identity:

F
m0(t) = 1 + tG

m0(t)y1(m0), G
m0(t) = J1(ty1(m0), . . . , ty2r+1(m0)) (3.4)

where
y2i−1(m0) = Ri,1R

−1
i−1,1R

−1
i,0 Ri−1,0 y2i(m0) = Ri+1,1R

−1
i,1 R−1

i,0 Ri−1,0 (3.5)

Theorem 3.3. ([7]) For y(m0) = (y1(m0), . . . , y2r+1(m0)) given by (3.5), the solution of
the recursion (3.3) reads:

y2i−1(m) = qi−1 Ri,mi+1R
−1
i,mi

Ri−1,mi−1
R−1

i−1,mi−1+1 (3.6)

y2i(m) =

{
Ri+1,mi+1+1R

−1
i+1,mi+1

Ri+1,mi
R−1

i+1,mi+1 if mi = mi+1 + 1

1 otherwise

}

×Ri+1,mi+1R
−1
i,mi+1R

−1
i,mi

Ri−1,mi

×

{
Ri−1,mi+1R

−1
i−1,mi

Ri−1,mi−1
R−1

i−1,mi−1+1 if mi = mi−1 − 1

1 otherwise

}
(3.7)

Theorem 3.4. ([7]) For the yi(m) as in Theorem 3.3, we have:

F
m

(t) = 1 + tG
m

(t)y1(m), G
m

(t) = J1(ŷ1(m), . . . , ŷ2r+1(m))
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where ŷi ≡ ŷi(m) are related to yi ≡ yi(m) via:






ŷ2i−1 = ty2i−1 ŷ2i = ty2i if mi+1 = mi

ŷ2i−1 = t(y2i−1 + y2i) ŷ2i = t2y2i+1y2i if mi+1 = mi + 1
ŷ2i−1 = ty2i−1 − y−1

2i+1y2i ŷ2i = y−1
2i+1y2i if mi+1 = mi − 1

(i ∈ [1, 2r + 1]) (3.8)

Example 3.5. For m = m0 = (0, 0, . . . , 0), we have ŷi = tyi for i = 1, 2, . . . , 2r + 1. The
generating function reads

G
m0(t) =

(
1 − ty1 − t

(
1 − ty3 − t(. . . (1 − ty2r−1 − t(1 − ty2r+1)

−1y2r)
−1 . . . )−1y4)

−1y2

)−1

Example 3.6. For m = m1 = (0, 1, . . . , r − 1), we have ŷ2i−1 = t(y2i−1 + y2i) and ŷ2i =
t2y2i+1y2i for all i, where yi ≡ yi(m1). The result is simplest for F

m1(t) = 1 + tG
m1(t)y1.

The generating function may be rearranged using the following identity at each step:

a + b + (1 − c − u)−1cb = a + (1 − c − u)−1(1 − u)b = a + (1 − (1 − u)−1c)−1b (3.9)

The result reads

F
m1(t) =

(
1 − t

(
1 − t(. . . (1 − t(1 − ty2r+1)

−1y2r)
−1 . . . )−1y2)

−1y1

)−1

This is easily expressed in terms of the “non-commutative Stieltjes-type (finite) continued
fraction” defined inductively as

Sk(xk, xk+1, . . . , x2r+1) = (1 − Sk+1(xk+1, . . . , x2r+1)xk)
−1 (1 ≤ k ≤ 2r + 1), S2r+2 = 1

via: F
m1(t) = S1(ty1, ty2, . . . , ty2r+1).

In view of the Example 3.6, we may write another (mixed Stieltjes-Jacobi-type) con-
tinued fraction expression for G

m
(t) for arbitrary m. This will be crucially used in the

following.
Any Motzkin path m = (m1, . . . , mr) may be decomposed into strictly ascending

segments of the form (m, m + 1, . . . , m + k − 1) separated by weakly descending steps of
the form (m, m) or (m, m−1). Accordingly, we may transform the Jacobi-type fraction for
G

m
(t) in Theorem 3.4, by “undoing” the pieces of the continued fraction that correspond

to the strictly ascending segments of m.
To this end, assume that we have a strictly ascending segment

(mi0 , mi0+1, . . . , mi0+k−1) with mi0+j = mi0 + j for j = 0, 1, . . . , k − 1, which is
followed by a weakly decreasing step (mi0+k−1, mi0+k), with mi0+k = mi0+k−1 or
mi0+k = mi0+k−1 − 1. Then by definition, we have the relations

Ji0+j =
(
1 − t(y2i0+2j−1 + y2i0+2j) − t2Ji0+j+1y2i0+2j+1y2i0+2j

)−1
(j ∈ [0, k − 2])

Ji0+k−1 =
(
1 − ty2i0+2k−3 − (Ji0+k − δmi0+k,mi0+k−1−1)ŷ2i0+2k−2

)−1
(3.10)
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Like in Example 3.5, let us rearrange this piece of fraction iteratively from the bottom
up, by using the relation (3.9). This allows to rewrite:

Ji0 = (1 − ty2i0−1 − tS2i0y2i0)
−1

S2i0+j =
(
1 − tS2i0+j+1y2i0+1+j

)−1
(j ∈ [0, 2k − 4])

S2i0+2k−3 =
(
1 − S2i0+2k−2ŷ2i0+2k−2

)−1

S2i0+2k−2 = Ji0+k − δmi0+k,mi0+k−1−1 (3.11)

Indeed, we start by using (3.9) at the step j = k − 2 of (3.10), with a = ty2i0+2k−5,
b = ty2i0+2k−4, c = y2i0+2k−3 and u = S2i0+2k−2ŷ2i0+2k−2, to rewrite:

Ji0+k−2 =
(
1 − ty2i0+2k−5 − t

(
1 − t(1 − S2i0+2k−2ŷ2i0+2k−2)

−1y2i0+2k−3

)−1
y2i0+2k−4

)−1

Iterating this leads straightforwardly to (3.11). Repeating this transformation for every
strictly ascending segment of m, we arrive at:

Theorem 3.7. For any Motzkin path m, we have the following mixed Stieltjes-Jacobi
type continued fraction expression for G

m
. Let i1, .., is and ℓ1, . . . , ℓs be the positions and

lengths of the strictly ascending segments of m, of the form (mia , mia + 1, . . . , mia+ℓa−1),
a = 1, 2, . . . , s. Then we have:

G
m

(t) = J1

Ji =
(
1 − ŷ2i−1 − Ji+1ŷ2i

)−1
(i 6∈ ∪a[ia, ia + ℓa − 1])

Jia =
(
1 − ty2ia−1 − S2iaty2ia

)−1
(a ∈ [1, s])

Si =
(
1 − Si+1tyi+1

)−1
(i ∈ [2ia, 2ia + 2ℓa − 4]; a ∈ [1, s])

S2ia+2ℓa−3 =
(
1 − S2ia+2ℓa−2ŷ2ia+2ℓa−2

)−1
(a ∈ [1, s])

S2ia+2ℓa−2 = Jia+ℓa
− δmia+ℓa ,mia+ℓa−1−1 (a ∈ [1, s])

3.3 Quantum commutation relations for the weights

Using the commutations (2.2), we obtain:

Theorem 3.8. Introducing p = qr+1, the weights yi ≡ yi(m0) of Theorem 3.2 obey the
following p-commutation relations:

yiyi+1 = p yi+1yi (i ∈ [1, 2r])

y2iy2i+2 = p y2i+2y2i (i ∈ [1, r − 1])

yjyk = ykyj otherwise

Using the recursion relations (3.3), we deduce the commutation relations of yi(m), for
arbitrary Motzkin paths m:
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Theorem 3.9. For a given Motzkin path m, the weights yi ≡ yi(m) have the following
commutation relations

yiyi+1 = p yi+1yi (i ∈ [1, 2r]) (3.12)

y2iy2i+2 = pmi−mi+1+1 y2i+2y2i (i ∈ [1, r − 1]) (3.13)

yjyk = ykyj otherwise

Proof. By induction under mutation. The Theorem holds for m = m0 (Theorem 3.8).
Assume it holds for some m, then consider m′ = µ+

i (m) in either cases (i) or (ii) of
Lemma 2.1, and denote by y′

j ≡ yj(m
′). We deduce the following commutations from the

recursion hypothesis (eq.(3.12)):

y2j−1y2k−1 = y2k−1y2j−1 (j, k ∈ [1, r + 1]) (3.14)

(y2j−1 + y2j)y2j+1y2j = p y2j+1y2j(y2j−1 + y2j) (j ∈ [1, r]) (3.15)

(y2j−1 + y2j)y2j+1y2j−1 = y2j+1y2j−1(y2j−1 + y2j) (j ∈ [1, r]) (3.16)

In both cases (i) and (ii), this implies that y′
2j−1y

′
2k−1 = y′

2k−1y
′
2j−1 for all j, k and that,

as mi−1 = mi in both cases, y′
2i−2y

′
2i−1 = p y′

2i−1y
′
2i−2, while y′

2i−1y
′
2i = p y′

2iy
′
2i−1 as a

consequence of (3.15) and y′
2iy

′
2i+1 = p y′

2i+1y
′
2i by use of (3.15)–(3.16). Finally, we get

y′
2i−2y

′
2i = y′

2iy
′
2i−2 as y′

2i−2 = y2i−2 p-commutes with both y2i−1 + y2i and y2i. Using the
expressions (3.3) for the cases (i) and (ii), we finally find

• Case (i): y′
2iy

′
2i+2 = p y′

2i+2y
′
2i, as y′

2i+2 = y2i+2 and y2iy2i+2 = y2i+2y2i (from mi+1 =
mi + 1).

• Case (ii): y′
2iy

′
2i+2 = p2 y′

2i+2y
′
2i, as (y2i−1 + y2i) commutes with y2i+2y2i−1 (due to

y2iy2i+2 = p y2i+2y2i, from mi+1 = mi).

Noting finally that m′
i−1 − m′

i + 1 = 0 in both cases (i)-(ii), and that m′
i − m′

i+1 + 1 = 1
in case (i) and = 2 in case (ii), the Theorem follows.

To each Motzkin path m we may associate a quiver Q
m

with 2r + 1 vertices labelled
i = 1, 2, . . . , 2r + 1, that summarizes the commutations of the yi(m)’s as follows: we
draw m arrows from vertex i to vertex j whenever yiyj = pm yjyi. For illustration of
Theorem 3.9, we have depicted in Figure 3.2 the example r = 3 of the quivers Q

m
in the

fundamental domain M3 of Motzkin paths under global integer translations, and indicated
by arrows and superscripts i the mutations µ+

i acting on them.

3.4 Quantum multinomial expressions

3.4.1 p-combinatorics

For a1, . . . , ak ∈ Z+, the quantum multinomial coefficient is defined as:

[
a1 + · · · + ak

a1, . . . , ak

]

p

=

∏a1+···+ak

i=1 (1 − pi)
∏k

j=1

∏aj

i=1(1 − pi)
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1 3

2

3 1 1
2

31

Figure 3.2: The nine quivers Qm corresponding to the nine Motzkin paths m = (m1,m2,m3) ∈
M3, and Q

m0=(0,0,0) on top of the diagram. In each quiver, the vertices are all labeled from

bottom to top 1, 2, . . . , 7. The arrows between quivers, labeled i, correspond to mutations µ+
i

in either case (i) or (ii).
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We assume by convention that when k = 2,

[
−1
0

]

p

= 1. We have the following p-

multinomial identity for k variables x1, . . . , xk such that xixj = pxjxi for all 1 ≤ i < j ≤ k:

(x1 + · · · + xk)
n =

∑

m1,...,,mk≥0
m1+···mk=n

[
n

m1, . . . , mk

]

p

xmk

k x
mk−1

k−1 · · ·xm1
1

This reduces to the standard p-binomial identity for k = 2.
We also define the following formal generating series:

φℓ(z) =

ℓ−1∏

i=0

(1 − piz)−1 =

∞∑

m=0

[
ℓ + m − 1

m

]

p

zm

and, for variables x1, . . . , xk such that xixj = pxjxi for all 1 ≤ i < j ≤ k, we have:

φℓ(x1 + · · · + xk) =
∑

m1,...mk≥0

[
ℓ − 1 + m1 + · · ·+ mk

ℓ − 1, m1, . . . , mk

]

p

xmk

k x
mk−1

k−1 · · ·xm1
1

3.4.2 Explicit expressions for G
m

(t)

We have the following explicit expression for G
m0(t), after ordering of the yi = yi(m0)’s.

Theorem 3.10. For the flat Motzkin path m0 = (0, 0, . . . , 0), we have:

G
m0(t) =

∑

ℓ1,ℓ2,...,ℓ2r+1≥0

ℓ0=1,ℓ2r+2=0

r∏

i=0

[
ℓ2i + ℓ2i+1 + ℓ2i+2 − 1

ℓ2i − 1, ℓ2i+1, ℓ2i+2

]

p

(ty2r+1)
ℓ2r+1(ty2r)

ℓ2r · · · (ty1)
ℓ1

F
m0(t) = 1 +

∑

ℓ1≥1,ℓ2,...,ℓ2r+1≥0

ℓ0=1,ℓ2r+2=0

r∏

i=0

[
ℓ2i + ℓ2i+1 + ℓ2i+2 − 1

ℓ2i − 1, ℓ2i+1, ℓ2i+2

]

p

(ty2r+1)
ℓ2r+1(ty2r)

ℓ2r · · · (ty1)
ℓ1

Proof. By induction. We start with the expression (3.4) for G
m0(t) = J1, and write the

inductive definition J1 = (1 − ty1 − tJ2y2)
−1. Next we note that y1(J2y2) = p(J2y2)y1, as

J2 only involves yi, i ≥ 3, which all commute with y1, by Theorem 3.8. We deduce the
formal expansion

J1 =
∑

ℓ1,ℓ2≥0

[
ℓ1 + ℓ2

ℓ2

]

p

(tJ2y2)
ℓ2(ty1)

ℓ1

Assume we have

J1 =
∑

ℓ0,ℓ1,...,ℓ2m≥0
ℓ0=1

m−1∏

i=0

[
ℓ2i + ℓ2i+1 + ℓ2i+2 − 1

ℓ2i − 1, ℓ2i+1, ℓ2i+2

]

p

(tJm+1y2m)ℓ2m(ty2m−1)
ℓ2m−1 · · · (ty1)

ℓ1

(3.17)
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for some m ≥ 1, then by Theorem 3.8, we know that y2my2m+1 = py2m+1y2m, y2my2m+2 =
py2m+2y2m while y2m commutes with yi, i ≥ 2m + 3, and in particular with Jm+2. This
implies:

y2mJm+1 = y2m(1 − ty2m+1 − tJm+2y2m+2)
−1 = (1 − pty2m+1 − ptJm+2y2m+2)

−1y2m

(tJm+1y2m)ℓ = φℓ(ty2m+1 + tJm+2y2m+2)(ty2m)ℓ

=
∑

ℓ2m+1,ℓ2m+2≥0

[
ℓ + ℓ2m+1 + ℓ2m+2 − 1

ℓ − 1, ℓ2m+1, ℓ2m+2

]

p

(tJm+2y2m+2)
ℓ2m+2(ty2m+1)

ℓ2m+1(ty2m)ℓ

where in the last line we have used the fact that y2m+1y2m+2 = py2m+2y2m+1, while y2m+1

commutes with Jm+2. Substituting this into (3.17), with ℓ = ℓ2m, we obtain the same
summation with m → m+1. We conclude that (3.17) holds for all m, and in particular for
m = r + 1, in which case Jr+2 = 0 imposes that the last summation reduce to ℓ2r+2 = 0,
and the first part of the Theorem follows. The second follows trivially from the relation
between F

m0 and G
m0.

Theorem 3.11. For the ascending Motzkin path m1 = (0, 1, 2, . . . , r − 1), we have:

G
m1(t) =

∑

ℓ1,ℓ2,...,ℓ2r+1≥0

2r∏

i=1

[
ℓi + ℓi+1 − 1 + δi,1

ℓi+1

]

p

(ty2r+1)
ℓ2r+1(ty2r)

ℓ2r · · · (ty1)
ℓ1

F
m1(t) =

∑

ℓ1,ℓ2,...,ℓ2r+1≥0

2r∏

i=1

[
ℓi + ℓi+1 − 1

ℓi+1

]

p

(ty2r+1)
ℓ2r+1(ty2r)

ℓ2r · · · (ty1)
ℓ1

Proof. We start from the expression F
m1(t) = S1 of Example 3.6, and write

S1 = (1 − tS2y1)
−1 =

∑

ℓ1≥0

φℓ1(tS3y2)(ty1)
ℓ1 =

∑

ℓ1,ℓ2≥0

[
ℓ1 + ℓ2 − 1

ℓ2

]

p

(tSℓ2
3 y2)(ty1)

ℓ1

Assume we have

S1 =
∑

ℓ1,...,ℓm−1≥0

m−2∏

i=1

[
ℓi + ℓi+1 − 1

ℓi+1

]

p

(tSmym−1)
ℓm−1(tym−2)

ℓm−2 · · · (ty1)
ℓ1

for some m, then writing (tSmym−1)
ℓ = φℓ(tSm+1ym)yℓ

m−1 immediately implies the same
relation for m → m + 1. We conclude that it holds for all m, in particular for m = r + 2,
where it boils down to the second part of the Theorem. The first part follows from the
relation between F

m1 and G
m1 .

3.4.3 The main Theorem

More generally, we have
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Theorem 3.12. For a generic Motzkin path m, we have the following:

F
m

(t) =
∑

ℓ1,ℓ2,...,ℓ2r+1∈Z+

A
m

(ℓ1, ℓ2, . . . , ℓ2r+1)(ty2r+1)
ℓ2r+1 · · · (ty1)

ℓ1

G
m

(t) =
∑

ℓ1,ℓ2,...,ℓ2r+1∈Z+

A
m

(ℓ1 + 1, ℓ2, . . . , ℓ2r+1)(ty2r+1)
ℓ2r+1 · · · (ty1)

ℓ1

where A
m

is defined as the product

A
m

(ℓ1, . . . , ℓ2k+1) =

[
ℓ1 + ℓ2 − 1

ℓ2

]

p 1

2

×
r−2∏

i=1






[
ℓ2i + ℓ2i+1 + ℓ2i+2 − 1

ℓ2i − 1, ℓ2i+1, ℓ2i+2

]

p

if mi+1 = mi 2i+1

2i

2i+2

[
ℓ2i + ℓ2i+1 + ℓ2i+2 − 1

ℓ2i − 1

]

p

[
ℓ2i + ℓ2i+1 + ℓ2i+2

ℓ2i+2

]

p

if mi+1 = mi − 1 2i+1

2i

2i+2

[
ℓ2i + ℓ2i+1 − 1

ℓ2i+1

]

p

[
ℓ2i+1 + ℓ2i+2 − 1

ℓ2i+2

]

p

if mi+1 = mi + 1 2i+1

2i

2i+2






×

[
ℓ2r + ℓ2r+1 − 1

ℓ2r+1

]

p 2r

2r+1

where we have represented the local structure of the corresponding quiver Q
m

that encodes
the p-commutations of the y’s.

Proof. As before, we proceed by descending induction. Assume that for some k ≥ 1, such
that mk = mk−1 (Case (1)) or mk = mk−1 − 1 (Case (2)), we have an expression of the
form:

F
m

(t) =
∑

ℓ1,...,ℓ2k∈Z+

Am1,...,mk
(ℓ1, . . . , ℓ2k)

×
(
(Jk+1 − ǫk)ŷ2k

)ℓ2k(ty2k−1)
ℓ2k−1 · · · (ty1)

ℓ1 (3.18)

ǫk = δmk−1,mk+1 (3.19)

We now have three possibilities for the Motzkin path:
Case (a): mk+1 = mk.
Case (b): mk+1 = mk − 1.
Case (c): mk+j = mk + j for j = 0, 1, 2, . . . , ℓ − 1 and mℓ ≤ mℓ−1.
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Writing Jk+1 = (1 − ŷ2k+1 − Jk+2ŷ2k+2)
−1, we note that we always have ŷ2kŷ2k+1 =

pŷ2k+1ŷ2k, ŷ2kŷ2k+2 = pŷ2k+2ŷ2k, while ŷ2k commutes with Jk+2, as the latter only depends
on yi with i ≥ 2k + 3. This allows to write:

Case(1): (Jk+1ŷ2k)
m= φm(ŷ2k+1 + Jk+2ŷ2k+2)(ty2k)

m

Case(2): ((Jk+1 − 1)ŷ2k)
m

= p
m(m−1)

2 φm(ŷ2k+1 + Jk+2ŷ2k+2)(ŷ2k+1 + Jk+2ŷ2k+2)
m(ŷ2k)

m

= φm(ŷ2k+1 + Jk+2ŷ2k+2)(ŷ2k+1 + Jk+2ŷ2k+2)
m(ty2k+1)

−m(ty2k)
m (3.20)

where we have used ŷ2k = ty2k in the case (1), and ŷ2k = y−1
2k+1y2k in the case (2), hence

(ŷ2k)
m = p−

m(m−1)
2 (ty2k+1)

−m(ty2k)
m.

We first treat the Cases (a) and (b). In both cases, we have y2k+1ŷ2k+2 = p ŷ2k+2y2k+1,
while y2k+1 commutes with Jk+2. This suggests to rewrite

ŷ2k+1 + Jk+2ŷ2k+2 = ty2k+1 + (Jk+2 − ǫk+1)ŷ2k+2, ǫk+1 = δmk+1,mk−1

in which the two summands p-commute. In the Cases (1a) and (1b) we get:

φm(ty2k+1 + (Jk+2 − ǫk)ŷ2k+2) =
∑

j,n≥0

[
m − 1 + j + n

m − 1, j, n

]

p

((Jk+2 − ǫk)ŷ2k+2)
n(ty2k+1)

j

while in the Cases (2a) and (2b):

φm(ty2k+1 + (Jk+2 − ǫk)ŷ2k+2)(ty2k+1 + (Jk+2 − ǫk)ŷ2k+2)
m

=
∑

j≥0

[
m − 1 + j

j

]

p

(ty2k+1 + (Jk+2 − ǫk)ŷ2k+2)
m+j

=
∑

j,n≥0
j+n≥m

[
j + n − 1

m − 1

]

p

[
j + n

j

]

p

((Jk+2 − ǫk)ŷ2k+2)
n(ty2k+1)

j

We now deal with the Case (c). By Theorem 3.7, the strictly ascending segment of
length ℓ starting at mk corresponds to the mixed Stieltjes-Jacobi expression:

Jk+1 = (1 − ty2k+1 − S2k+2ty2k+2)
−1

Si = (1 − Si+1tyi+1)
−1 (i ∈ [2k + 2, 2k + 2ℓ − 2])

S2k+2ℓ−1 = (1 − (Jk+ℓ+1 − ǫk+ℓ)ŷ2k+2ℓ)
−1

Eq.(3.20) may be rephrased in the present case by substituting ŷ2k+1 + Jk+2ŷ2k with
ty2k+1 + S2k+2ty2k+2. As before the two cases (1) and (2) lead respectively to:

φm(ty2k+1 + (S2k+2)ty2k+2) =
∑

j,n≥0

[
m − 1 + j + n

m − 1, j, n

]

p

(S2k+2ty2k+2)
n(ty2k+1)

j

φm(ty2k+1 + (S2k+2)ty2k+2)(ty2k+1 + (S2k+2)ty2k+2)
m

=
∑

j,n≥0
j+n≥m

[
j + n − 1

m − 1

]

p

[
j + n

j

]

p

(S2k+2ty2k+2)
n(ty2k+1)

j
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Due to the commutation relations between the y’s involved, we may apply directly the
recursion in the proof of Theorem 3.11, to get:

(S2k+2ty2k+2)
n =

∑

ℓ2k+3,ℓ2k+4,...,ℓ2k+2ℓ≥0

ℓ2k+2=n

2k+2ℓ−1∏

i=2k+2

[
ℓi + ℓi+1 − 1

ℓi+1

]

p

× ((Jk+ℓ+1 − ǫk+ℓ)ŷ2k+2ℓ)
ℓ2k+2ℓ(ty2k+2ℓ−1)

ℓ2k+2ℓ−1 · · · (ty2k+3)
ℓ2k+3(ty2k+2)

n

Assembling all the cases, we find the following recursion relation for A in the cases
(ia) and (ib), with i = 1, 2:

Am1,...,mk+1
(ℓ1, . . . , ℓ2k+2) = Am1,...,mk

(ℓ1, . . . , ℓ2k)Ui(ℓ2k, ℓ2k+1, ℓ2k+2)





U1 =

[
ℓ2k + ℓ2k+1 + ℓ2k+2 − 1

ℓ2k − 1, ℓ2k+1, ℓ2k+2

]

p

U2 =

[
ℓ2k + ℓ2k+1 + ℓ2k+2 − 1

ℓ2k − 1

]

p

[
ℓ2k + ℓ2k+1 + ℓ2k+2

ℓ2k+2

]

p

(3.21)

and in the cases (ic), i = 1, 2:

Am1,...,mk+ℓ−1
(ℓ1, . . . , ℓ2k+2ℓ) (3.22)

= Am1,...,mk
(ℓ1, . . . , ℓ2k)Ui(ℓ2k, ℓ2k+1, ℓ2k+2)V (ℓ2k+2, . . . , ℓ2k+2ℓ)

V (ℓ2k+2, . . . , ℓ2k+2ℓ) =
2k+2ℓ−1∏

i=2k+2

[
ℓi + ℓi+1 − 1

ℓi+1

]

p

(3.23)

This determines A entirely, with the initial conditions:

Case (a) or (b) : Am1(ℓ1, ℓ2) =

[
ℓ1 + ℓ2 − 1

ℓ2

]

p

Case(c) : Am1,m2,...,mℓ
(t) =

ℓ−1∏

i=1

[
ℓi + ℓi+1 − 1

ℓi+1

]

p

and the Theorem follows, with A
m

(ℓ1, . . . , ℓ2r+1) = Am1,...,mr,mr
(ℓ1, . . . , ℓ2r+1, 0), as the

last step has y2r+2 = 0.

Extracting the coefficient of tn in the series of Theorem 3.12, and using the expressions
for the weights given by Theorem 3.3, we immediately deduce:

Corollary 3.13. The solution R1,n of the quantum Ar Q-system is expressed as a Laurent
polynomial of any admissible initial data, with coefficients in Z+[q, q−1].
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