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Abstract

(Dual-)promotion and (dual-)evacuation are bijections on SY T (λ) for any par-
tition λ. Let cr denote the rectangular partition (c, . . . , c) of height r, and let sck

(k > 2) denote the staircase partition (k, k−1, . . . , 1). We demonstrate a promotion-
and evacuation-preserving embedding of SY T (sck) into SY T (kk+1). We hope that
this result, together with results by Rhoades on rectangular tableaux, can help to
demonstrate the cyclic sieving phenomenon of promotion action on SY T (sck).

1 Introduction

Promotion and evacuation (denoted here by ∂ and ǫ, respectively – see Definitions 2.1 and
2.7) are closely related permutations on the set of standard Young tableaux SY T (λ) for
any given shape λ. Schützenberger studied them in [14, 15, 16] as bijections on SY T (λ),
and later as permutations on the linear extensions of any finite poset. Edelman and Greene
[3], and Haiman [6] described some of their important properties; in particular, they
showed that the order of promotion on SY T (sck) is k(k+1), where sck = (k, k−1, · · · , 1)

∗Both authors were partially supported by NSF grants DMS–0636297, DMS–0652641, and DMS–
0652652 for this work while studying in the Mathematics Department at the University of California,
Davis.
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is the staircase tableau. In 2008, Stanley gave a terrific survey [20] of previous results on
promotion and evacuation.

In the paper, we report the construction of an embedding

ι : SY T (sck) →֒ SY T (k(k+1))

that preserves promotion and evacuation:

ι ◦ ∂ = ∂ ◦ ι, and

ι ◦ ǫ = ǫ ◦ ι.

This result arises from our on-going project aimed at understanding the promotion cy-
cle structure on rectangle-shaped standard Young tableaux SY T (rc) and staircase stan-
dard Young tableaux SY T (sck). The eventual (not yet achieved) goal of this project is
the demonstration of the cyclic sieving phenomenon (CSP) of promotion action on
SY T (sck).

Let X be a finite set and let C = 〈a〉 be a cyclic group of order N acting on X. Let
X(q) ∈ Z[q] be a polynomial with integer coefficients. We say that the triple (X, C, X(q))
exhibits the CSP if for any integer k, we have

X(ζk) = #{x ∈ X | ak· x = x}, (1.1)

where ζ = e2πi/N is a primitive N -th root of unity.
V. Reiner, D. Stanton, and D. White first formalized the notion of the CSP in [10].

Before them, Stembridge considered the “q = −1” phenomenon [23], which is the special
case of the CSP with N = 2 (where ζ = e2πi/2 = −1).

Important instances of the CSP arise from the actions of promotion and evacuation on
standard Young tableaux. For example, Stembridge [23] showed that (SY T (λ), 〈ǫ〉, X(q))
exhibits the CSP, where λ is any partition shape and X(q) is the generating function of
the comajor index.

More recently, B. Rhoades [11] showed representation-theoretically that, for an arbi-
trary rectangular partition (cr), (SY T (cr), 〈∂〉, X(q)) exhibits the CSP, where ∂ is pro-
motion on SY T (cr) and X(q) is the generating function of maj, a statistic on standard
Young tableaux that is closely related to the major index. 1

Via the embedding ι : SY T (sck) →֒ SY T (k(k+1)), we are able to extend Rhoades’
definition of “extended descent” from rectangular tableaux to staircase tableaux. This
further enables us to demonstrate facts about the promotion cycle structure on staircase
tableaux. For example, we will be able to show that full-cycle(s) always exist (Corollary
4.18), and half-cycles never exist (Corollary 4.19).

This paper is organized in the following way: In Section 2, we define the terminology
and notation, and review several basic results that are used in later sections.

1More precisely, maj = maj − b(λ), where b(λ) is a quantity that depends only on the shape λ, see
[19, 7.21.5] for details.
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In Section 3, we construct the embedding ι and prove our main results about ι, The-
orems 3.6 and 3.7, which state that promotion and evacuation are preserved under the
embedding.

In Section 4, we extend Rhoades’ construction of “extended descent” on rectangular
tableaux to that on staircase tableaux by using ι; our main results in this section are
Theorems 4.11, 4.12, 4.13 and 4.14, which state that the extended descent data nicely
records the actions of (dual-)promotion and (dual-)evacuation on both rectangular and
staircase tableaux.

In Section 5, we explain how the embedding ι arose and pose open questions.

2 Definitions and Preliminaries

This section is a review of those notions, notations and facts about Young tableaux that
are directly used in the following sections. We assume the reader’s basic knowledge
of tableaux theory, including partitions, standard Young tableaux, Knuth equivalence,
reading word of a tableau, jeu-de-taquin, and the RSK algorithm. All of our tableaux
and directional references (e.g., north, west, etc.) will refer to tableaux in “English”
notation. For more on these topics, see [19] or [5].

2.1 Basic definitions

Definition 2.1. Given T ∈ SY T (λ) for any (skew) shape λ ⊢ n, the promotion action
on T , denoted by ∂(T ), is given as follows:

Find in T the outside corner that contains the number n, and remove it to create an
empty box. Apply jeu-de-taquin repeatedly to move the empty box northwest until the
empty box is an inside corner of λ. (We call this process sliding, the sequence of positions
that the empty box moves along in this process is called sliding path). Place 0 in the
empty box. Now add one to each entry of the current filling of λ so that we again have a
standard Young tableau. This new tableau is ∂(T ), the promotion of T .

In the case that sliding is used to define promotion (there are other equivalent descrip-
tions), we will refer to the sliding path as the promotion path.

Remark 2.2. Edelman and Greene ([3]) call ∂ defined above “elementary promotion.”
They call ∂n the “promotion operator.”

Example 2.3. Promotion on standard tableaux.

1 4 5
2 6 8
3 7 13
9 10 15
11 14
12

→

1 4 5
2 6 8
3 7 13
9 10
11 14
12

→

1 4 5
2 6 8
3 7
9 10 13
11 14
12

→

1 4 5
2 6
3 7 8
9 10 13
11 14
12

→

1 4 5
2 6
3 7 8
9 10 13
11 14
12
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→

1 5
2 4 6
3 7 8
9 10 13
11 14
12

→

1 5
2 4 6
3 7 8
9 10 13
11 14
12

→

0 1 5
2 4 6
3 7 8
9 10 13
11 14
12

→

1 2 6
3 5 7
4 8 9
10 11 14
12 15
13

If we label the boxes by (i, j), with i being the row index from top to bottom and j
being the column index from left to right, and the northwest corner being labelled (1, 1),
then the promotion path of the above example is [(4, 3), (3, 3), (2, 3), (2, 2), (1, 2), (1, 1)].

Promotion ∂ has a dual operation, called dual-promotion, denoted by ∂∗ and defined
as follows:

Definition 2.4. Find in T the inside corner that contains 1, and remove it to create an
empty box. Apply jeu-de-taquin repeatedly to move the empty box southeast until it is
an outside corner of λ. (We call this process dual-sliding, and the sequence of positions
that the empty box moves along in this process is called the dual-sliding path). Place
the number n + 1 in this outside corner. Now subtract one from each entry so that we
again have a standard Young tableau. This new tableau is ∂∗(T ), the dual-promotion of
T .

In the case that dual-sliding is used to define promotion, we will refer to the dual-
sliding path as the dual-promotion path.

Example 2.5. Dual-promotion on standard tableaux.

1 4 5
2 6 8
3 7 13
9 10 15
11 14
12

→

4 5
2 6 8
3 7 13
9 10 15
11 14
12

→

2 4 5
6 8

3 7 13
9 10 15
11 14
12

→

2 4 5
3 6 8

7 13
9 10 15
11 14
12

→

2 4 5
3 6 8
7 13
9 10 15
11 14
12

→

2 4 5
3 6 8
7 10 13
9 15
11 14
12

→

2 4 5
3 6 8
7 10 13
9 14 15
11
12

→

2 4 5
3 6 8
7 10 13
9 14 15
11 16
12

→

1 3 4
2 5 7
6 9 12
8 13 14
10 15
11

The dual-promotion path of the above example is [(1, 1), (2, 1), (3, 1), (3, 2), (4, 2), (5, 2)].

Remark 2.6. It is easy to see that ∂∗ = ∂−1; thus, they are both bijections on SY T (λ).
Moreover, the the promotion path of T is the reverse of the dual-promotion path of ∂(T ).
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Definition 2.7. Given T ∈ SY T (λ) for any λ ⊢ n, the evacuation action on T , denoted
by ǫ(T ), is described in the following algorithm:

Let T0 = T and λ0 = λ, and let U be an “empty” tableau of shape λ. We will fill in
the entries of U to get ǫ(T ).

1. Apply sliding to Tk. The last box of the sliding path is an inside corner of λk; call
this box (ik, jk). Fill in the number k + 1 in the (ik, jk) box of U .

2. Remove (ik, jk) from λk to get λk+1, and remove the corresponding box and entry
from Tk to get Tk+1.

3. Repeat steps (1) and (2) until λn = ∅ and U is completely filled. Then define
ǫ(T ) = U .

Example 2.8. The following is a “slow motion” demonstration of the above process,
where the Tk and U have been condensed. Bold entries indicate the current fillings of U .

T =

1 3 8
2 4
5 9
6 10
7

→

1 3 8
2 4
5 9
6
7

→

1 3 8
2 4
5
6 9
7

→

1 3 8
2 4

5
6 9
7

→

1 3 8
4

2 5
6 9
7

→

3 8
1 4
2 5
6 9
7

→

1 3 8
1 4
2 5
6 9
7

→

1 3 8
1 4
2 5
6
7

→

1 3 8
1 4
2 5

6
7

→

1 3 8
1 4

5
2 6
7

→

1 3 8
4

1 5
2 6
7

→

1 3 8
2 4
1 5
2 6
7

→

1 3
2 4
1 5
2 6
7

→

1 3
2 4
1 5
2 6
7

→

1 3 3
2 4
1 5
2 6
7

→ · · · →

1 3 8

2 5

4 6

7 10

9

= ǫ(T )

Remark 2.9. The above definition of evacuation follows the convention of Edelman and
Greene in [3]. Stanley’s “evacuation” [19, A1.2.8] would be our “dual-evacuation” defined
below.

Definition 2.10. Given T ∈ SY T (λ) for any λ ⊢ n, the dual-evacuation of T , denoted
by ǫ∗(T ), is described in the following algorithm:

Let T0 = T and λ0 = λ, and let U be an “empty” tableau of shape λ. We will fill in
the entries of U to get ǫ∗(T ).

1. Apply dual-sliding to Tk. The last box of the dual-sliding path is an outside corner
of λk; call this box (ik, jk). Fill in the number n − k in the (ik, jk) box of U .
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2. Remove (ik, jk) from λk to get λk+1, and remove the corresponding box and entry
from Tk to get Tk+1.

3. Repeat steps (1) and (2) until λn = ∅ and U is completely filled. Then define
ǫ∗(T ) = U .

Example 2.11. The following is a “slow motion” demonstration of the above process,
where the Tk and U have been condensed. Bold entries indicate the current fillings of U .

T =

1 3 8
2 4
5 9
6 10
7

→

3 8
2 4
5 9
6 10
7

→

2 3 8
4

5 9
6 10
7

→

2 3 8
4
5 9
6 10
7

→

2 3 8
4 9
5
6 10
7

→

2 3 8
4 9
5 10
6
7

→

2 3 8
4 9
5 10
6 10

7

→

3 8
4 9
5 10
6 10

7

→

3 8
4 9
5 10
6 10

7

→

3 8
4 9
5 10
6 10

7

→

3 8 9

4 9
5 10
6 10

7

→

8 9

4 9
5 10
6 10

7

→

4 8 9

9
5 10
6 10

7

→

4 8 9

5 9
10

6 10

7

→

4 8 9

5 9
6 10

10

7

→

4 8 9

5 9
6 10
7 10

→

4 8 9

5 9
6 10
7 10

8

→ · · · →

1 4 9

2 5

3 6

7 10

8

= ǫ∗(T )

Remark 2.12. There is an equivalent definition of ǫ∗ via the RSK algorithm [19, A1.2.10].
(Recall that Stanley’s “evacuation” is our “dual-evacuation”.) For a permutation w =
w1w2 · · ·wn ∈ Sn (in one-line notation), let w♯ ∈ Sn be given by

w♯ = (n + 1 − wn) · · · (n + 1 − w2)(n + 1 − w1).

For example, in the case w = 3547126, w♯ = 2671435. The operation w → w♯ is equivalent
to composing by the longest element in Sn. Then if w corresponds to (P, Q) under RSK,
w♯ corresponds to (ǫ∗(P ), ǫ∗(Q)) under RSK. We are not aware of any RSK definition of
ǫ for general shape λ.

Definition 2.13. For T ∈ SY T (λ), i is a descent of T if i + 1 appears strictly south of
i in T . The descent set of T , denoted by Des(T ), is the set of all descents of T .

Example 2.14. In the case that T =

1 2 3
4 6 9
5 7
8

, Des(T ) = {3, 4, 6, 7}.
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Remark 2.15. Descent statistics were originally defined on permutations. For π ∈ Sn, i
is a right descent of π if π(i) > π(i + 1), and i is a left descent of π if i is to the right
of i + 1 in the one-line notation of π.

It is straightforward to check that left descents are preserved by Knuth equivalence.
Therefore the descent set of any tableau T is the set of left descents of any reading word
of T .

2.2 Basic facts

We list those basic facts of (dual-)promotion and (dual-)evacuation that we will assume.
If not specified otherwise, the following facts are about SY T (λ) for general λ ⊢ n.

Fact 2.16. ǫ and ǫ∗ are involutions.

Fact 2.17. ǫ ◦ ∂ = ∂∗ ◦ ǫ and ǫ∗ ◦ ∂ = ∂∗ ◦ ǫ∗.

Fact 2.18. ǫ ◦ ǫ∗ = ∂n.

The above results are due to Schützenberger [14, 15]. Alternative proofs are given by
Haiman in [6].

Fact 2.19. For any R ∈ SY T (cr), let n = |cr| = r · c. Then ∂n(R) = R.

The above result is often attributed to Schützenberger.

Fact 2.20. On rectangular tableaux, ǫ = ǫ∗.

The above result is an easy consequence of Fact 2.18 and Fact 2.19.

Fact 2.21. For any S ∈ SY T (sck), let n = |sck| = k(k + 1)/2. Then ∂2n(S) = S and
∂n(S) = St, where St is the transpose of S.

The above result is due to Edelman and Greene [3].

Fact 2.22. For any S ∈ SY T (sck), ǫ∗(S) = ǫ(S)t.

The above result is an easy consequence of Fact 2.16, Fact 2.18, and Fact 2.21.

3 The embedding of SY T (sck) into SY T (k(k+1))

In this section we describe the embedding ι : SY T (sck) → SY T (k(k+1)).

Definition 3.1. Given S ∈ SY T (sck), let N = k(k + 1). Construct R = ι(S) as follows:

• R[i, j] = S[i, j] for i + j ≤ k + 1 (northwest (upper) staircase portion).

• R[i, j] = N +1−ǫ(T )[k+2− i, k+1−j] for i+j > k+1 (southeast (lower) staircase
portion).

the electronic journal of combinatorics 18 (2011), #P18 7



This amounts to the following visualization:

Example 3.2. Let S =
1 2 6
3 5
4

; then ǫ(S) =
1 4 5
2 6
3

. Rotating ǫ(S) by π, we get

3
6 2

5 4 1

. Now we take the complement of each filling by N+1 = 13 and get S ′ =
10

7 11
8 9 12

.

There is an obvious way to put S and S ′ together to create a standard tableau of

shape 34, which is ι(t) =

1 2 6
3 5 10
4 7 11
8 9 12

.

Remark 3.3. Recall that ǫ∗(S) = ǫ(S)t. Thus we could have computed ǫ∗(S) =
1 2 3
4 6
5

,

and flipped it along the staircase diagonal to get
3

6 2
5 4 1

, which is the same as rotating

ǫ(S) by π. This point of view manifests the fact that n ∈ Des(ι(S)) (Definition 4.1) if
and only if the corner of n in ǫ∗(S) is southwest of the corner of n in S.

It is also an arbitrary choice to embed SY T (sck) into SY T (k(k+1)) instead of into
SY T ((k + 1)k). For example, we could have put together the above S and S ′ to form

1 2 6 10
3 5 7 11
4 8 9 12

.

Our arguments below apply to either choice with little modification.

From the construction of ι, we see that ι(S) contains the upper staircase portion, which
is just S, and the lower staircase portion, which is essentially ǫ(S). Therefore, we can
just identify ι(S) with the pair (S, ǫ(S)). We would like to understand how the promotion
action on ι(S) factors through this identification. It is clear from the construction that
promotion on ι(S), when restricted to the lower staircase portion, corresponds to dual-
promotion on ǫ(S). If the promotion path in ι(S) passes through the box containing
n = k(k +1)/2 (the largest number in the upper staircase portion of ι(S)), then we know
that promotion on ι(S), when restricted to the upper staircase portion, corresponds to
promotion on S. The following arguments show that this is indeed the case.

Lemma 3.4. Let T ∈ STY (λ), and n = |λ|. If the number n is in box (i, j) of T (clearly,
it must be an outside corner), then the dual-promotion path of ǫ∗(T ) ends on box (i, j)
of ǫ∗(T ).
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Proof. It follows from the definition of dual-evacuation using dual-sliding that the position
of n in ǫ∗ ◦ ∂(T ) is the same as the position of n in T (because the sliding in the action
of promotion and the first application of dual-sliding in the definition of dual-evacuation
will “cancel out” with respect to the position of n). By the fact that ǫ∗(T ) = ∂ ◦ ǫ∗ ◦ ∂(T )
(Fact 2.17) and the fact that the dual-promotion path of ǫ∗(T ) is the reverse of the
promotion path of ǫ∗ ◦ ∂(T ) (Remark 2.6), the statement follows.

The above lemma, when specialized to staircase-shaped tableaux, implies the following:

Proposition 3.5. Let S ∈ SY T (sck). The promotion path of ι(S) always passes through
the box with entry n = k(k + 1)/2.

Proof. Suppose n is in box (i, j) of S ∈ SY T (sck). Since S is of staircase shape, we
have ǫ∗(S) = ǫ(S)t (Fact 2.22). The above lemma then says the dual-promotion path
of ǫ(S) ends on box (j, i) of ǫ(S), which is “glued” exactly below box (i, j) of S by the
construction of ι. Now we use the observation that the promotion path of ι(S), when
restricted to the lower staircase portion, corresponds to the dual-promotion path of ǫ(S).
The result follows.

This proves our first main result on the embedding ι.

Theorem 3.6. For S ∈ SY T (sck), ι ◦ ∂(S) = ∂ ◦ ι(S).

By the above theorem and the definition of evacuation, we have that

Theorem 3.7. For S ∈ SY T (sck), ι ◦ ǫ(S) = ǫ ◦ ι(S).

Remark 3.8. It can be show either independently or as a corollary of Theorem 3.6 that

ι ◦ ∂∗(S) = ∂∗ ◦ ι(S).

On the other hand, it is not true that ι◦ǫ∗(S) = ǫ∗◦ι(S). On the contrary by Fact 2.20
we know that

ι ◦ ǫ(S) = ǫ∗ ◦ ι(S).

It is not hard to see that
ι ◦ ǫ∗(S) = ǫ ◦ ι(St).

4 Descent vectors

4.1 Descent vectors of rectangular tableaux

Rhoades [11] invented the notion of “extended descent” in order to describe the promotion
action on rectangular tableaux:
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Definition 4.1. Let R ∈ SY T (rc), and n = c · r. We say i is an extended descent of R
if either i is a descent of R, or i = n and 1 is a descent of ∂(R). The extended descent

set of R, denoted by Dese(R), is the set of all extended descents of R.

Example 4.2. In the case that R1 =

1 3 6
2 5 7
4 9 11
8 10 12

, Dese(R1) = {1, 3, 6, 7, 9, 11}. Here

12 6∈ Dese(R1) because 1 is not a descent of ∂(R1) =

1 2 7
3 4 8
5 6 10
9 11 12

.

In the case that R2 =

1 2 4
3 5 9
6 8 11
7 10 12

, Dese(R2) = {2, 4, 5, 6, 9, 11, 12}. Here 12 ∈ Dese(R2)

because 1 is a descent of ∂(R2) =

1 3 5
2 4 6
7 9 10
8 11 12

.

It is often convenient to think of Dese(R) as an array of n boxes, where a dot is put at
the i-th box of this array if and only if i is an extended descent of R. In this form, we will
call Dese(R) the descent vector of R. Furthermore, we identify (“glue together”) the
left edge of the left-most box and the right edge of the right-most box so that the array
Dese(R) forms a circle. It therefore makes sense to talk about rotating Dese(R) to the
right, where the content of the i-th box goes to the (i + 1)-st box (mod n), or similarly,
rotating to the left.

Example 4.3. Continuing the above example,

Dese(R1) = • • • • • •

and
Dese(R2) = • • • • • • • .

We would like to point out that the map Dese : SY T (rc) → (0, 1)n is not injective and
that the pre-images of Dese are not equinumerous in general.

Rhoades [11] showed a nice property of the promotion action on the extended descent
set. In the language of descent vectors, it has the following visualization:

Theorem 4.4 (Rhoades, [11]). If R is a standard tableau of rectangular shape, then the
promotion ∂ rotates Dese(R) to the right by one position.
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Example 4.5. Continuing the above example, if R3 = ∂(R2) =

1 3 5
2 4 6
7 9 10
8 11 12

then

Dese(R3) = • • • • • • • .

The action of evacuation ǫ on descent vectors is also very nice: (Note that dual-
evacuation ǫ∗ is the same as evacuation ǫ on rectangular tableaux.)

Theorem 4.6. Let R ∈ SY T (rc) and n = c · r. Then evacuation ǫ rotates Dese(R) to
the right by one position and then flips the result of the rotation. More precisely, the i-th
box of Dese(ǫ(R)) is dotted if and only if the (n− i)-th (mod n) box of Dese(R) is dotted.

Proof. We first note that ǫ(R) = ǫ∗(R) (Fact 2.20). Then we note that Des(R) is the set of
left descents of the column reading word wR of R (Remark 2.15). Now, i is a left descent
of wR if and only if n − i is a left descent of w♯

R (Remark 2.12). Therefore i ∈ Des(R) if
and only if n − i ∈ Des(ǫ(R)).

If n ∈ Dese(R), then 1 ∈ Des(∂(R)) (Definition 4.1), thus n − 1 ∈ Des(ǫ ◦ ∂(R)) by
the previous paragraph, thus n − 1 ∈ Des(∂−1 ◦ ǫ(R)) (Fact 2.17), thus n ∈ Dese(ǫ(R))
(Theorem 4.4). Since ǫ is an involution, the converse is also true.

Example 4.7. Continuing the above example, ǫ(R3) =

1 2 5
3 4 6
7 9 11
8 10 12

and

Dese(ǫ(R3)) = • • • • • • • .

It is clear that this action is an involution.

4.2 Descent vectors of staircase tableaux

For staircase tableaux, we give the following construction of descent vectors.

Definition 4.8. Let S ∈ SY T (sck) and n = |sck| = k(k+1)/2. Then Dese(S) is an array
of 2n boxes. The rules of placing dots into these boxes are the following.

• If i ∈ Des(S), then put a dot in the i-th box and leave the (n + i)-th box empty.

• If i 6∈ Des(S) and i < n, then put a dot in the (n + i)-th box and leave the i-th box
empty.

• If 1 ∈ Des(∂(S)), then leave the n-th box empty and put a dot in the (2n)-th box.

• If 1 6∈ Des(∂(S)), then leave the (2n)-th box empty and put a dot in the n-th box.
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We identify the left edge and the right edge of this array.

Example 4.9. In the case that S1 =
1 4 5
2 6
3

,

Dese(S1) = • • • • • • .

In the case that S2 =
1 2 5
3 6
4

,

Dese(S2) = • • • • • • .

As in the case of rectangular tableaux, the map Dese is not injective and the pre-images
of Dese are not equinumerous in general.

From the definition, we see that the first half and the second half of Dese(S) are just
complements of each other, that is, for each i ∈ [n] precisely one of the i-th and (n+ i)-th
boxes is dotted. Thus the second half of Dese(S) is redundant. On the other hand, this
redundancy demonstrates the link between Dese(S) and Dese(ι(S)) as stated in Theorem
4.11. First, we need a supporting lemma, whose proof is not hard but rather tedious, so
we leave it to the appendix.

Lemma 4.10. Let S ∈ SY T (sck) and n = |sck|. If the promotion path of S ends with a
vertical (up) move, then the corner of n in ǫ∗(S) is northeast of the corner of n in S. If
the promotion path of S ends with a horizontal (left) move, then the corner of n in ǫ∗(S)
is southwest of the corner of n in S.

Theorem 4.11. For S ∈ SY T (sck), Dese(S) = Dese(ι(S)).

Proof. Parsing through the construction of ι, we see that this claim is the conjunction of
the following two statements:

1. for i 6= n, i ∈ Des(S) if and only if n − i 6∈ Des(ǫ(S)); and

2. 1 ∈ Des(∂(S)) if and only if n 6∈ Des(ι(S)).

For the first statement, we note that i ∈ Des(S) is equivalent to that i is a left descent of
a reading word wS of S (Remark 2.15), which is equivalent to that n− i is a left descent of
the word w♯

s (Remark 2.12), which is equivalent to that n− i is a descent in ǫ∗(S), which
is equivalent to that n − i is not a descent of ǫ(S) (Fact 2.22).

Now, 1 ∈ Des(∂(S)) is equivalent to that the promotion path of S ends with a vertical
(up) move, which is equivalent to that the corner n in ǫ∗(S) is northeast of the corner of
n in S by Lemma 4.10 , which is equivalent to that n 6∈ Des(ι(S)) (Remark 3.3).

The above Theorems 4.11, 3.6 and 4.4 imply the following analogy to Theorem 4.4
for staircase tableaux:
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Theorem 4.12. If S is a standard tableau of staircase shape, then promotion ∂ rotates
Dese(S) to the right one position.

Note that if we rotate Dese(S) in any direction by n positions we get the complement
of Dese(S), which is Dese(S

t). This agrees with Edelman and Greene’s result [3] that
∂n(S) = St and ∂n = ∂−n.

Unlike the case of rectangular tableaux, evacuation ǫ and dual-evacuation ǫ∗ act dif-
ferently on staircase tableaux. Their actions on descent vectors are described below:

Theorem 4.13. Let S ∈ SY T (sck) and n = k(k + 1)/2. Then evacuation ǫ rotates
Dese(S) to the right by one position and then flips the result of the rotation. More
precisely, the i-th box of Dese(ǫ(S)) is dotted if and only if the (2(n − i))-th box of
Dese(S) is dotted.

Theorem 4.14. Let S ∈ SY T (sck) and n = k(k +1)/2. Then dual-evacuation ǫ∗ rotates
Dese(S) to the right by n − 1 positions and then flips the result of the rotation. More
precisely, the i-th box of Dese(ǫ(S)) is dotted if and only if the (n − i)-th box of Dese(S)
is dotted.

Example 4.15. Let S3 =
1 2 4
3 6
5

, then ǫ(S3) =
1 3 5
2 4
6

and ǫ∗(S3) =
1 2 6
3 4
5

.

Correspondingly,

Dese(S3) = • • • • • • ,

Dese(ǫ(S3)) = • • • • • • ,

and
Dese(ǫ

∗(S3)) = • • • • • • .

Note that Dese(ǫ(S3)) is the complement of Dese(ǫ
∗(S3)). This agrees with the fact

that ǫ∗(S3) = ǫ(S3)
t.

Proof of Theorems 4.13 and 4.14. Theorem 4.13 follows directly from Theorem 4.11 and
Theorem 3.7.

Theorem 4.14 follows from the fact that Dese(S) is the complement of Dese(S
t).

Theorems 4.4 and 4.12 imply that if T is either a rectangular or staircase tableau,
Dese(T ) encodes important information about the promotion cycle that T is in.

Corollary 4.16. If T , either of rectangular or staircase shape, is in a promotion cycle of
size C then Dese(T ) must be periodic with period dividing C. (The period does not have
to be exactly C.)
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Example 4.17. Let T =

1 5 9
2 6 10
3 7 11
4 8 12

, then

Dese(T ) = • • • • • • • • • .

We see that Dese(T ) has a period of 4, thus T must be in a promotion cycle of size either
4 or 12. Indeed, the promotion order of T is 4.

On the other hand, the promotion order of T =

1 3 5
2 7 9
4 8 11
6 10 12

is also 4, while its descent

vector
Dese(T ) = • • • • • •

has period 2.

Equipped with the above knowledge, we can say more about the promotion action on
SY T (sck). For example:

Corollary 4.18. In the promotion action on SY T (sck) there always exists a full cycle,
that is, a cycle of the same size as the order of the promotion ∂, in this case k(k + 1).

Proof. Consider T ∈ SY T (sck) obtained by filling the numbers 1 to k(k + 1)/2 down
columns, from the leftmost column to the rightmost column. Then Dese(T ) has period
k(k + 1), thus T must be in a full cycle.

For example, for k = 3, and T =
1 4 6
2 5
3

,

Dese(T ) = • • • • • •

has period 12.
Indeed, computer experiments show that “most” cycles of the promotion action are

full cycles. For example, for k = 3, there is 1 full-cycle (of size 12) and 1 cycle of size 4.
For k = 4, there are 38 full-cycles (of size 20) and 2 cycles of size 4. For k = 5, there are
9756 full-cycles (of size 30), 16 cycles of size 10, and 4 cycles of size 6. For k > 5, the
exact promotion cycle structure is not known. We are tempted to guess that as k → ∞,
almost all cycles are full-cycles. (Note that this is stronger than stating that almost all
staircase tableaux live in some full-cycle.)

Corollary 4.19. In the promotion action on SY T (sck), let N = k(k + 1). If a cycle of
length C appears, then C is a divisor of N , but not a divisor of N/2.

Proof. The cycle size C is a divisor of N since the order of promotion |∂| is N .
On the other hand, C cannot be a divisor of N/2 since by definition Dese(T ) can never

have period of length that is a divisor of N/2.
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5 Some comments and questions

The discovery of ι is a by-product of our attempt to solve an open question posed by
Stanley ([20, page 13]) that asks if Rhoades’ CSP result on rectangular tableaux can be
extended to other shapes, and if there is a more combinatorial proof of this result.

Rhoades’ proof uses Kazhdan-Lusztig theory, requiring special properties of rectangu-
lar tableaux. It seems that there is not an obvious analogous proof for other shapes.

We decided to try our luck in computer exploration using Sage-Combinat ([22], [13]).
The first thing we noticed from the computer data was the nice promotion cycle structure
of staircase tableaux, which is not a surprise at all due to Fact 2.21. Thus we decided to
focus on staircase tableaux.

It was soon clear to us that brute-force computation of the cycle structure could not
proceed very far; we could only handle SY T (sck) for k ≤ 5 on our computer. On the
other hand, the promotion cycle structures on rectangular tableaux are extremely easy
to compute by Rhoades’ result, as the generating function of maj is the q−analogue
of the hook length formula. So the embedding ι is an effort to study the promotion
cycle structure on SY T (sck) by borrowing information from the promotion action on
SY T (kk+1).

Among the cases of promotion action on SY T (sck) for which we know the complete
cycle structure (that is, k = 3, 4, 5), we have found that each has a CSP polynomial
that is a product of cyclotomic polynomials of degree ≤ k(k + 1): For k = 3, 4, 5, these
polynomials are

Φ2Φ
2
4Φ6Φ8Φ12,

Φ3
2Φ3Φ

2
4Φ8Φ

2
10Φ16Φ20, and

Φ11
2 Φ6Φ

3
10Φ11Φ13Φ22Φ

4
24Φ30,

respectively.
We note that these polynomials in product form are not unique, for example

Φ2
2Φ4Φ6Φ10Φ12

gives another CSP polynomial for SY T (sc3).
The study of this product form continues, with the hope of finding a counting formula,

the q−analogue of which is a CSP polynomial for the promotion action on SY T (sck).
For the case k > 5, Corollary 4.19 gives a necessary condition for what kind of cycles

can appear in the promotion action on SY T (sck). We do not know if this condition is
sufficient.

We are also eager to know if the embedding ι has any representation-theoretical in-
terpretation.
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A Proof of Lemma 4.10

To prove Lemma 4.10, we first make the observation that the location of the corner that
contains n (the n-corner) in S cannot be the same as the n-corner in ǫ∗(S). This is
because, as we had observed in Lemma 3.4, the n-corner in S is the same as the n-corner
in ǫ∗ ◦∂(S); and ǫ∗(S) = ∂ ◦ ǫ∗ ◦∂(S) does not have the same n-corner as that of ǫ∗ ◦∂(S).

With this observation, Lemma 4.10 is a consequence of the following general fact:

Lemma A.1. Let T ∈ SY T (λ) and λ ⊢ n. If the promotion path of T ends with a
vertical (up) move, then the whole dual-promotion path of T must be (weakly) northeast
of the promotion path.

If the promotion path of T ends with a horizontal (left) move, then the whole dual-
promotion path of T must be (weakly) southwest of the promotion path.

Proof. Without loss of generality, we argue the case where the promotion path of T ends
with a vertical move.

Imagine a boy and a girl standing at the most northwest box of T . The boy will walk
along the promotion path in reverse towards the southeast, and the girl will walk along
the dual-promotion path towards the southeast. They will walk at the same speed.

In the first step, the boy goes south by assumption. The girl may go east or south.
If she starts by going east, then she is already strictly northeast of the boy. If she
starts by going south with the boy, then she must turn east earlier than the boy turns.
(Suppose the boy turns east at box (i, j). By definition of promotion path, this implies
that T [i, j] > T [i − 1, j + 1]. If the girl goes south at box (i − 1, j) then by definition of
dual-promotion path, this implies that T [i, j] < T [i−1, j +1], a contradiction. Therefore,
the girl must turn east at box (i− 1, j) or earlier.) So either way we see that the girl will
be strictly northeast of the boy before the boy makes his first east turn.

If they never meet again then we are done. So we assume that their next meeting
position is at the box (s, t), and argue that they will never cross. By induction this will
prove the claim.

It is clear that the girl must enter the box (s, t) from north, and the boy must enter
the box (s, t) from the west. From box (s, t), the girl can either go south or go east.

Suppose the girl goes south from (s, t). Then the boy must also go south from (s, t).
(For if he went east, it would imply that T [s − 1, t + 1] < T [s, t], which would make the
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girl go through (s− 1, t + 1) instead of (s, t).) Then we can use our previous argument to
show that the girl must make an east turn before the boy, and stay northeast of the boy.

Suppose the girl goes east from (s, t). Then again the boy must go south from (s, t).
(For the girl’s behaviour shows that T [s − 1, t + 1] > T [s, t], but the boy’s going east
would imply that T [s − 1, t + 1] < T [s, t].) So the girl stays northeast of the boy.
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