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Abstract

The annihilation number a of a graph is an upper bound of the independence
number α of a graph. In this article we characterize graphs with equal independence
and annihilation numbers. In particular, we show that α = a if, and only if, either
(1) a ≥ n

2 and α′ = a, or (2) a <
n

2 and there is a vertex v ∈ V (G) such that
α′(G − v) = a(G), where α′ is the critical independence number of the graph.
Furthermore, we show that it can be determined in polynomial time whether α = a.
Finally we show that a graph where α = a is either König-Egerváry or almost
König-Egerváry.

1 Introduction

An independent set of vertices in a graph is a set of vertices no two of which are adjacent.
A maximum independent set is an independent set of largest cardinality. The indepen-
dence number α is the cardinality of a maximum independent set. Finding a maximum
independent set (MIS) in a graph is a well-known widely-studied NP-hard problem [6].
At least partly for this reason, there is a large body of research on finding bounds for
the independence number of a graph. The annihilation number is a recent polynomial
time computable upper bound for the independence number. It was originally introduced
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in the second author’s 2004 dissertation [12], into the wider mathematical literature in
[4, 13, 3], and has led to a new sufficient condition for the existence of a Hamiltonian path
in a graph [8].

The annihilation number was originally defined by the second author in terms of a
reduction process on the degree sequence (akin to the Havel-Hakimi process; see, for
example, [7, 13]). While reading the original proof of Theorem 1.2 (in [12]) Fajtlowicz
observed that the largest integer k such that the sum of the smallest k degrees was at
most the number of edges, was also an upper bound on the independence number. That
this invariant is equivalent to the annihilation number is shown in [12].

Definition 1.1. For a graph G with vertices V = {v1, v2, . . . , vn}, having degrees di =
d(vi), with d1 ≤ d2 ≤ . . . ≤ dn, and having e edges, the annihilation number a = a(G) is
defined to the the largest index such that

∑
a

i=1 di ≤ e.

Theorem 1.2. (Pepper [12]) For any graph G, α(G) ≤ a(G).

The second author provided examples in [12] where the annihilation number of a graph
is a better upper bound than any of several others, including the minimum of the numbers
of non-negative and non-positive eigenvalues (Cvetkovic’s bound [2, Thm 3.14]). What
follows are two facts that will be used in the characterization of equality. The first is
an observation that the annihilation number is at least the floor of half the number of
vertices of the graph. The second says that this invariant is monotone with respect to
removal of vertices. This is a property it shares with the independence number. For a
graph G and a vertex v ∈ V (G), let G − v be the graph induced on the set V (G) \ {v}.
The independence number of a graph G is monotone in the sense that, for any vertex
v ∈ V (G), α(G − v) ≤ α(G). A parallel relation holds for the annihilation number.

Observation 1.3. (Pepper [12]) For any graph G, a(G) ≥ ⌊n(G)
2

⌋.

Lemma 1.4. For a graph G and vertex v, a(G − v) ≤ a(G).

Proof. Let G be a graph and v ∈ V (G). Let a = a(G) and a′ = a(G−v). It will be shown
that a′ ≤ a. Let dG(w) be the degree of a vertex w in G. For a set A ⊆ V of vertices of G,
let dG(A) be the sum of the degrees in G of the vertices in A. Thus, dG(A) =

∑
w∈A dG(w).

Let e = e(G) be the size of G and e′ = e(G − v) = e(G) − dG(v).
Suppose the annihilation number of G − v is at least a + 1. Then there is a set

A ⊆ V (G − v) of |A| = a + 1 vertices such that dG−v(A) ≤ e′. Then

dG(A) ≤ dG−v(A) + dG(v) ≤ e′ + dG(v) = e.

That is, there is a set of a+1 vertices in G where the sum of their degrees is less than the
number of edges of G, and the annihilation number of G is at least a + 1, contradicting
the fact that the annihilation number of G is a. So the assumption that a(G− v) > a(G)
is false.

In the following, a characterization is given of those graphs with equal independence
and annihilation numbers, as well as a polynomial-time algorithm for computing if a graph
has this property.
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2 The Critical Independence Number and the Char-

acterization of Equality

An independent set of vertices I is a critical independent set if |I| − |N(I)| is maxi-
mized; these sets were introduced by Zhang [15], who showed that they could be found in
polynomial-time. A maximum critical independent set is a critical independent set of max-
imum cardinality. The critical independence number of a graph G, denoted α′ = α′(G), is
the cardinality of a maximum critical independent set. The critical independence number
of a graph is clearly a lower-bound for the independence number of a graph, and it can
be computed in polynomial-time [9].

A graph is independence irreducible if α′ = 0. For these graphs the number of neighbors
of any independent set of vertices is greater than the number of vertices in the set; fullerene
graphs, for instance, are independence irreducible [9]. A graph is independence reducible if
α′ > 0. A graph is totally independence reducible if α′ = α; K2 is an example. Determining
whether a graph is totally independence reducible can be determined in polynomial-time
[9].

Critical independent sets can be extended to maximum independent sets. Butenko
and Trukhanov used this discovery to speed up the search for maximum independent
sets. This fact is also needed for the proof of Theorem 2.2.

Theorem 2.1. (Butenko and Trukhanov, [1]) If Ic is a critical independent set of a graph
G, then there exists a maximum independent set I of G, such that Ic ⊆ I.

The number of vertices of a graph G is denoted n = n(G). As with a, α, and α′, the
name of the graph is usually ommitted when the graph is clear from the context.

Theorem 2.2. (Graphs where α = a) For a graph G, the independence number α equals
its annihilation number a if, and only if, either (1) a ≥ n

2
and α′ = a, or (2) a < n

2
and

there is a vertex v ∈ V (G) such that α′(G − v) = a(G).

Proof. Let G be a graph with n vertices.
Suppose a(G) ≥ n(G)

2
and α′(G) = a(G). Since α′ ≤ α ≤ a for any graph, it follows

that α(G) = a(G).

Alternately, suppose that a(G) < n(G)
2

and there is a vertex v such that α′(G − v) =
a(G). Since α′(G− v) ≤ α(G− v) ≤ α(G) ≤ a(G) and the first and last terms are equal,
every term must be equal and, thus, α(G) = a(G).

Suppose now that α(G) = a(G). It will be shown that either (1) a(G) ≥ n(G)
2

and

α′(G) = a(G), or (2) a(G) < n(G)
2

and there is a vertex v ∈ V (G) such that α′(G − v) =
a(G). The statement can be easily verified for all graphs with three or fewer vertices.
Assume that it is true for all graphs with fewer than n vertices.

If G is an empty graph then α′ = α = a = n, and the statement holds. So it can be
assumed that G is not empty and, thus, G has a vertex v which is not in every maximum
independent set. So α(G − v) = α(G) = a(G). Suppose that a(G − v) < a(G). Then
a(G− v) < α(G− v), which contradicts the fact that α ≤ a for any graph. Since Lemma
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1.4 implies that a(G− v) ≤ a(G), it follows that a(G− v) = a(G) and, furthermore, that

α(G − v) = a(G − v). Since a(G − v) = a(G) ≥ ⌊n(G)
2

⌋ = ⌊n(G−v)+1
2

⌋, it follows that

a(G − v) ≥ n(G−v)
2

and thus, by the inductive assumption, that α′(G − v) = a(G − v).
Then,

α′(G − v) = α(G − v) = α(G) = a(G − v) = a(G). (1)

If a(G) < n(G)
2

there is nothing more to show. So assume a(G) ≥ n(G)
2

. In this case it
must be shown that α′(G) = a(G). Let Jc be a maximum critical independent set of G.

Since it was assumed that α(G) = a(G), α(G) ≥ n(G)
2

and it follows that Jc contains a
vertex u.

Suppose N(Jc) = ∅. So Jc is an isolated set of vertices and α′(G − Jc) = 0 and
α′(G − Jc + u) = 1. Also α(G − Jc) = α(G) − |Jc| and a(G − Jc) = a(G) − |Jc|,

so α(G − Jc) = a(G − Jc). If a(G − Jc) ≥ n(G−Jc)
2

then, the inductive assumption
implies, α′(G − Jc) = a(G − Jc). It then follows that α(G − Jc) = 0. So Jc is also a
maximum independent set, G is an empty graph, and α′(G) = α(G) = |Jc|, proving the

statement. If a(G − Jc) < n(G−Jc)
2

then a(G − Jc) = n(G−Jc)−1
2

and a(G − Jc + u) =

a(G − Jc) + 1 = n(G−Jc)−1
2

+ 1 = n(G−Jc)+1
2

= n(G−Jc+u)
2

and, the inductive assumption
implies, α′(G − Jc + u) = a(G − Jc + u). It then follows that α(G− Jc + u) = 1. Since u
has no neighbors, this implies that α(G− Jc) = 0. It again follows that Jc is a maximum
independent set and G is an empty graph. It was noted earlier that the theorem follows
for these graphs.

So it can be assumed that N(Jc) 6= ∅. Let w be a vertex in N(Jc). It follows from
Theorem 2.1 that Jc is contained in a maximum independent set I. Since w /∈ I, w is not
in every maximum independent set of G. Thus, Equation (1) holds. It is enough to show
then that α′(G) = α′(G − w).

Let NH(Y ) be the neighbors of a set Y of vertices in a graph H . Since Jc is a critical
independent set of G, |Jc| − |NG(Jc)| ≥ |X| − |NG(X)| for any set X of vertices in G.
Note that |Jc| − |NG(Jc)| = |Jc| − (|NG(Jc) − w| + 1). Let J ′

c
be a maximum critical

independent set in G′ = G − w, so α′(G − w) = |J ′

c|. Note that, since w ∈ NG(Jc),
Jc ⊆ V (G′). Also, |NG′(Jc)| = |NG(Jc)| − 1. Since J ′

c
is a critical independent set,

|J ′

c
| − |NG′(J ′

c
)| ≥ |Jc| − |NG′(Jc)| = |Jc| − (|NG(Jc)| − 1).

Since J ′

c ⊆ V (G′), w /∈ J ′

c. There are two cases to consider: (1) the case where w ∈
NG(J ′

c
), and (2) the case where w /∈ NG(J ′

c
). If w ∈ NG(J ′

c
), then NG(J ′

c
) = NG′(J ′

c
)∪{w},

and |NG(J ′

c)| = |NG′(J ′

c)| + 1. Since |J ′

c| − |NG′(J ′

c)| ≥ |Jc| − |NG(Jc)| + 1, it follows that
|J ′

c
|−(|NG(J ′

c
)|−1) ≥ |Jc|−|NG(Jc)|+1 and, thus, |J ′

c
|−|NG(J ′

c
)| ≥ |Jc|−|NG(Jc)|. So J ′

c
is

a critical independent set of G and α(G) ≥ α′(G) ≥ |J ′

c
| = α′(G−w) = α(G−w) = α(G).

It follows that α′(G) = α′(G − w), which was to be shown.
If w /∈ NG(J ′

c
), then NG(J ′

c
) = NG′(J ′

c
) and |NG(J ′

c
)| = |NG′(J ′

c
)|. So |Jc| − |NG(J ′

c
)| =

|J ′

c
| − |NG′(J ′

c
)| ≥ |Jc| − |NG′(Jc)| = |Jc| − (|NG(Jc)| − 1) ≥ |Jc| − |NG(Jc)|. Thus, J ′

c
is a

critical independent set of G and α(G) ≥ α′(G) ≥ |J ′

c| = α′(G − w) = α(G − w) = α(G),
proving in this case too that α′(G) = α′(G − w).

Let G be a graph. The steps to determine whether α(G) = a(G) are as follows.
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Figure 1: Graphs where α = a. For the graphs on the left and center α = a = 2. For the
graph on the right, α = a = 4. The graphs on the left and right are Type I graphs. These
graphs are also examples of non-bipartite König-Egerváry (KE) graphs. The graph in the
center is a Type II graph. This graph is almost KE. If the vertex v is removed the graph
induced on the remaining vertices is KE and has a perfect matching.

1. Calculate a(G).

2. If a(G) ≥ n

2
, calculate α′(G). If α′(G) = a(G), then Theorem 2.2 implies that

α(G) = a(G). If α′(G) 6= a(G), then Theorem 2.2 implies that α(G) 6= a(G).

3. If a(G) < n

2
, choose an edge vw. It cannot be that both vertex v and vertex w are

in every maximum independent set of G. Calculate α′(G − v) and α′(G − w). If
a(G) = α′(G−v) or a(G) = α′(G−w) then Theorem 2.2 implies that α(G) = a(G).

The proof of Theorem 2.2 actually shows that if α(G) = a(G), a(G) < n(G)
2

, and
vertex u is not in every maximum independent set of G, then α′(G−u) = a(G). Since
either v or w is not in every maximum independent set of G then, if a(G) 6= α′(G−v)
and a(G) 6= α′(G − w), it follows that α(G) 6= a(G).

Since a and α′ can be calculated in polynomial time, and since the preceding algorithm
will terminate after at most three calculations of these invariants, it can be determined
in polynomial time whether a = α.

3 Graphs where α = a are (almost) König-Egerváry

Observation 1.3 says that, for any graph, either a ≥ n

2
or a = n−1

2
. In the former case,

Theorem 2.2 says that graphs G where α(G) = a(G) have the property that α′(G) =
α(G) = a(G) (call these graphs Type I graphs). In the latter case, the theorem implies
that that graphs G where α(G) = a(G) have the property that there is a vertex v ∈ V (G)
such that α′(G− v) = α(G− v) = a(G− v) = a(G) = α(G) (call these Type II graphs).

A matching in a graph is a set of pairwise non-incident edges. A graph has a perfect
matching if there is a matching which saturates all of the vertices of the graph (that is,
every vertex is incident to one of the edges of the matching). The matching number µ of
a graph is the cardinality of a largest matching in the graph. If the graph has a perfect
matching, then the number of vertices must be even and µ = n

2
. The König-Egerváry

Theorem says that, for bipartite graphs, α+µ = n [11]. This relation holds true for some
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non-bipartite graphs as well: the left-most graph in Figure 1 is an example. The class of
graphs for which the relation α+µ = n holds are called König-Egerváry graphs (or, more
succinctly, KE graphs). These graphs were first characterized by Deming [5] and Sterboul
[14] in 1979, and new characterizations and research have been ongoing. We call a graph
G almost König-Egerváry (or almost KE ) if G is not KE, but for which there is a vertex
v ∈ V (G) such that G − v is KE (the middle graph in Figure 3 is an example).

The relation between KE graphs and the graphs described in Theorem 2.2 comes from
the following result:

Theorem 3.1. (Larson, [10]) For a graph G, α′(G) = α(G) if, and only if, G is a KE
graph.

Graphs of Type I are KE graphs; and graphs of Type II almost are—these have a vertex
v which, when removed, yields a KE graph.

The characterization of the graphs in Theorem 2.2 is somewhat formal and unintuitive.
Our goal in this section is to give a more intuitive picture of the graphs which have equal
independence and annihilation numbers. In the case where these invariants are equal and
a ≥ n

2
, the graphs are a subclass of the KE graphs. In the other case, where α = a and

a = n−1
2

, the graphs are a subclass of the almost KE graphs. The following two theorems
flesh out this picture.

For a graph G and a set S ⊆ V (G), let Sc = V (G) \ S. Note that if I is a maximum
independent set, then Ic = N(I). For S ⊂ V (G), let d(S) = dG(S) =

∑
v∈V (G) d(v). An

annihilating set A is a set whose degree sum d(A) is no more than the number of edges
e of the graph. The name is chosen for the reason that a set of vertices corresponding to
the lowest a degrees in a graph has this property. An annihilating set A is maximal if,
for every vertex v ∈ Ac, d(A ∪ {v}) > e; it is maximum if |A| = a.

Lemma 3.2. (The Matching Lemma, L., [10]) If Ic is a critical independent set, then
there is a matching from N(Ic) into Ic.

Theorem 3.3. (Type I graphs) For a graph G with a(G) ≥ n(G)
2

, α(G) = a(G) if, and only
if, G is a KE graph and every maximum independent set of G is a maximum annihilating
set.

Proof. Let G be a graph with a(G) ≥ n(G)
2

.
Suppose that α(G) = a(G). So G is a Type I graph and α′(G) = α(G) = a(G). Let

Ic be a maximum critical independent set. Since α′(G) = |Ic|, α(G) = |Ic|, and Ic is a
maximum independent set. The Matching Lemma implies that there is a matching from
N(Ic) into Ic. So µ(G) ≥ |N(Ic)|. Then α(G) + µ(G) ≥ |Ic| + |N(Ic)| = n(G). Since for
any graph α + µ ≤ n, we have α(G) + µ(G) = n(G), and G is a KE graph. Let I be any
maximum independent set of G. Since a(G) = α(G) = |I|, I is a maximum annihilating
set.

Suppose now that G is a KE graph and every maximum independent set of G is
a maximum annihilating set. Let I be a maximum independent set. By definition,
α(G) = |I| and a(G) = |I|. So α(G) = a(G).
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Figure 2: A KE graph where α 6= a. Here α = 3 and a = 4.

There are polynomial time algorithms both for recognizing KE graphs and for finding
maximum independent sets in KE graphs: one justification of these facts is via Theorem
3.1 and the existence of a polynomial time algorithm for finding the critical independence
number α′ [9]. Note too that there are KE graphs where α 6= a (see Figure 2). Theorem
3.3 says that Type I graphs are KE, which helps in understanding these graphs, but the
second part of that characterization is less helpful. Suppose a graph is KE. Is the graph of
Type I? The only way to check is to calculate the critical independence and annihilation
numbers directly and compare. It seems, though, that something more intuitive might be
true, namely, that given a KE graph G and maximum independent set I, if I ′ is formed
by adding any vertex in Ic to I, then I ′ is no longer an annihilating set, that is, that I is
a maximal annihilating set.

Conjecture 3.4. For a graph G with a ≥ a

2
, α = a if, and only if, G is KE and every

maximum independent set of G is a maximal annihilating set.

We now turn to a discussion of Type II graphs.

Lemma 3.5. A graph G is an almost KE graph if, and only if, there is a vertex v ∈ V (G)
such that G − v is a KE graph, α(G − v) = α(G), and µ(G − v) = µ(G).

Proof. Suppose G is an almost KE graph. By definition, there is a vertex v ∈ V (G),
such that G − v is a KE graph. That is, α(G − v) + µ(G − v) = n(G − v) = n(G) − 1.
Now α(G) ≥ α(G − v), and µ(G) ≥ µ(G − v). Suppose α(G) > α(G − v). Then
α(G) = α(G−v)+1, and α(G)+µ(G) ≥ [α(G−v)+1]+µ(G−v) = n(G−v)+1 = n(G).
So G is a KE graph, contradicting our assumption. So α(G) = α(G − v). Similarly, if
µ(G) > µ(G− v) a contradiction ensues. Thus µ(G) = µ(G− v), which was to be proved.

Now suppose that G is a graph with a vertex v ∈ V (G) such that G−v is a KE graph,
α(G − v) = α(G), and µ(G − v) = µ(G). It must be shown that G is not a KE graph.
Since G − v is a KE graph, we have α(G − v) + µ(G − v) = n(G − v) = n(G) − 1. So
α(G) + µ(G) = n(G) − 1, which proves the claim.

Theorem 3.6. (Type II graphs) If G is a graph where a(G) = n(G)−1
2

, then α(G) = a(G)
if, and only if, G is almost KE and, for any vertex v ∈ V (G) such that G − v is KE,
G − v has a perfect matching.

Proof. Let G be a graph where a(G) = n(G)−1
2

.

Suppose first that α(G) = a(G). If G were KE then µ(G) = n(G)+1
2

, which is impos-
sible; so G is not KE. Theorem 2.2 implies that there is a vertex w ∈ V (G) such that
α′(G − w) = α(G − w) = a(G − w) = a(G) = α(G). Since α′(G − w) = α(G − w),
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Theorem 3.1 implies that G − w is KE. So G is almost KE. Now consider any vertex
v ∈ V (G) such that G − v is KE. By definition, α(G − v) + µ(G − v) = n(G − v). This
fact, together with the fact that G is not KE, implies that α(G) = α(G − v). Then

α(G − v) = a(G) = n(G)−1
2

= n(G−v)
2

, and it follows that µ(G − v) = n(G−v)
2

, which means
that G − v has a perfect matching.

Now suppose that G is almost KE and, for any vertex v ∈ V (G) such that G − v is
KE, G−v has a perfect matching. Since G is almost KE, Lemma 3.5 implies that there is
a vertex v ∈ V (G) such that G−v is a KE graph, α(G−v) = α(G), and µ(G−v) = µ(G).
By definition, α(G − v) + µ(G − v) = n(G − v). Since G − v has a perfect matching, it

follows that µ(G − v) = n(G−v)
2

. So α(G − v) = n(G−v)
2

. Since α(G − v) ≤ α(G) ≤ a(G),
and the first and last terms are equal, it follows that α(G) = a(G), which was to be
proved.

The authors would like to thank one of the referees who wrote particularly detailed
comments that led to significant improvement in the clarity of our presentation.
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