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Abstract

We explore the connections between the well-studied Aztec Diamond graphs and
a new family of graphs called the Half-Hexagons, discovered by Jonathan Novak.
In particular, both families of graphs have very simple domino shuffling algorithms,
which turn out to be intimately related. This connection allows us to prove an
“arctic parabola” theorem for the Half-Hexagons as a corollary of the Arctic Circle
theorem for the Aztec Diamond.

1 Introduction

In their groundbreaking paper [GV85] gave a method for counting families of non-intersecting
lattice paths between two equinumerous sets of points. In their first example, the paths
are between

(0,−xi) and (i,−i), 1 ≤ i ≤ n

and are composed of unit-length steps up or to the right only. The number of such lattice
paths is a Vandermonde determinant:

det

[(
xi
j

)]
1≤i,j≤n

=
∏

1≤i<j≤n

xj − xi
j − i

. (1)
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Figure 1: Five models which are in bijection: Non-intersecting lattice paths, pile of
boxes, perfect matching and dual tiling, interlacing particle process, Staircase semistan-
dard Young Tableau. All of these are order 3.

Figure 2: Order 100 half-hexagon, as an interlacing particle process

Indeed, these ideas were already present in the works of Lindström [Lin73] and Karlin-
McGregor [KM59]; they are applicable far beyond the scope of these papers and form the
enumerative-combinatorial cornerstone for many areas of modern mathematics.

We shall focus on a specific case of the above example of Gessel-Viennot. Jonathan
Novak pointed out to us that when xi = 2i, then the number of these paths is 2n(n+1)/2,
which is the same as the number of domino tilings of an Aztec diamond [EKLP92a]; he
asked us for a bijection. We didn’t find one, but we did find many amazing similarities
between these two models. Namely, they have similar domino shuffles, and similar limit
laws. A little further detective work turned up a family of subgraphs of the Aztec diamond,
which we call Aztec half-diamonds, whose domino shuffling algorithm is identical, in a
certain sense, to that on the half-hexagon. Our Aztec half-diamonds are similar but not
identical to the Aztec half-diamond of [FF11].

We wish to thank Jonathan Novak for bringing this problem to our attention, as well as
our colleagues Alexei Borodin, Dan Romik, for helpful conversations. This paper began at
the 2010 program in Random Matrix Theory, Integrable Systems and Interacting Particle
Processes at the Mathematical Sciences Research Institute in Berkeley, California; it was
completed while B. Young was visiting Universitat Wien.

Several similar problems have been considered in the vast and ever-growing literature
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on the dimer problem, nonintersecting lattice paths, and the like. We mention some of
them here.

• Okounkov and Kenyon [KO07] calculate limiting shapes for dimer models on por-
tions of the hexagonal grid, under “polygonal” boundary conditions; they show that
for a generic polygonal boundary with 3d sides in which the edges appear in cyclic
order, the limiting shape is an algebraic curve of degree d. They comment that some
of these conditions can be relaxed; however it is not clear to us how to use these
methods to handle the erratic bottom boundary of our half-hexagons.

• Di Francesco and Reshetikin [DFR09] study similar half-hexagonal shapes, but in
which the long boundary is free; they obtain a variety of different limit shapes, none
of which is the same as ours.

• Borodin and Ferrari [BF08] have a very general framework for studying dynamics
on interlacing particle processes, including the Aztec diamond domino shuffle and
many others. Though they do not handle this particular case, our model does fit
into this framework; we shall hopefully carry out their analysis in a subsequent
paper.

Very recently, Engstrom and Norén [EN11] have constructed a bijection such as the
one we originally sought when we began this research. Their work largely uses ideas
which were present in [EKLP92a], together with some tools from poset theory. We are
now trying to develop a relationship between this bijection and our work.

2 Bijective Combinatorics

The Gessel-Viennot lattice path model is in bijection with a number of other combinato-
rial structures. Some of these bijections are “folklore” and all are well-known, but it is
important to state briefly what they are, in order to establish terminology.

For the remainder of this section, fix the order n ∈ Z≥0.

2.1 Non-intersecting lattice paths

Let NILP(n) be the set of families of non-intersecting lattice paths which begin at the
points (0,−2i) and end at the points (i,−i), composed of steps of unit length in the
directions of increasing x and y. We get this from the example of [GV85] by taking
xi = 2i. The nth path from the top is of length 2n.

As mentioned above, it is easy to enumerate these families of paths using the method
of Gessel-Viennot; we shall do this in Section 3.1.

2.2 Lozenge tilings

It is well known (see, for example, [GV89, Joh05b]), that any family of non-intersecting
lattice paths on the square lattice, with fixed start and end points, is in bijection with
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lozenge tilings of a certain region of the triangular lattice. Here, a lozenge is a parallelo-
gram composed of two adjacent equilateral triangles. The boundary of the region depends
only upon the locations of the endpoints.

Definition 2.1 The regular triangular lattice L is the infinite planar graph whose vertices
are the integer span of the vectors

v =

[
1
0

]
w =

1

2

[
1√
3

]
and which has edges joining any two vertices which are unit distance apart. L subdivides
R2 into unit equilateral triangles.

Let Rn ⊆ R2 be the union of the large trapezoid with corners

{nv, nw, n(w − v),−nv}

and the n small trapezoids with corners
(2i− n+ 1)v + v,
(2i− n+ 1)v − v,
(2i− n+ 1)v − w,
(2i− n+ 1)v + v − w

∣∣∣∣∣∣∣∣ i = 0, . . . , n− 1

 .

See Figure 1, pictures 2 and 3, for a graphical representation of R3. Let LT(n) be the set
of lozenge tilings of Rn. To obtain an element of LT(n) given an element of NILP(n), first
apply the affine transformation which takes the points

(0,−2i) 7−→ (−n+ 2i) v − 1
2
w,

(i,−i) 7−→ −nv +
(
i− 1

2

)
w.

Now the lattice steps are in directions −v and w − v; each step begins and ends on the
boundary of a triangle in L and traverses two of the triangles of L. Form a partial tiling by
placing the corresponding lozenge over each step. The holes in this tiling can be covered
uniquely by lozenges as well.

Observe that, in drawing this tiling, we have also drawn a pile of cubical boxes: each
tile represents a visible face of a cube with faces parallel to the coordinate planes, viewed
isometrically from the direction (1,1,1).

2.3 Perfect matchings on a half-hexagon

Let L∨ denote the planar dual of L. L∨ is the regular tiling of the plane with hexagons,
sometimes called the honeycomb mesh, grid or lattice.

Definition 2.2 Let R∨
n be the subgraph of L∨ induced by those vertices which lie within

R. We call R∨
n the half-hexagon graph. Let HH(n) denote the set of perfect matchings of

R∨
n .
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There is a folklore bijection between HH(n) and LT(n). Suppose we are given an
element T of LT(n). Each lozenge in the tiling T is composed of two triangles of L, which
are dual to two vertices in L∨. Join every such pair of vertices with an edge to obtain a
matching in HH(n). The resulting matching is perfect (i.e. that every vertex is covered)
by virtue of the fact that a tiling in LT(n) covers R(n) completely.

2.4 Interlacing particle process

Observe that the vertical edges of R∨
n are centered at the points

{(
−n− 1

2
+ j

)
v + (n− i)w

∣∣∣∣ i = 1, . . . , n; j = 1, . . . , i+ n

}
.

In the above set, we call i the row index and j the position. Let π ∈ HH(n). Observe
that the vertical edges in π determine π completely, subject to the following interlacing
condition: if there are edges in positions j and j′ of row i, then there must be an edge in
some position j′′ of row i − 1, with j ≤ j′′ < j. Indeed, any collection of vertical edges
which interlace in this manner determine a tiling in HH(n).

From π, then, we may construct an interlacing particle process{
(i, j)

∣∣ (−n− 1
2

+ j)v + (n− i)w is the center of a vertical edge in π
}
⊂ N2.

Let IPP(n) denote the set of all such interlacing particle processes.

2.5 Staircase tableaux

Let P be an element of IPP(n). Define the numbers gij by

P =
n−1⋃
i=0

{(i, gij) | 0 ≤ j ≤ i− 1}

In other words, gij is the position of the jth vertical edge in row i of the corresponding
perfect matching in HH(n). The interlacing conditions imply that

gij ≤ gi−1,j < gi,j+1,

in other words, that (gij) is a Semistandard Young tableau of staircase shape [Sta99] with
bottom row equal to (1, 3, 5, . . . , 2n + 1). We call these objects Staircase tableaux for
short, and we write the set of all such as ST(n). Note also that the numbers

hij = gij − j

form a Gelfand-Tsetlin pattern (see [Sta99, (7.37)]) with bottom row equal to (0, 1, 2, . . . , n).
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3 Enumerative Combinatorics

There are at least two easy ways to enumerate HH(n) by evaluating determinants. We
shall introduce a third way as a consequence of the shuffling algorithm. Doubtless there
are many others.

3.1 Non-intersecting lattice path enumeration

Gessel-Viennot [GV85] handle a slightly more general situation. Observe that there are(
xi
j

)
up-right lattice paths from the point (0,−xi) to (j,−j). Consequently, given n

integers x1 < x2 < · · · < xn, the number of families of nonintersecting lattice paths from
{(0,−xi} to {(j,−j)} is given by (1). This determinant evaluation is given in [GV85]; it
works because it is essentially a Vandermonde determinant. Putting xi = 2i, we recover
the endpoints of the paths for NILP(n), and we obtain

|NILP(n)| = 2n(n+1)/2.

3.2 Staircase tableau enumeration

An alternate easy enumeration, this time of ST(n), goes through symmetric function
theory. First we observe [Sta99, (7.37)] that because of the Gelfand-Tsetlin pattern in-
terpretation, we have

|ST(n)| = sλ(1, . . . , 1)

where sλ is a Schur function with n + 1 arguments and λ is the “staircase partition”
(1, 2, · · · , n + 1). It is a consequence of the classical bialternant definition of the Schur
function (see [Sta99, Chapter 7.15 and ex. 7.30] that

sλ(x1, . . . , xn+1) =
∏

1≤i<j≤n

(xi + xj).

Putting all xi equal to 1 gives |ST(n)| = 2n(n+1)/2 as before. Indeed, performing the
principal specialization xi 7→ qi gives a q-enumeration of HH(n), in which each element π
of HH(n) is assigned weight proportional to qvol(π). Here, vol(π) denotes the integral of
the height function of π. See [Ken04] for an introduction to the height functions of dimer
models.

4 Dynamics

4.1 The half-hexagon shuffle

In this section, we will define dynamics on interlacing particles, called the half-hexagon
shuffle, which takes the form of a random map from HH(n) to HH(n+ 1). The procedure
is easiest to describe and implement on the staircase tableaux ST(n), and it is easiest to
illustrate on the half-hexagon perfect matchings HH(n) (see Figure 3).
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Figure 3: Domino shuffling on the half-hexagon. Groups of edges which are forced to
move together, in order to maintain the interlacing conditions, are circled.

The half-hexagon shuffle constructs a perfect matching π′ on R∨(n + 1) from π. It
is not a deterministic process: one has to make a series of fair coin tosses to determine
π′. As it turns out, these coin tosses provide a direct explanation of the fact that the
cardinality of HH(n) is a power of two.

Algorithm 4.1 (Domino shuffling for the half-hexagon)

Input:
(gij), a staircase tableau in ST(n),
(ξij), independent Bernoulli 0-1 variables.

Output:
(hij), a staircase tableau in ST(n+ 1).

for i from 0 to n:
for j from 0 to i:

if j < i and gi,j = hi−1,j then:
hi,j ← gi,j

else if j > 0 and gi,j = hi−1,j−1 then:
hi,j ← gi,j + 1

else
hi,j ← gi,j + ξi,j

for j from 0 to n:
hn+1,j = 2j + 1

It is easier to illustrate this algorithm acting on the half-hexagon (see Figure 3) though
slightly harder to describe. Begin with a perfect matching π on HH(n) (specified by its
vertical edges). Observe that it is possible to add, deterministically, a row of n+1 vertical
edges, appearing every second edge, to the bottom of L∨, in such a way as to maintain the
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interlacing condition. Further, it is possible to superimpose the next-larger half-hexagon
R∨(n+1) on this graph, in such a way that each vertical edge is in the center of a hexagon
of R∨(n+ 1).

Working from the top of the graph to the bottom, each vertical edge in π jumps either
left or right onto the nearest vertical edge in the same row of R∨(n + 1). These jumps
happen independently at random, according to the result of a fair coin toss, with the
following exceptions:

• if moving an edge left would violate the interlacing condition with the new row
above, then the edge moves right with probability 1.

• if moving an edge right would violate the interlacing condition with the new row
above, then the edge moves left with probability 1.

We invite the reader to check the preceding procedure is the same as Algorithm 4.1.
One does need to check that the output of Algorithm 4.1 is always a staircase tableau,

i.e. to verify that the interlacing conditions hold. This is done inductively on the row i,
together with a checking that the deterministic row n+ 1 interlaces with row n.

4.2 Preserving the uniform distribution

In this section, we argue that the domino shuffle described above preserves the uniform
distribution. We first introduce the time reversal of Algorithm 4.1.

Algorithm 4.2 (Time-reversed domino shuffle) (Time-reversed domino shuffling for the
half-hexagon)

Input:
(gij), a staircase tableau in ST(n+ 1),
(ξij), independent Bernoulli 0-1 variables.

Output:
(hij), a staircase tableau in ST(n).

for j from 0 to n:
hn,j = 2j + 1

for i from n− 1 down to 0:
for j from 0 to i:

if gi,j = hi+1,j then:
hi,j ← gi,j

else if gi,j = hi+1,j+1 then:
hi,j ← gi,j − 1

else
hi,j ← gi,j − ξi,j
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On the half hexagon, this algorithm does the following: the (n + 1)st row of vertical
edges is dropped altogether; the nth row jumps deterministically to positions 0, 2, . . . ,
n. Then, working from the bottom to the top, edges jump left or right with probability
1
2
, except that edges are sometimes forced to move in order to interlace with edges in the

row below.

Definition 4.3 Let CHH(n) denote the vector space whose orthonormal basis is indexed
by the elements of HH(n). Let 〈·, ·〉n denote the inner product which makes this an or-
thonormal basis.

Let P (π → π′) be the probability that Algorithm 4.1 produces output π′ when given
input π.

Let ψ : CHH(n)→ CHH(n+ 1) be the linear map for which

〈ψ(π), π′〉 = P (π → π′).

Lemma 4.4 The maps ψ and ψ′ are adjoint to each other. That is, if π ∈ HH(n − 1)
and ψ ∈ HH(n), then

〈ψπ, π′〉 =
1

2n
〈π, ψ′π′〉.

Proof. Algorithms 4.1 and 4.2 move the edges either randomly (steps 4.1 and 4.2) or
deterministically (steps 4.1, 4.1, 4.2 and 4.2). We call the random moves free and the
deterministic moves forced, because all of the deterministic moves occur in blocks, precip-
itated by a preceding free move. Figure 3 shows an instance of the shuffling algorithm,
with blocks of forced moves circled. In this terminology, we have

〈ψπ, π′〉 = 2−#{free choices in π
ψ→ π′}

〈π, ψ′π′〉 = 2−#{free choices in π′ ψ
′

→ π}

Let S be all of the free choices in π
ψ→ π′; and let S ′ be the set of all free choices which

do not force any edges in row n of π to move. Since there are n edges in the bottom row,
|S| = |S ′|+ n.

Let ei be one of the edges in E in row i, and suppose that in passing from π to π′.
Say that ei forces the movement of edges ei+1, . . . , ei′ , in successive rows. Observe, then,
that the time-reversed algorithm ψ′, in passing from π′ to π, sees a free choice at edge ei′
which forces edges ei, . . . , ei+1 to move. Moreover, π′ moves row n deterministically (and

then deletes it) so these are never free choices. As such, the free choices in π′
ψ′
→ π are in

bijection with S ′.
〈ψπ, π′〉 = 2−|S| = 2−|S

′|−n = 2−n〈π, ψ′π′〉
�

Definition 4.5 Let µn ∈ CHH(n) denote the vector corresponding to the uniform proba-
bility distribution on HH(n):

µn =
1

|HH(n)|
∑

π∈HH(n)

π.
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Proposition 4.6 Domino shuffling preserves the uniform distribution:

ψµn−1 = µn.

Proof. This is a straightforward computation:

ψµn−1 =
∑

π∈HH(n−1)

∑
π′∈HH(n)

〈ψπ, π′〉π′

=
1

2n

∑
π′∈HH(n)

π′

 ∑
π∈HH(n−1)

〈π, ψ′π′〉


=

1

2n

∑
π′∈HH(n)

π′.

In the second line, the bracketed sum is equal to one for any π′ because ψ′ is stochastic.
The latter vector is proportional to µn, and is thus equal to µn because the coordinates
of both vectors sum to one. �

Note that it follows from this proof that |HH(n)| = 2n|HH(n− 1)|, which provides a
new derivation of the fact that |HH(n)| = 2n(n+1)/2.

5 Review: the Aztec diamond

The Aztec Diamond of order n (which shall be denoted An) is a certain shape in the
plane that can be covered with 2 × 1 rectangles, so called dominoes, in 2n(n+1)/2 ways.
More precisely, An consists of the union of all squares whose corners have integer coordi-
nates, whose sides are parallel to the coordinate axes and whose interiors are contained
in {(x, y) ∈ R2 : |x| + |y| < n + 1}. The model was introduced in [EKLP92a, EKLP92b]
in the study of Alternating sign matrices and a good survey is [Joh05a]. In this section
we give a short review of the results we need about this model with citations.

One way to study the random tilings in this model is to introduce a certain particle
process, see [Joh05a, Nor10] and also Figure 4 for details. In short, the lattice on which the
dominos are placed is colored like a chessboard, and all dominoes whose bottommost or
rightmost square is dark is represented by a particle. The tiling does uniquely determine
the positions of the particles. The converse is only true modulo the fact that there will be
2×2-rectangles where two horizontal dominoes can be switched for two vertical ones or the
other way around. Particle configurations coming from a tiling of An are in bijection with
Alternating sign matrices and this is the original motivation for studying this tiling model.
However, the measure on particle configurations that is induced by uniform measure on
all possible tilings is not the same as uniform measure on all Alternating sign matrices (it
is, rather, connected to the 2-enumeration of alternating sign matrices, see [EKLP92a]).

In a tiling of An there are
(
n+1

2

)
particles on n rows, see Figure 4. Along the line y = 1

there is a single particle, along line 2 there are two, etc. Let xij be the position of the jth
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x = 1
x = 2

x = 3
x = 4

x = 5
x = 6

x = 7
x = 8 y = 1

y = 2
y = 3

y = 4
y = 5

y = 6
y = 7

y = 8

Figure 4: Particle processes associated with domino tilings of an Aztec diamond. The
underlying lattice is colored like a chessboard and all dominoes whose bottommost or
rightmost square is dark is represented by a particle.

particle on line y = i. Observe that the particles interlace in the sense that

xi+1
j ≤ xij ≤ xi+1

j+1 for all 1 ≤ j ≤ i ;

this is similar, but not the same, as the interlacing conditions for the half-hexagon particle
process in Section 2.4.

There is an algorithm, called the shuffling algorithm, that can be used to construct
a random tiling and is described in great depth in each of [EKLP92b, JPS98, Pro03].
The procedure starts with a tiling of An; one moves the dominos of the tiling about in
a certain way, decided by a certain number of coin flips, producing a tiling of An+1. If
one starts with the empty tiling of A0, performs this algorithm n times, tossing fair coins
all the way, then one ends up with a sample from the uniform distribution of all possible
tilings.

The idea of [Nor10] is to look at the positions of the aforementioned particles under
the evolution of this algorithm. It turns out that the particles are not glued to the tiles.
The dynamics of these particles are as follows. In the following all γij(t) for i, j, t = 1, 2,
. . . , are independent Bernoulli random variables, that is one with probability 1

2
and zero

otherwise.
It turns out that the first particle performs the simple random walk

x1
1(t) = x1

1(t− 1) + γ1
1(t). (2)

The particle x2
1 performs a simple random walk with a reflecting boundary. More precisely,

while x2
1(t) < x1

1(t) it performs a random walk independently of x1
1, at each time either

staying or adding one with equal probability. However, when there is equality, x2
1(t) =

x1
1(t), it is pushed forward by that particle. In order to represent this as a formula, we

subtract one if the particle attempts to jump past x1
1.

x2
1(t) = x2

1(t− 1) + γ2
1(t)− 1{x2

1(t− 1) + γ2
1(t) = x1

1(t− 1) + 1} (3)
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Since the diamond is symmetric under the flip of x to n+ 1− x we can get the recursion
for x2

2 by substituting

x2
1(t) 7→ t+ 1− x2

2(t), x2
1(t− 1) 7→ t− x2

2(t− 1),

γ2
1(t) 7→ 1− γ2

2(t), x1
1(t− 1) 7→ t− x1

1(t− 1).

Simplifying gives

x2
2(t) = x2

2(t− 1) + γ2
2(t) + 1{x2

2(t− 1) + γ2
2(t) = x1

1(t− 1)}. (4)

The same pattern repeats itself evermore.

xj1(t) = xj1(t− 1) + γj1(t)− 1{xj1(t− 1) + γj1(t) = xj−1
1 (t− 1) + 1} (5)

xjj(t) = xjj(t− 1) + γjj (t) + 1{xjj(t− 1) + γjj (t) = xj−1
j−1(t− 1)} (6)

xji (t) = xji (t− 1) + γji (t)− 1{xji (t− 1) + γji (t) = xj−1
j (t− 1) + 1} (7)

+ 1{xji (t− 1) + γji (t) = xj−1
j−1(t− 1)}. (8)

with initial conditions xji (j) = i for 1 ≤ i ≤ j.
In the analysis [Nor10] of the asymptotics of the domino shuffling algorithm, it turns

out to be quite inconvenient that the n particles on level n are not created until time n.
A simple change of variables will fix this. Let

Xj
i (t) = xji (t+ i) (9)

for 1 ≤ i ≤ j and t = 1, 2, . . . . We mention this here for a completely different reason:
Rewriting the above recursion formulas in terms of the variables (Xj

i )1≤i≤j gives the
same recursion as is implemented by Algorithm 4.1 above (though with a different initial
condition, see Section 6.1).

6 The Aztec Half-Diamond

Recall the definition of the Aztec diamond An in Section 5. The Aztec half-diamond Hn

of order n is a certain subregion of An. More precisely, for n even,

Hn = {(x, y) ∈ An : y ≥ 2bx/2c}

and, for n odd,
Hn = {(x, y) ∈ An : y + 1 ≥ 2b(x+ 1)/2c}.

Though the definition as stated is a bit cryptic, the Figure 6 should make this quite clear.
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Figure 5: The height function is defined on the lattice on which the corners of the dominoes
line up.

Figure 6: Two Aztec half-diamonds make an Aztec diamond. The left picture shows
half-diamonds of orders 18 and 20; the right picture orders 19 and 21. The interlacing
particle process is also shown. The right picture is the domino shuffle of the left.
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Figure 7: Edge weights for embedding two Aztec-half-diamonds in an Aztec diamond.
Left: even-order case; Right: odd-order case. Unmarked edges get weight ε → 0, while
marked edges get weight 1.
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Figure 8: Weights computed by applying generalized domino shuffling to the even-order
weights in Figure 7. They give the same probability measure as the odd-order weights in
Figure 7 upon taking ε→ 0: perform gauge transformations at the marked points.
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6.1 Dynamics: Domino shuffling

The Aztec Half-Diamonds also have a domino shuffling algorithm: it arises in a somewhat
surprising manner from an algorithm of Propp’s [Pro03], “generalized domino shuffling”,
for generating random perfect matchings on certain planar bipartite graphs G. The
strategy is to embed the graph G into an Aztec diamond of sufficiently large order n,
and then compute a certain series of probabilities P i

j (m) where 1 ≤ m ≤ n and 1 ≤ i, j ≤
m. The probabilities, in turn are given in terms of edge weights wm(e) on the order-m
Aztec diamonds for 1 ≤ m ≤ n; these probabilities are precomputed by the algorithm.
(this is perhaps an overly concise summary, but both the manner of embedding and
the means of computation are described explicitly enough in [Pro03] to allow computer
implementation). To generate the perfect matching, one then simply runs the domino
shuffling algorithm, with the following modification: make ξij(m) a Bernoulli random
variable which takes the value 1 with probability P i

j (m). The final tiling of the Aztec
Diamond of order n, restricted to the embedded copy of G, turns out to be uniformly
random; the intermediary tilings of the smaller Aztec diamonds may be discarded.

The edge weights for producing uniform random tilings of the Aztec Half-diamonds
are shown in Figure 7. The marked edges get weight 1, whereas the unmarked edges get
a small positive weight ε tending to zero (it is possible, but more awkward, to allow for
weight-zero edges in the algorithm; see [Ciu98, JDLRV06]).

Definition 6.1 Let zji (t) denote the particle process given by generalized domino shuffling
with weights wt(e) (defined analagously to the process xji of the Aztec diamond).

Proposition 6.2 The constant-time sections t = t0 of zji (t), restrict to the uniform dis-
tribution on domino tilings of the order-t0 Aztec half-diamond.

Proof. Suppose inductively that wt(e) are as shown in figure 7, so as to produce the
uniform distribution on Aztec half-diamonds. Apply Propp’s rules to compute a new
weight function w′(e). We need to check that w′(e) gives the same probability measure
on dimer configurations as wt−1(e) in the limit ε→ 0.

We next apply a standard trick in the theory of the dimer model [KO07].

Definition 6.3 A gauge transformation of the edge weights W (e) is a new set of edge
weights, obtained by performing the following operation iteratively, one or more times:
Choose a vertex v of the graph and a constant c, and replace W (e) with cW (e) for every
edge e incident to v.

A gauge transformation has no effect on the corresponding Boltzmann distribution on
perfect matchings, since precisely one such edge e is present in every perfect matching.
Observe that by performing gauge transformations at the black dots in Figure 8, we can
transform the weighting wt−1(e) into that of wt−1(e), up to a scalar factor of 1/2, in the
limit ε→ 0. We conclude that the constant-time slice t = t0 of the particle process zji (t)
gives a uniform tiling of the Aztec half-diamond of order t0. �
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As such, if we remember the intermediary perfect matchings instead of discarding
them, Propp’s algorithm gives rise to a domino shuffle for the Aztec half-diamond in our
sense: a random, locally defined map which increases the size of the half-diamond but
preserves the uniform distribution. Indeed, this procedure is exactly the same as ordinary
domino shuffling everywhere except the center line when n is even; at these times, the
particles in the center are forced to jump to equally spaced positions. This is equivalent
to imposing the condition

xm+1
i (2m+ 1) = 2i

for 1 ≤ i ≤ m.

6.2 Height functions and limit shape

It is possible [Thu90] to associate a discrete surface in R3, called a height function, to any
domino tiling of the plane. More precisely, the height function h : Z2 → Z, where the
domain is the square grid whose vertices coincide with the corners of the dominos and the
centers of their edges.

Definition 6.4 Let T be a domino tiling of the region R. Then h : Z2 → Z is a height
function for T if, whenever x+ y ≡ 0 (mod 2) and (x, y) is in R, then

• h(x, y) = h(x, y+1)+1 if the edge from (x, y) to (x, y+1) does not cross a domino
in T ;

• h(x, y) = h(x+1, y)− 1 if the edge from (x, y) to (x+1, y) does not cross a domino
in T .

Note that h determines T uniquely, and that two height functions for T differ only by a
constant.

This definition coincides with those in [Thu90, CKP01] and, In the case where the
region R is an Aztec Diamond, this definition appears in [EKLP92a], where it is closely
related to the height function for an alternating sign matrix.

The reader should be advised that there are closely related concepts in the literature
called relative height functions [KO07, KOS06], edge-placement probabilities and one-
point functions for the particle process [Ken97, Pro03].

Fix a region R, a tiling T of R, and a height function h for T . Since no tiles ever cross
the boundary of R, the restriction of h to ∂R is independent of T . Indeed, h|∂R can even
be computed without specifying T at all.

Definition 6.5 The function h |∂R is called a boundary height function.

Proposition 6.6 (See [Thu90, Section 4]) R possesses a domino tiling if and only if R
has a well-defined boundary height function.
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Once it became possible to generate uniformly random tilings of large Aztec diamonds,
it became immediately obvious that all such tilings have the same “shape”. It was first
shown in [JPS98] that a typical tiling of a large Aztec diamond has all of its disorder
concentrated in a circular region, where the circle is tangent to all four sides of the
diamond; the tiling is frozen close to the four corners.

In fact, more is true: the height function of a uniformly random tiling of an Aztec
diamond tends to the following explicit limit. This limit seems possible to do using
the correlation kernel for the Aztec Diamond, as defined in[Joh05a]; however, the first
explicit derivation seems to be in [CEP96]. We use a later description of the asymptotic
height function, given in [Rom09]. The coordinates are slightly different: in the following
theorem, h∗i,j represents a rescaled height function of an order n Aztec diamond, where
the domain is to [0, 1]× [0, 1] and the range is rescaled to [0, 1]. Indeed, for the remainder
of this section we will work in these coordinates.

Theorem 6.7 (Theorem 11’ in [Rom09]) Define

Z(x, y) =
2

π

(x− 1/2) arctan


√

1
4
− (x− 1/2)2 − (y − 1/2)2

1/2− y


+

1

2
arctan

 2(x− 1/2)(1/2− y)√
1
4
− (x− 1/2)2 − (y − 1/2)2


−(1/2− y) arctan

 x− 1/2√
1
4
− (x− 1/2)2 − (y − 1/2)2

 .
and define

G[x, y] =


x+ y 0 ≤ x ≤ 1−2

√
y(1−y)
2

,

x+ Z(x, y)
1−2
√
y(1−y)
2

< x <
1+2
√
y(1−y)
2

,

x− y 1+2
√
y(1−y)
2

≤ x ≤ 1.

Then as n→∞ we have the convergence in probability

max
0≤i,j≤n

∣∣∣∣h∗i,jnn −G(i/n, j/n)

∣∣∣∣ P−−−→
n→∞

0.

In comments after Equation (15), [Rom09] observes that

G[x, 1/2] =
1

2
; (10)

that is to say, that the limiting height function is constant across the center of the Aztec
Diamond. (It is also possible to observe this directly: the Aztec diamond has a reflection
symmetry in the line y = 1/2 which leaves the uniform measure invariant, but which
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negates height functions up to a constant). This observation is quite important for our
purposes: it means that the limit shape for Aztec Diamonds coincides with the boundary
height function for Aztec Half-Diamonds.

If we replace the Aztec diamonds with a sequence of regions Rn approximating a
given region R, in such a way that the rescaled boundary height functions also tend to a
limiting boundary height function on R, then there is still a unique limiting shape and a
variational principle (though in general there is no reason to expect this limiting shape
to be as nice as a circle!)

Theorem 6.8 ([CKP01, Theorem 1.1] Let R∗ be a region in R2 bounded by a piecewise
smooth, simple closed curve ∂R∗. Let hb : ∂R∗ → R be a function which can be extended
to a function on R∗ with Lipschitz constant at most 2 in the sup norm. Let f : R∗ → R
be the unique such Lipschitz function maximizing the entropy functional Ent(f), subject
to f |∂R∗ = hb.

Let R be a lattice region that approximates R∗ when rescaled by a factor of 1/n, and
whose normalized boundary height function approximates hb. Then the normalized height
function of a uniformly random tiling of R approximates f , with probability tending to 1
as n→∞.

In the above theorem, Ent(f) is given by

Ent(h) =
1

area(R∗)

∫∫
R∗

ent

(
∂h

∂x
,
∂h

∂y

)
dx dy, (11)

and ent
(
∂h
∂x
, ∂h
∂y

)
is a certain explicit function of the gradient of the surface h; see [CKP01]

for further details. For us, the most important point is that the asymptotic number of
tilings depends only upon the asymptotic height function g, not upon the precise nature of
the boundary of R; moreover this dependence is local. As such, an immediate consequence
of Theorem 6.8 is the following:

Lemma 6.9 Let S ⊆ R be regions. Let h∂R be a boundary height function on ∂R, and
let f : R → R be the entropy-maximizing asymptotic height function for (R, h∂R). Let g
be the entropy-maximizing asymptotic height function for (S, f |∂S). Then g = f |S.

Proof. We will write EntS(.),EntR(.),EntR\S(.) for the entropy functionals of the various
regions, and AS, AR, AR\S for their areas. It is a direct consequence of (11) that

AREntR(f) = ASEntS(f) + AR\SEntR\S(f).

Define a height function g∗ on R as follows:

g∗(x) =

{
g(x) if x ∈ S
f(x) if x ∈ R \ S

(12)

Observe that this function is a well-defined asymptotic height function because g = f on
the boundary of S. If EntS(f |∂S)) < EntS(g), then EntRf < EntRg

∗, contradicting the
fact that f is the entropy maximizer on R. Thus EntS(f |∂S)) = EntS(g), and so g = f |S
is the unique entropy maximizer on S. �
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Figure 9: Space-time diagram for domino shuffling. Left image: the Aztec diamonds and
their arctic circles. Right image: the half-hexagon and its arctic parabola.

Corollary 6.10 The limit shape of the normalized height function of the uniform random
tiling of the Aztec half-diamond is the restriction of G (from Theorem 6.7) to y < 1

2
.

Proof. Let

R = [0, 1]× [0, 1] f(x, y) = G[x, y]

S = [0, 1]× [0, 1/2] g|∂S = f |∂S;

That is, R and f describe the limit height function for the Aztec Diamond, and S is
the limiting region for the Aztec Half-Diamond, and g|∂S is its limiting height function
by Equation (10). Lemma 6.9 now says that the limiting height function for the Aztec
Half-Diamond g coincides with fS. �

Corollary 6.11 The region of the uniformly tiled half-hexagon where particles (i.e. ver-
ticle lozenges) appear with positive probability is bounded by a parabola.

Indeed, one can show more: the normalized limiting height function of the half-hexagon
is, up to a projective transformation, the same as that of the Aztec half-diamond. This
transformation maps the boundary of one shape to the other, and it maps the arctic
half-circle in the aztec diamond to the aforementioned parabola in the half-hexagon.
Proof. It was shown in Proposition 6.2 that Propp’s algorithm gives a domino shuffle for
the Aztec half-diamond. This shuffle defines a particle process zji (t). It is easy to check
that particle process zji (t+ i) is the same point process as that given by the half-hexagon-
shuffle: they have the same transition probabilities and the same boundary conditions.
Indeed, both processes coincide with Xj

i (t) of Equation (9) except at the center. To
see that they coincide on the nose, one need only check that Propp’s algorithm creates,
deterministically, a line of equally spaced particles down the center of the Aztec half-
diamond at even times t, as is found in the half-hexagon, but this is immediate from the
weights shown in Figure 7.

Consider the space-time diagram of the domino shuffle of an Aztec diamond, in which
one draws the tiling produced at time t parallel to the xy plane, centered at the origin
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and at height z = t (see Figure 9, left side). The diagram looks like a square pyramid;
the arctic circles of the Aztec diamonds trace out a cone.

Consider next the space-time diagram of the domino shuffle of an Aztec Half-diamond
(see Figure 9, right side). By Corollary 6.10, the region in which particles appear with
positive probability is half of a cone, since the limiting height function coincides with that
of the Aztec diamond at each value of z.

The half-hexagon process corresponds to the time-shifted slices parallel to one of the
sides of this cone. As such the region in which zji (t) has a positive density of points is
bounded by the intersection of a cone with a plane parallel to one of the cone’s sides; this
conic section is a parabola.

�
We remark that one can in fact write down the limiting height function in this way

as well; it is precisely the image of the height function of Theorem 6.7 under the affine
transformation which takes the rectangle [0, 1] × [0, 1/2] to the trapezoid with corners
{(±1, 0), (±(1/2),

√
3/2)}. Moreover, domino shuffling on the Aztec half-diamond has a

reasonably nice description: it turns out to coincide with a particular instance of Propp’s
Generalized Domino shuffling [Pro03] up to gauge transformation.

7 Future work and open problems

The reader will doubtless have noticed that this paper is a study of the phenomenology
of one of the nicest, most special cases of the dimer model on planar bipartite graphs;
naturally one should try to push the analysis to more general situations. For instance,
a few other domino shuffles have been discovered on a variety of statistical mechanical
models (see, for example, [YC10, BG09]) and it would be very interesting to study different
space-time sections of them.

Taking slices through the cone in Figure 9 with varying slopes should yield a family
of particle processes whose limit shapes are conic sections. Though this is a fairly trivial
observation, we note that relatively few instances of the dimer model have known low-
degree algebraic limit shapes.

There is a general framework [BF08] for studying dynamics of the sort we have de-
scribed in this paper, geared in particular to asymptotics. It appears that our model
fits into this framework, but we have yet to determine whether the computations are
tractable.
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