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Abstract

We notice that two combinatorial interpretations of the well-known Catalan
numbers Cn = (2n)!/n!(n+1)! naturally give rise to a recursion for Cn. This recur-
sion is ideal for the study of the congruences of Cn modulo 2r, which attracted a
lot of interest recently. We present short proofs of some known results, and improve
Liu and Yeh’s recent classification of Cn modulo 2r. The equivalence Cn ≡2r Cn̄ is
further reduced to Cn ≡2r Cñ for simpler ñ. Moreover, by using connections be-
tween weighted Dyck paths and Motzkin paths, we find new classes of combinatorial
sequences whose 2-adic order is equal to that of Cn, which is one less than the sum
of the digits of the binary expansion of n + 1.

1 Introduction

In this paper, we always denote by p a prime number and by r a positive integer. There
have been many results on the congruence for combinatorial numbers modulo a prime
power pr. For integer q ≥ 2 let n = ndq

d + nd−1q
d−1 + · · · + n0 be the base q expansion

of n. We denote by [n]q = 〈ndnd−1 · · ·n0〉q the corresponding q-ary digits. The elegant
result of Lucas [13] states that

(

n
k

)

≡p

∏

i

(

ni

ki

)

if ni and ki come from [n]p and [k]p, where
≡p denote the congruence equivalence modulo p. The modulo pr case is considered in [2],
but is much more complicated.

∗The authors would like to thank the referee for valuable suggestions improving this exposition. The
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for ROCS, SEM.
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For a positive integer n, the p-adic order ωp(n) defined by ωp(n) = max{t ∈ N : pt|n}
is very important when studying the p-adic property of n. In words, pωp(n) is the largest
power of p dividing n. In some literature, ωp(n) is also called the p-adic valuation. The
study of congruences of combinatorial numbers usually starts with their p-adic order. The
p-adic order of

(

n
k

)

was first studied by Kummer [9]. We also denote by δq(n) the sum
of the digits in the base q expansion [n]q. In particular, if q = 2 then we will omit the
subscript q.

The well-known Catalan numbers Cn defined by

Cn =
1

n + 1

(

2n

n

)

=
(2n)!

n!(n + 1)!
,

are one of the most important sequences in combinatorics. Richard Stanley has collected
more than 200 interpretations of Cn. See [16]. Recently, the congruences of Cn attracted
a lot of interests of study. Alter and Kubota [1] considered ωp(Cn), while the following
result dates back to Kummer (see Dickson’s book [5]):

Theorem 1. For all nonnegative integers n we have

ω(Cn) = s(n) := δ(n + 1) − 1.

Recently Deutsch and Sagan [3] gave a combinatorial proof of Theorem 1 using group
actions. Thereafter Postnikov and Sagan [14] studied the 2-adic order of some weighted
Catalan numbers. The congruence class of Cn modulo 8 was first obtained in [6] as
an important step for setting the conjecture that the well-known Motzkin numbers are
nonzero when modulo 8. Their technique rely on the factorial representation of Cn, and
was further developed by Liu and Yeh [11] to classify the congruence of Cn modulo 64.
In the same paper, the congruence of Cn modulo 2r is settled by reducing to only finite
cases for given r. These results were also considered in [7] in a more general setting.

Our approach to the Catalan numbers modulo 2r is short and only relies on the
following recursion.

Theorem 2. The Catalan numbers Cn is recursively determined by C0 = 1 and

Cn+1 =

⌊n/2⌋
∑

i=0

(

n

2i

)

2n−2iCi. (1)

To prove this result is easy. The shortest proof might be by Zeilberger’s creative
telescoping method [19] since this is in the scope of hypergeometric sum identities. We
discover this recursion by the connection between Catalan numbers and 2-Motzkin num-
bers. See Section 4.

The recursion in Theorem 2 is ideal for the study of Cn modulo 2r, and is the starting
point of this paper. In Section 2, we give short proofs of some known results on the Catalan
congruences. In Section 3, we improve Liu and Yeh’s reduction result for Cn modulo 2r.
In Section 4, we study Postnikov and Sagan’s question on what kind of weighted Catalan
number has the same 2-adic order as Cn. We construct several classes of such weighted
Catalan numbers by using the Dyck path and Motzkin path model. Finally in Section 5,
we discuss some possible directions for generalization.
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2 Short derivation of some known results

Our derivation relies on the following lemma and Theorem 2.

Lemma 3. For positive integers n, we have s(n) ≤ s(n − i) + i for 0 ≤ i ≤ n.

Proof. By definition, it is clear that δ(n + 1) ≤ δ(n) + 1, which is equivalent to s(n) ≥
s(n − 1) + 1. Thus repeated application of this inequality gives, for i > 1, s(n) ≥
s(n − 1) + 1 ≥ s(n − 2) + 2 ≥ · · · ≥ s(n − i) + i.

We begin with a simple proof of Theorem 1 not relying on the factorial representa-
tion. Deutsch and Sagan [3] gave a beautiful proof of it by using the complete binary
tree representation of Cn and group actions, but the idea is not useful to compute the
congruences.

Let us rewrite the recursion in Theorem 2 more explicitly as follows.

C2m+1 = Cm +
∑

i≥1

(

2m

2i

)

22iCm−i, for m ≥ 0, (2)

C2m =
∑

i≥1

(

2m − 1

2i − 1

)

22i−1Cm−i, for m ≥ 1. (3)

These two equations and Lemma 3 will be used frequently.

Proof of Theorem 1. We prove the result by induction on n. The theorem clearly holds
for n = 0. Assume the theorem holds for all smaller n.

For odd n = 2m + 1, we use (2). By Lemma 3 and the induction hypothesis, we have,
for i ≥ 1,

ω(22iCm−i) = 2i + s(m − i) ≥ i + s(m) > s(m) = ω(Cm).

Thus ω(C2m+1) = ω(Cm) = s(m) = δ(m + 1) − 1 = δ(2m + 2) − 1 = s(2m + 1).
For even n = 2m, we use (3). By the induction hypothesis, ω(2(2m − 1)Cm−1) =

s(m − 1) + 1, together with Lemma 3, we have, for i ≥ 2,

ω(22i−1Cm−i) = 2i − 1 + s(m − i) ≥ s(m − 1) + i > s(m − 1) + 1.

Thus ω(C2m) = ω(2(2m − 1)Cm−1) = s(m − 1) + 1 = δ(m) = δ(2m + 1) − 1 = s(2m).
This completes the proof.

From Theorem 1, it is easy to derive the following congruence result. See, e.g., [1].

Theorem 4. The Catalan number Cn is odd if and only if n = 2a − 1 :

Cn ≡2 χ(n = 2a − 1, a ≥ 0) =

{

1 if n = 2a − 1, a ≥ 0;
0 otherwise.

(4)

The modulo 4 and 8 congruences were computed in [6] by developing a general ap-
proach for dealing with factorials.
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Theorem 5. The Catalan numbers are not congruent to 3 when modulo 4 and

Cn ≡4







1 if n = 2a − 1; a ≥ 0
2 if n = 2b + 2a − 1, b > a ≥ 0;
0 otherwise.

(5)

Theorem 6. The Catalan numbers are not congruent to 3,7 when modulo 8 and

Cn ≡8































1 if n = 0, 1
5 if n = 2a − 1, a ≥ 2;
2 if n = 2a+1 + 2a − 1, a ≥ 0;
6 if n = 2b + 2a − 1, b − 2 ≥ a ≥ 0;
4 if n = 2c + 2b + 2a − 1, c > b > a ≥ 0;
0 otherwise.

(6)

Our approach by recursion is much shorter.

Proof of Theorems 4-6. Modulo 2, the recursions (2) and (3) reduce to

C2m+1 ≡2 Cm and C2m ≡2 0, m ≥ 1.

We can then deduce that if n = 2a+1α + 2a−1 + aa−2 + · · · + 1 = (2α + 1)2a − 1, then
Cn ≡2 C2α, which is 1 if α = 0 and 0 otherwise. Theorem 4 then follows.

For r = 2, the recursions reduce to

C2m+1 ≡4 Cm and C2m ≡4 2Cm−1.

Similar to the r = 1 case, if n = 2a(2α + 1) − 1, a ≥ 1, then Cn ≡4 C2α. If α = 0, then
n = 2a − 1, and we have Cn ≡4 1; otherwise C2α ≡4 2Cα−1 ≡4 2χ(α = 2a′

, a′ ≥ 0) by
Theorem 4. Summarizing the above gives Theorem 5.

The r = 3 case is a bit more complicated. Our recursions reduce to

C2m+1 ≡8 Cm + 4m(2m − 1)Cm−1 ≡8 Cm + 4mCm−1, (7)

C2m ≡8 2(2m − 1)Cm−1. (8)

Equation (7) can be simplified further:

C2m+1 ≡8 Cm + 4mχ(m = 2a, a ≥ 0)

≡8 Cm + 4 · 2aχ(m = 2a, a ≥ 0)

≡8 Cm + 4χ(m = 1).

Let n = 2a(2α + 1) − 1. If α = 0, then n = 2a − 1 and we have C0 = C1 = 1 (mod 8),
C2a−1 ≡8 5 for a ≥ 2; If α ≥ 1, then

Cn ≡8 C2α ≡8 2(2α − 1)Cα−1.
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On the other hand, by (5) and (8) we obtain:

C2α ≡8 2(2α − 1)Cα−1 ≡4















2 if α = 1;
6 if α = 2b, b ≥ 1;
4 if α = 2c + 2b, c > b ≥ 0;
0 otherwise.

Theorem 6 is then obtained by collecting the above information.

From the above computation, we see that we can recursively solve for Cn (mod 2r)
even for symbolic n. However the recursion becomes complicated and we will have to
splits into too many cases when r becomes large. This approach is not convincing as can
be seen in the next section.

3 Improvements on Catalan numbers modulo 2r

The following result was conjectured by Liu and Yeh [11] and was soon proved by Lin
[10]. Around the same time, Luca and Young [12] discovered and proved this result
independently for a different purpose. Both proofs rely on the factorial form of Cn.

Theorem 7. Let k ≥ 2, The odd congruences C2a−1 (mod 2k), a ≥ 0 remain constant for
a ≥ k − 1 and are distinct for a = 1, 2, . . . , k − 1.

We are able to generalize this result as follows.

Theorem 8. Let r ≥ 1 and α ∈ N with δ(α) < r. Then if b ≥ r − 1 − δ(α), we have
C2b(2α+1)−1 ≡ C2r−1−δ(α)(2α+1)−1 (mod 2r). Moreover, the congruence classes C2b(2α+1)−1

(mod 2r), b = 1, 2, . . . , r − 1 − δ(α) are all distinct.

Proof. We prove the result by induction on r. The cases r = 1, 2 are easily checked
by Theorems 4 and 5. For the second part, by using the induction hypothesis and the
fact that x ≡ y (mod 2r) implies that x ≡ y (mod 2r−1), we only need to show that
C2r−1−δ(α)(2α+1)−1 6≡ C2r−2−δ(α)(2α+1)−1 (mod 2r).

Now write n = 2b(2α + 1)− 1 and n′ = 2b−1(2α + 1)− 1. We will show that Cn ≡ Cn′

(mod 2r) for b ≥ r − δ(α) > 0. Then iterating application of this equality yields the first
part of the theorem. For general b > 0, take m = n′ in (2) and investigate each term of
the right-hand-side. By Theorem 1, we have, for i ≥ 1,

ω(22iCm−i) = 2i + s(m − i) ≥ s(m − 1) + i + 1 = δ(m) + i = δ(α) + b − 1 + i.

Thus most terms vanish when modulo 2r and we are left with: i) Cn ≡ Cn′ (mod 2r)
if b ≥ r − δ(α), as desired; ii) Cn ≡ Cn′ + m(2m − 1)22Cm−1 ≡ Cn′ + 2r−1 (mod 2r) if
b = r− δ(α)−1 ≥ 2 (there is nothing to show when r− δ(α)−1 = 1), since ω(22Cm−1) =
2 + s(m − 1) = δ(α) + b = r − 1.

the electronic journal of combinatorics 18 (2011), #P177 5



Suppose [n]2 = 〈10as10as−1 · · ·10a101a0〉2 where ai ≥ 0 and 0ai means the concatenation
of ai 0’s. The extra 0 after 0a1 guarantees that s(n) = s for all a1 ≥ 0. Liu and Yeh [11]
reduce the congruence of Cn to that of Cn̄ when modulo 2r, where [n̄]2 is obtained from
[n]2 by change ai to min(ai, r − 1) for all i. We improve this reduction to ñ defined by

[ñ]2 = 〈10min(as,r−s−1)10min(as−1,r−s−1) · · · 10min(a1,r−s−1)01min(a0,r−s−1)〉2.

In words, [ñ]2 is obtained from [n]2 by changing any run of 1 or 0 of length greater than
r− s(n)− 1 to length r− s(n)− 1, provided the rightmost 0 is not counted into the runs.

Theorem 9. For positive integers n and r, we have

Cn ≡2r

{

Cñ, if s(n) ≤ r − 1;
0, if s(n) ≥ r.

(9)

Before giving the proof, we clarify the statement by some examples.
1) The r = 1 case. If s(n) = 0 then [n]2 = 〈1a0〉2 with a0 ≥ 0 and the theorem asserts

Cn ≡2= C0 = 1. This is consistent with Theorem 4.
2) The r = 2 case. If s(n) = 1 then [n]2 = 〈10a101a0〉2 with ai ≥ 0, and the theorem

asserts Cn ≡4 C2 = 2; if s(n) = 0 then for [n]2 = 〈1a0〉2 with a0 ≥ 2 − 0 − 1 = 1 we have
Cn ≡4 C1 = 1, which together with C0 ≡4 1 classify this case.

3) The r = 3 case. If s(n) = 2 then [n]2 = 〈10a210a101a0〉2 with ai ≥ 0, and the
theorem asserts Cn ≡8 C6 = 396 ≡8 4 (also followed by s(n) = 2 = r − 1); if s(n) = 0
then C0 = C1 = 1 for a0 = 0, 1 and Cn ≡8 C3 ≡8 5 for a0 ≥ 2; finally the s(n) = 1 case is
listed in the following table.

[n]2 = 〈10a101a0〉2 a0 = 0 a0 ≥ 1
a1 = 0 C2 ≡8 2 Cn ≡8 C5 ≡8 2
a1 ≥ 1 Cn ≡8 C4 ≡8 6 Cn ≡8 C9 ≡8 6

In summary, the above computation is consistent with Theorem 6.

Proof of Theorem 9. We prove the result by induction on r. The theorem holds for r =
1, 2, 3 as it has been verified above. Now assume the theorem holds for smaller r. The
reduction of a0 to min(a0, r − s(n) − 1) is confirmed by Theorem 8.

By Theorem 1, it is clear that Cn ≡2r 0 if s(n) ≥ r and Cn ≡2r 2r−1 if s(n) = r − 1.
Now let us assume s(n) ≤ r − 2. The reduction for ai with i ≥ 1 follows by iterative
application of the following Lemma 10.

Lemma 10. Suppose r ≥ 1. Fix α, e ∈ N with 2a−1 ≤ e < 2a. For n = (2α+1)2a+b+e set
n′ = (2α+1)2a+b−1 + e if b ≥ 2. Then Cn ≡ Cn′ (mod 2r) if b ≥ r− s(n)+χ(e = 2a −1).

Proof. We prove the result by induction on r and then on a. The lemma has been verified
for r = 1, 2, so assume r ≥ 3.

For the initial case a = 0, e has to be 0 and χ(e = 2a − 1) = 1. Write n = 2b(2α + 1)
and n′ = m = 2b−1(2α + 1) = 2m′ and use (3). Then s(n) = s(n′) = δ(α) + 1. By
Theorem 1, we have, for i ≥ 2,

ω(22i−1Cm−i) = 2i − 1 + s(m − i) ≥ i + 1 + s(m − 2) = i + δ(m − 1) = i + δ(α) + b − 1.
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Thus for b + δ(α) ≥ r, or equivalently b ≥ r + 1 − s(n), we are left with

Cn ≡ 2(2m − 1)Cm−1 ≡ −2Cm−1 (mod 2r),

Cn′ ≡ 2(2m′ − 1)Cm′−1 ≡ −2Cm′−1 (mod 2r),

where we used the fact that ω(4m′Cm′−1) = b + δ(α) ≥ r and similarly for m. Now
Cm−1 ≡ Cm′−1 (mod 2r−1) by Theorem 8, since m − 1 ends with a run of 1 of length
b − 1 ≥ r − 1 − δ(α). It then follows that Cn ≡ Cn′ (mod 2r), as desired.

Now for a ≥ 1, take m = 2a+b−1(2α + 1) + f and m′ = 2a+b−2(2α + 1) + f , where
e = 2f + 1 or e = 2f according to n = 2m + 1 or n = 2m and similarly for n′ and m′.
The key observation is that s(m − f − 2) is large:

s(m − f − 2) = δ(2a+b−1(2α + 1) − 1) − 1 = δ(α) + a + b − 2.

For the case n = 2m even, we also need the equality

s(m′ − 1) = s(m − 1) = δ(m) − 1 = δ(2m + 1) − 2 = s(2m) − 1 = s(n) − 1.

In (3), by using Theorem 1 we obtain, for i ≥ f + 2,

ω(22i−1Cm−i) = 2i − 1 + s(m − i) ≥ s(m − f − 2) + i + f + 1 ≥ δ(α) + a + b + 1 + 2f.

Thus for b + s(n) ≥ r we have b + a + δ(α) ≥ b + s(n) ≥ r, and hence

Cn ≡

(

2m − 1

2f + 1

)

22f+1C2a+b−1(2α+1)−1) +

f
∑

i=1

(

2m

2i − 1

)

22i−1Cm−i (mod 2r),

Cn′ ≡

(

2m′ − 1

2f + 1

)

22f+1C2a+b−2(2α+1)−1) +

f
∑

i=1

(

2m′

2i − 1

)

22i−1Cm′−i (mod 2r),

where we write separately the term corresponds to i = f + 1. To see that Cn ≡ Cn′

(mod 2r) we need to check the following three facts: i) C2a+b−1(2α+1)−1 ≡ C2a+b−2(2α+1)−1

(mod 2r−1) by Theorem 8; ii) Cm−i ≡ Cm′−i (mod 2r−2i+1) for 1 ≤ i ≤ f . Since e− i can
not be 2a−1 − 1 and

b + s(m − i) ≥ b + s(m − 1) − (i − 1) = b + s(n) − i ≥ r − i ≥ r − 2i + 1,

the condition for the lemma holds with respect to a−1 and f − i, and hence the induction
hypothesis applies. iii) For 1 ≤ i ≤ f + 1 we have

(

2m−1
2i−1

)

22i−1Cm′−i ≡
(

2m′−1
2i−1

)

22i−1Cm′−i

(mod 2r). Firstly we have

ω(22i−1Cm′−i) = 2i − 1 + s(m′ − i) ≥ i + s(m′ − 1) = s(n) + i − 1 ≥ s(n).

Secondly, ω(2m − 2m′) = ω(2a+b−1(2α + 1)) = a + b − 1 ≥ r − s(n), and hence
(

2m−1
2i−1

)

≡
(

2m′−1
2i−1

)

(mod 2r−s(n)).
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The case n = 2m + 1 odd is similar. We need the fact s(n) = s(m) = s(m′). Looking
at (2), we have similarly ω(22iCm−i) ≥ δ(α) + a + b + 2 + 2f for i ≥ f + 2. Thus if
b + s(n) ≥ r + χ(e = 2a − 1), then we are left with

Cn ≡

(

2m

2f + 2

)

22f+2C2a+b−1(2α+1)−1) +

f
∑

i=0

(

2m

2i

)

22iCm−i (mod 2r),

Cn′ ≡

(

2m′

2f + 2

)

22f+2C2a+b−2(2α+1)−1) +

f
∑

i=0

(

2m′

2i

)

22iCm′−i (mod 2r).

To see that Cn ≡ Cn′ (mod 2r) we need four facts: i) C2a+b−1(2α+1)−1) ≡ C2a+b−2(2α+1)−1)

(mod 2r−2), also followed by Theorem 8; ii) Cm−i ≡ Cm′−i (mod 2r − 2i) for 1 ≤ i ≤ f .
This can be similarly checked by first observing that

b + s(m − i) ≥ b + s(m) − i = b + s(n) − i ≥ r − i ≥ r − 2i

and then applying the induction hypothesis. iii) For 1 ≤ i ≤ f + 1 we have
(

2m
2i

)

22iCm′−i ≡
(

2m′

2i

)

22iCm′−i (mod 2r). Similarly, we obtain

ω(22iCm′−i) = 2i + s(m′ − i) ≥ i + s(m′) = s(n) + i ≥ s(n),

and ω(2m−2m′) = ω(2a+b−1(2α+1)) = a+b−1 ≥ r−s(n) which implies that
(

2m
2i

)

≡
(

2m′

2i

)

(mod 2r−s(n)); iv) Cm ≡ Cm′ (mod 2r) for the i = 0 term. We also apply the induction
hypothesis by verifying that b + s(m) = b + s(n) ≥ r + χ(e = 2a − 1) = r + χ(f =
2a−1 − 1).

4 Generalizations from the view of recursion

A natural question is to find more combinatorial sequences Dn satisfying the property
ω(Dn) = s(n). By generalizing the idea in the proof of Theorem 1, we construct classes
of weighted Catalan number having this property.

A Motzkin path of length n is a Z
2 lattice path from (0, 0) to (n, 0) with steps

(1, 1), (1, 0), (1,−1), called up, level, or down step respectively, and never go below level 0,
i.e., the horizontal axis. Given two sequences h = (h0, h1, h2, . . . ) and u = (u0, u1, u2, . . . ),
an up step start at level i has weight ui, a level step at level i has weight hi, and any
down step has weight 1. The weight of a Motzkin path is defined to be the product of
the weights of all its steps, and the weighted Motzkin number Mh,u

n is defined to be the
sum of the weights of all Motzkin paths of length n. When h is constant, say hi = α for
all i, we simply write α for h, and similarly for u. The ordinary Motzkin number Mn is
the special case M1,1

n .
It is clear that M

0,u
2n+1 = 0. Denote by Cu

n = M
0,u
2n and call it the weighted Catalan

number, since C1
n = Cn. Motzkin paths without level steps are also called Dyck paths. It is

clear that Cβ
n = βnCn. It is worth mentioning that both generating functions

∑

n≥0 Cu
nxn

and
∑

n≥0 Mh,u
n xn have continued fraction representations, one called the S-fraction and
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the other called the J-fraction. See [17]. For constant h, say hi = α, we have the following
identity

Mα,u
n =

∑

i≥0

(

n

2i

)

αn−2iCu
i , (10)

by classifying the appropriate Motzkin paths according to the number of level steps.
The following result is useful in constructing sequences with 2-adic order s(n). Since

it is only a special case of the more general Proposition 17, we omit the proof.

Proposition 11. For any sequence En with ω(En) = s(n) and odd numbers α, β, if

D2n+1 = βnEn +
∑

1≤i≤n

(

2n

2i

)

(2α)2iβn−iEn−i, for n ≥ 0, (11)

D2n =
∑

1≤i≤n

(

2n − 1

2i − 1

)

(2α)2i−1βn−iEn−i, for n ≥ 1, (12)

then ω(Dn) = s(n) for all n. In particular, if Dn is recursively defined as above with
En = Dn and ω(D0) = 0, then ω(Dn) = s(n).

Corollary 12. For any integer α, β and sequence u such that ω(Cu
n) = s(n), we have

ω(M4α+2,u
n ) = s(n + 1). In particular, ω(M4α+2,2β+1

n ) = s(n + 1).

By comparing Theorem 2 with (10), we see that Cn+1 = M2,1
n . Next we establish a

connection between weighted Catalan numbers and weighted Motzkin numbers.

Theorem 13. For any sequence u = (u0, u1, u2, . . . ) we have

Cu
n+1 = u0M

(u0+u1,u2+u3,... ),(u1u2,u3u4,... )
n .

Proof. For a given Dyck path P from (0, 0) to (2n + 2, 0), by removing the first up step
(with weight u0) and the final down step, we obtain a path from (1, 1) to (2n + 1, 1)
that never go below level 0. Now combine every consecutive two steps together to form
a Motzkin path M of length n: a) an up-up step in P start at level 2i + 1 with weight
u2i+1u2i+2 becomes an up step at level i for i ≥ 0; b) a down-down step in P start at
level 2i + 1 with weight 1 becomes a down step start at level i for i ≥ 1 (we can not have
a down-down step in P start at level 1); c) an up-down step or a down-up step start at
level 2i + 1 with combined weights u2i+1 + u2i becomes a level step at level i for i ≥ 0. It
is easy to see that this is a weight preserving bijection.

Remark 14. Though we are not able to find a reference, Theorem 13 is probably known,
since the proof is short and weighted Motzkin and Catalan numbers are well studied objects.
Indeed, the ordinary case Cn+1 = M2,1

n was established by Deutsch and Shapiro [4], where
M2,1

n is called the 2-Motzkin numbers.
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Postnikov and Sagan [14] established a sufficient condition for ω(Cu
n) = s(n), in par-

ticular for C
(12,32,52,... )
n . We derive sufficient conditions of different kind. Denote by

h = (ḣ0, h1, . . . , ˙hd−1) if h is periodic with hd+i = hi. We have

Theorem 15. For odd integers α, β with α + β ≡4 2, we have ω(C
(α̇,β̇)
n ) = s(n).

Proof. By Theorem 13, C
(α̇,β̇)
n = αM

α+β,αβ
n−1 . Now apply Corollary 12.

Theorem 16. For odd integers u0, u2, and α ≡4 2, we have

ω(C
(u̇0,α−u0,u2, ˙α−u2)
n ) = s(n).

Proof. Denote by u1 = α − u0, u3 = α − u2. We have C
(u̇0,u1,u2,u̇3)
n = u0M

α,( ˙u1u2, ˙u3u0)
n−1 by

using Theorem 13. By Theorem 15 and the condition that

u2u1 + u3u0 = u2(α − u0) + u0(α − u2) ≡4 2(u2 + u0 − u0u2) = −2u0u2 ≡4 2,

we conclude that ω(C
α,( ˙u1u2, ˙u3u0)
n ) = s(n). Now apply Corollary 12.

A concrete example would be ω(C
(1̇,5,3,3̇)
n ) = s(n). If we allow negative numbers, the

simplest example would be ω(C
(1̇,1,−1,3̇)
n ) = s(n). We can obtain more classes of sequences,

but they will be more complicated. For instance, if we want ω(C
(u̇0,u1,...,u̇7)
n ) = s(n), we

need ui being odd, u2i + u2i+1 = α ≡4 2, and u1u2 + u3u4 = u5u6 + u7u0 ≡4 2.
We conclude by the following very general result, in the same vein of Theorem 1.

Proposition 17. Fix a prime p. For any sequence En satisfying ωp(En) = s(n), if

D2n+1 = a2n+1,0En +
∑

1≤i≤n

a2n+1,ip
i+1En−i, for n ≥ 0, (13)

D2n = pa2n,1En−1 +
∑

2≤i≤n

a2n,ip
i+1En−i, for n ≥ 1, (14)

where ωp(a2n+1,0) = 0 and ωp(a2n,1) = 0, then ωp(Dn) = s(n) for all n. In particular, if
En = Dn and Dn is recursively defined as above with ωp(D0) = 0, then ωp(Dn) = s(n).

Proof. For the odd case, we check that, for i ≥ 1,

ωp(a2n+1,ip
i+1En−i) ≥ i + 1 + s(n − i) ≥ s(n) + 1 > s(n) = ωp(a2n+1,0En).

It follows that ωp(D2n+1) = s(n) = s(2n + 1).
Similarly for the even case, we check that, for i ≥ 2,

ωp(a2n,ip
i+1En−i) ≥ i + 1 + s(n − i) ≥ 2 + s(n − 1) > s(n − 1) + 1 = ωp(pa2n,1En−1).

It follows that ωp(D2n) = s(n − 1) + 1 = δ(n) = δ(2n + 1) − 1 = s(2n).

However, it is hard to specialize p and an,i to produce nice combinatorial sequences.
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5 Further discussion and future work

Deutsch and Sagan [3] give a combinatorial proof of ω(Cn) = s(n) by using the complete
binary tree representation of Cn and group actions. They conjectured that the closely
related Motzkin numbers

Mn =
∑

i≥0

(

n

2i

)

Ci

is nonzero when modulo 8. This conjecture was settled by Eu, Liu and Yeh [6], where the
congruences of the Catalan numbers in Theorems 4-6 play important roles.

In [18], the first named author will find a similar, but not very nice, recursion as in
Theorem 2 that not only gives rise to a simple proof of the Eu-Liu-Yeh theorem but also
helps classifying the congruence classes of Mn modulo 2r.

The recursion in Theorem 2 is very helpful in computing the congruences. It is natural
to ask if we have similar recursion for prime p > 2. A possible starting point would be to
consider generalized Catalan numbers, which is denoted

G(k)
n =

1

(k − 1)n + 1

(

kn

n

)

.

This counts the number of many combinatorial objects such as complete k-ary trees, and
the k = 2 case reduces to the ordinary Catalan numbers. See, e.g., [16]. The following
result was obtained independently by Stănică [15] and by Konvalinka [8].

Proposition 18. Let p be a prime and k ≥ 1. We have

ωp(G
(pk)
n ) =

δp((p
k − 1)n + 1) − 1

p − 1
.
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J. Reine Angew. Math. 44 (1852), 93–146.

[10] H.-Y. Lin, Odd Catalan numbers modulo 2k, arXiv:1012.1756.

[11] S.-C. Liu and J. C.-C. Yeh, Catalan numbers modulo 2k, J. Integer Sequences 13
(2010), Art. 10.5.4.

[12] F. Luca and P.T. Young, On the binary expansion of the odd Catalan numbers,
Proceedings of the XIVth International Conference on Fibonacci Numbers, Morelia,
Mexico, 2010. eds. Luca and Stănică, to appear.
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