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Abstract

Let U(n, g) and B(n, g) be the set of unicyclic graphs and bicyclic graphs on n

vertices with girth g, respectively. Let B1(n, g) be the subclass of B(n, g) consisting
of all bicyclic graphs with two edge-disjoint cycles and B2(n, g) = B(n, g)\B1(n, g).
This paper determines the unique graph with the maximal signless Laplacian
spectral radius among all graphs in U(n, g) and B(n, g), respectively. Furthermore,
an upper bound of the signless Laplacian spectral radius and the extremal graph
for B(n, g) are also given.

Keywords: Unicyclic graphs; Bicyclic graphs; Signless Laplacian spectral radius;
Girth

1 Introduction

Throughout the paper, let G = (V, E) be a connected undirected simple graph with
V = V (G) = {v1, v2, · · · , vn} and E = E(G) = {e1, e2, · · · , em}. The order of a graph
is the cardinality of its vertex set. Especially, if m = n or m = n + 1, then G is called
a unicyclic or bicyclic graph, respectively. The girth g = g(G) of G is the length of
the shortest cycle in G. Denote by d(u, v) the distance between the vertices u and v of
G, which is the length of the shortest path joining the vertex u with v. Suppose that
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U ⊆ V (G), u ∈ V (G), and u 6∈ U , the distance between u and U , denoted by d(u, U),
is the minimum distance between u and a vertex in U . Let ∆ = ∆(G) be the maximum
degree of G. Let A(G) and D(G) be the adjacency matrix and diagonal matrix of vertex
degree of G, respectively. The Laplacian matrix of G is L(G) = D(G) − A(G) and the
signless Laplacian matrix of G is Q(G) = D(G) + A(G). The Laplacian spectral radius
λ1(G) is the largest eigenvalue of L(G) and the signless Laplacian spectral radius or Q-
spectral radius q1(G) is the largest eigenvalue of Q(G). Moreover, if G is connected, by
the Perron-Frobenius Theorem, we have that Q-spectral radius is simple and has a unique
unit positive eigenvector. We refer to such an eigenvector as Perron vector of G.

The adjacency matrix A(G) and Laplacian matrix L(G) are studied extensively and
the main results are referred to [1] and [14], respectively. Recently, the problem about
determining the extremal graphs with the maximal signless Laplacian spectral radius for a
class of graphs attracts people’s attention. Some properties of signless Laplacian spectra
of graphs and some possibilities for developing the spectral theory of graphs based on
Q(G) are discussed in [3, 4, 5]. Fan and Yang studied the signless Laplacian spectral
radius of graphs with a given number of pendent vertices in [9]. Feng and Yu studied
the signless Laplacian spectral radius of unicyclic graphs with a given number of pendent
vertices or independence number in [7]. Liu, Tan and Liu studied the (signless) Laplacian
spectral radius of unicyclic and bicyclic graphs with n vertices and k pendent vertices
in [12]. Zhai, Yu and Shu determined the extremal graph with the maximal Laplacian
spectral radius among all bicyclic graphs with a given girth in [15]. In this paper, we
determine the unique graph with maximal signless Laplacian spectral radius among all
unicyclic and bicyclic graphs with a given girth g, respectively. Furthermore, the upper
bound of the signless Laplacian spectral radius and the the extremal graph for all bicyclic
graphs with a given girth g are also obtained.

Let U(n, g) and B(n, g) be the set of unicyclic and bicyclic graphs on n vertices with
a fixed girth g, respectively. Denote by B1(n, g) the subclass of B(n, g) consisting of all
bicyclic graphs with two edge-disjoint cycles and by B2(n, g) = B(n, g)\B(n, g) consisting
of bicyclic graphs with three pairwise internal disjoint paths Pp+1, Pq+1, Pr+1 with common
endpoints. Let Pn (resp.Cn) be the path (cycle) on n vertices. Denote by Bk

p,q the graph
obtained from two disjoint cycles Cp and Cq by identifying a vertex u of Cp with a vertex v
of Cq and attaching k pendent edges to u(v). Denote P k

p,q,r the graphs consisting of three
pairwise internal disjoint paths Pp+1, Pq+1, Pr+1 with common endpoints and k pendent
edges at one of the common endpoints, which is shown in Figure 1.

2 Preliminaries

Let G be a bicyclic graph. The the base of G, denoted by B(G), is the minimal bicyclic
subgraph of G. Clearly, B(G) is the unique bicyclic subgraph of G containing no pendent
vertices, and G can be obtained from B(G) by planting trees to some vertices of B(G).
A hanging tree of v in G, denoted by T (v), is a rooted tree with v as its root vertex. For
a better classification, in the following discussion, a vertex set of a hanging tree does not
include its root vertex.
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Figure 1: The bicyclic graphs Bk
p,q and P k

p,q,r.

Bicyclic graphs have two types of bases which are shown in Figure 2. Denote by
B(p, l, q) the graph obtained by joining a new path u1u2 · · ·ul between two vertex-disjoint
cycles Cp and Cq, where u1 ∈ V (Cp) and ul ∈ (Cq). In particular, B(p, 1, q) ∼= CpuvCq for
u ∈ V (Cp) and u ∈ V (Cq), where CpuvCq denotes the graph obtained from Cp and Cq by
identifying a vertex u of Cp with a vertex v of Cq. Denote by P (p, q, r) the graph consisting
of three pairwise internal disjoint paths Pp+1, Pq+1, Pr+1 with common endpoints, that is,
P (p, q, r) ∼= P 0

p,q,r.
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Figure 2: The bases of bicyclic graphs.

Clearly, B1(n, g) and B2(n, g) can also be defined as follows:
B1(n, g) = {G ∈ B|B(G) = B(p, l, q) for some l ≥ 1 and p, q ≥ 3}.
B2(n, g) = {G ∈ B|B(G) = P (p, q, r) for some p, q, r ≥ 1}.

Lemma 2.1. [13] Let G be a graph on n vertices. Then q1(G) ≤ max{du + mu : u ∈
V (G)}, where mu = (

∑
uv∈E(G) dv)/du is the average degree of neighbors of u, the equality

holds if and only if G is regular or semi-regular bipartite.

Lemma 2.2. [11] Let G be a connected graph and u, v be the two vertices of G. Suppose
v1, v2, · · · , vs ∈ N(v)\{N(u) ∪ u}(1 ≤ s ≤ dv) and G∗ is the graph obtained from G
by deleting the edges vvi and adding uvi(1 ≤ i ≤ s). Let X = (x1, x2, · · · , xn)t be the
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principal eigenvector of Q(G), where xi corresponds to vi(1 ≤ i ≤ n). If xu ≥ xv, then
q1(G) < q1(G

∗).
Now we consider the graph Guv obtained from a connected graph G by subdividing

the edge uv, that is, by replacing edge uv with edges uw, wv, where w is an additional
vertex. We call the following two types of paths internal paths: (a) A sequence of vertices
v0, v1, · · · , vk(k ≥ 2), where v0, v1, · · · , vk are distinct and v0 = vk+1 of degree at least 3,
dvi

= 2, for i = 1, 2, · · · , k and vi−1, vi(i = 1, 2, · · · , k + 1) are adjacent; (b) A sequence of
vertices v0,1 , · · · , vk(k ≥ 0) such that vi−1, vi are adjacent, dv0

≥ 3, dvk+1
≥ 3 and dvi

= 2
where 1 ≤ i ≤ k.

Lemma 2.3. [3, 8] Let G be a connected graph and uv be some edge on the internal
path of G as we defined above. If we subdivide uv, that is, substitute it by uw, wv with
a new vertex w, and denote the new graph by Guv, then q1(Guv) < q1(G).

Lemma 2.4. [3] Suppose G is a nontrivial simple and connected graph. Let v be some
vertex of G. For nonnegative integers k, l, let G(k, l) denote the graph obtained from G by
adding pendant paths of length k, l at v. If k ≥ l ≥ 1, then q1(G(k, l)) > q1(G(k+1, l−1)).

Lemma 2.5. [6] Let G be a connected graph. Suppose v1, v2 are vertices each of degree
at least 3 and v1v2 is an edge of G. Let G∗ be the connected graph obtained from
G by contracting v1v2, that is, deleting the edge and identifying vertices v1, v2. Then
q1(G) < q1(G

∗).

Lemma 2.6. [2] Let G be a graph on n vertices with at least an edge and the maximum
degree of G be ∆. Then we have q1(G) ≥ ∆ + 1. The equality holds if only if G is a star.

Lemma 2.7. [13] Let G be a simple and connected graph on n vertices, its degree
sequence is dv1

, dv2
, · · · , dvn

. Then we have

(1) q1(G) ≤ max{du(du+mu)+dv(dv+mv)
du+dv

: uv ∈ E}.
(2) q1(G) ≤ max{du + dv : uv ∈ E}.

Lemma 2.8. [10] Let G be a connected graph. Suppose v1, vk are vertices each of degree
at least 3 and N(v1) ∩ N(vk) = ∅. Suppose further that the unique path P = v1v2 · · · vk

from v1 to vk is an internal path. Let G′ be a connected graph obtained from G by
collapsing the entire internal path (i.e., delete all edges v1v2, v2v3, · · · , vk−1vk and identify
the vertices v1, v2, · · · , vk). Then q1(G) < q1(G

′).

Lemma 2.9. [6] Let G be a connected graph and P be a pendant path in G. Suppose
e is an edge in P and G∗ is the graph obtained from G by subdividing e, then we have
q1(G) < q1(G

∗).

3 Main Results

In this section, the extremal graphs with the maximal signless Laplacian spectral radius
among all graphs in U(n, g) and B(n, g) and the upper bound of the signless Laplacian
spectral radius for B(n, g) will be presented.
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Theorem 3.1. For every pair of positive integers n, g with 3 ≤ g ≤ n − 1, the graph
Ug,n−g is the extremal graph with the maximal signless Laplacian spectral radius among
all unicyclic graphs with a given girth g, where the graph Ug,n−g is obtained from the
cycle Cg by attaching n − g pendent edges to some vertex of the cycle.

Proof. For any unicyclic graph G ∈ U(n, g), we only need to consider the trees attached
to some vertices on the cycle Cg of G. Firstly, if there exists at least one vertex on the
hanging trees having degree at least 3, we choose the vertex w which has the minimal value
d(w, Cg) among all such vertices described above, then by Lemma 2.8 collapse the entire
internal path joining the vertex w with the the vertex on the cycle Cg, then by Lemma 2.9
we get a new graph G′ by subdividing some pendent edges several times to keep the order
of G′ the same as the order of G. Through these edges operations above, G′ has a larger
signless Laplacian spectral radius and smaller number of the vertices with degree at least
3 on the trees. Continuing the operations as above, we can get all trees attached consist of
pendent paths. Secondly, by Lemma 2.2 comparing the eigencomponents corresponding
to the root vertices attached by pendent paths and reattaching all the pendent paths to
the root vertex corresponding to the largest eigencomponent. Finally, by Lemma 2.4, all
pendent paths with the length equal to or greater than 2 are transformed into pendent
edges with the same number of vertices as the order of all the original pendent paths,
which results in a graph with a larger signless Laplacian spectral radius. Then the proof
of the Theorem 3.1 is completed. �

Theorem 3.2. For every pair of positive integers n, g with 3 ≤ g ≤ n+1
2

, Bn−2g+1
g,g is the

extremal graph with the maximal signless Lapalcian spectral radius among all graphs in
B1(n, g).

Proof. As the discussion of the proof of Theorem 3.1, we know that the graph G∗ with
the maximal signless Laplacian spectral radius among all graphs in B1(n, g) is obtained
from B(G∗) by attaching some pendent edges to some vertex v of B(G∗). B(G∗), as
we define above, has the same form as B(p, l, q), where a path P = u1u2 · · ·ul joining
the vertex u1 on the cycle Cg with the vertex ul on the cycle Cq for l ≥ 1. Firstly,
it suffices to show u1 = ul = u, namely l = 1. Assume to the contrary that l ≥ 2.
By Lemmas 2.4 and 2.6, when we delete the whole path P and identify all the vertices
into a vertex u, then by Lemmas 2.9 and 2.4, we will get a graph G′ with q1(G

′) ≥
q1(G

∗), where G′ is obtained by attaching n − (g + q) + 1 pendent edges to some vertex
v of B(g, 1, q). This is a contradiction. Secondly, we can versify that q = g in the
graph G∗. If q ≥ g + 1, then by Lemma 2.3 we can transform the cycle Cq into a
cycle having the same length g, then by Lemmas 2.9 and 2.4 we can get a graph G′

with q1(G
′) ≥ q1(G

∗). This is a contradiction. Finally, by Lemma 2.2, we show u = v.
Assume that u 6= v. Let N(u) = {w1, w2, · · · , wt, · · · , wdu

}, let t be the number of
pendant vertices of the neighbors of u, N(v) = {s1, s2, · · · , sdv

}, s1, s2 ∈ V (Cp) and
dv = 4. If xu ≥ xv, then we can get a new graph G′ = G∗ − {vs1, vs2} + {us1, us2} with
q1(G

∗) < q1(G
′). This is a contradiction. If xv > xu, then we also can get a new graph

G′′ = G∗−{uw1, uw2, · · · , uwt}+ {vw1, vw2, · · · , vwt} with q1(G
∗) < q1(G

′′). This is also
a contradiction. Hence the proof of Theorem 3.2 is completed. �
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Theorem 3.3. For every pair of positive integers n, g with 3 ≤ g ≤ 2(n+1)
3

, P
n−⌈3g/2⌉
⌊g/2⌋,⌈g/2⌉,⌈g/2⌉

is the extremal graph with the maximal signless Laplacian spectral radius among all graphs
in B2(n, g).

Proof. We discuss the two facts as follows:

Fact 1. Let G∗ have the maximal signless Laplacian spectral radius among all
graphs in B2(n, g). When n ≥ ⌈3g/2⌉ − 1, then G∗ is the graph obtained from
P (⌊g/2⌋, ⌈g/2⌉, ⌈g/2⌉) by attaching n − ⌈3g/2⌉ + 1 pendent edges to a unique vertex.

Proof of Fact 1. The proof need distinguish two case that g is even or odd.
Case 1. We firstly consider the case that g is even. Set a = g/2 and suppose that

B(G∗) = P (p, q, r), where p ≤ q ≤ r and p+q = 2a. It suffices to show that p = q = r = a.
Note p + q + r ≥ 3a and n ≥ (p + q + r) − 1.

If n = 3a− 1, then G∗ can not contain any pendent vertices and p + q + r = 3a. Since
p + q = 2a, r = a and hence p ≤ q ≤ a. If p ≤ a − 1, then q ≥ a + 1, which contradicts
to q ≤ a. Thus p = q = r = a.

If n = 3a, then p+q+r ≤ 3a+1. Since p+q = 2a, r ≤ a+1. This implies that q ≤ a+1.
So (p, q, r) ∈ {(a, a, a), (a, a, a+1), (a−1, a+1, a+1)}. Assume, for a contradiction, that
(p, q, r) ∈ {(a, a, a + 1), (a− 1, a + 1, a + 1)}, then G∗ can not contain any pendent edges,
in other words, G∗ is isomorphic to one of P (a, a, a + 1) and P (a− 1, a + 1, a + 1). When
a = 2, straightforward calculations show that q1(P (2, 2, 3)) = 4.932, q1(P (1, 3, 3)) = 5
and q1(P

1
2,2,2) = 5.5141. So we have max{q1(P (2, 2, 3)), q1(P (1, 3, 3))} < q1(P

1
2,2,2), a

contradiction. When a ≥ 3, G∗ can not contain a pair of adjacent 3-vertices. So if by
Lemma 2.7,

q1 ≤ max{du + dv : uv ∈ E(G)} = 5.

However, q1(P
1
a,a,a) > ∆+1 = 5 since in this case G∗ is not a star. Thus q1(G

∗) < q1(P
1
a,a,a),

a contradiction. Therefore, p = q = r = a.
Now it remains the case n ≥ 3a + 1. If r = a, clearly p = q = a since p + q = 2a and

p ≤ q ≤ a. Next we suppose that r ≥ a + 1,and set k = n − (p + q + r) + 1, namely the
number of pendent vertices in G∗. Then k ≤ n − 3a. If k is fixed, then we can find that
max{du +mu|u ∈ V (G)} attains the maximal value just when p = 1 and k pendent edges
are incident to a 3-vertex of P (p, q, r). In this case,

max{du + mu|u ∈ V (G)} = k + 3 +
k + 7

k + 3
= k + 4 +

4

k + 3
.

By Lemma 2.7, we have

q1(G
∗) < max{du + mu|u ∈ V (G)} = k + 4 +

4

k + 3

since in this case G∗ can not neither be regular nor semi-regular. Note that k + 4 + 4
k+3

is increasing with nonnegative integer k. Thus

q1(G
∗) < n − 3a + 4 +

4

n − 3a + 3
≤ n − 3a + 5
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since n ≥ 3a + 1. However, by Lemma 2.1, q1(P
n−3a+1
a,a,a ) > ∆ + 1 = n − 3a + 5, a

contradiction.
Case 2. Now we consider the case that g is odd. The proof is similar to Case 1.

Suppose that B(G∗) = P (p, q, r), where p ≤ q ≤ r and p + q = g. It suffices to show
that p = ⌊g/2⌋ = g−1

2
, q = r = ⌈g/2⌉ = g+1

2
. Note that p + q + r ≥ g + g+1

2
= 3g+1

2
and

n ≥ 3g+1
2

− 1.

If n = 3g+1
2

−1, then G can not contain any pendent edges and p+ q + r = 3g+1
2

. Since

p + q = g, r = g+1
2

and p ≤ q ≤ g+1
2

. If p ≤ g−1
2

, then q ≥ g+1
2

+ 1, which contradicts to

q ≤ r. So the only case is that p = ⌊g/2⌋ = g−1
2

, q = ⌈g/2⌉ = g+1
2

and r = ⌈g/2⌉ = g+1
2

.

If n = 3g+1
2

, then p+q+r ≤ 3g+1
2

+1. Since p+q = g, r ≤ g+1
2

+1. This implies that q ≤
g+3
2

and p ≥ g−3
2

for g ≥ 5. So (p, q, r) ∈ {(g−1
2

, g+1
2

, g+1
2

), (g−1
2

, g+1
2

, g+3
2

), (g−3
2

, g+3
2

, g+3
2

)}.
Moreover, if (p, q, r) ∈ { g−1

2
, g+1

2
, g+3

2
), (g−3

2
, g+3

2
, g+3

2
}, then G∗ can not contain any

pendent edges, in other words, G∗ is isomorphic to one of P (g−1
2

, g+1
2

, g+3
2

) and

P (g−3
2

, g+3
2

, g+3
2

). When g = 3, the conclusion holds clearly. When g = 5, straightforward

calculations show that q1(P (g−1
2

, g+1
2

, g+3
2

)) = q1(2, 3, 4) = 4.7728, q1(P (g−3
2

, g+3
2

, g+3
2

)) =
q1(1, 4, 4) = 4.9032, q1(P

1
⌊g/2⌋,⌈g/2⌉,⌈g/2⌉) = q1(P

1
2,2,2) = 5.3552. So we have that

max{q1(2, 3, 4), q1(1, 4, 4)} < q1(P
1
2,2,2), a contradiction. When g ≥ 7, G∗ can not contain

a pair of adjacent 3-vertices. So by Lemma 2.7,

q1(G
∗) ≤ max{du + dv|uv ∈ E(G)} = 5.

However, q1(P
1
g−1

2
, g+1

2
, g+1

2

) > ∆ + 1 = 5 since P 1
g−1

2
, g+1

2
, g+1

2

is not a star, a contradiction.

Therefore p = ⌊g/2⌋ = g−1
2

, q = r = ⌈g/2⌉ = g+1
2

.

Now it remains the case that n ≥ 3g+1
2

+ 1. If r = g+1
2

, clearly, p = g−1
2

, q = g+1
2

since

p+q = g and p ≤ q ≤ r. Next we suppose r ≥ g+1
2

+1 and set k = n−(p+q+r)+1, namely

the number of pendent vertices in G∗. Then k ≤ n− 3g+1
2

. We can find max{du +mu|u ∈
V (G)} attains the maximal value just when g = 3, namely p = 1, and k pendent edges
are incident to a 3-vertex of P (p, q, r). In this case, if k is fixed, then we can find that

max{du + mu|u ∈ V (G)} = k + 3 +
k + 7

k + 3
= k + 4 +

4

k + 3
.

By Lemma 2.1, we have

q1(G
∗) < k + 4 +

4

k + 3
≤ n − 3g + 1

2
+ 4 +

4

n − 3g+1
2

+ 3
≤ n − 3g + 1

2
+ 5

since the function k + 4 + 4
k+3

is increasing with the nonnegative number k and

k ≤ n− 3g+1
2

. However, q1(P
n− 3g+1

2
+1

g−1

2
, g+1

2
, g+1

2

) > ∆+1 = n− 3g+1
2

+5 > q1(G
∗), a contradiction.

Fact 2. Let G∗ have the maximal signless Laplacian spectral radius among
all graphs in B2(n, g), when n ≥ ⌈3g/2⌉ − 1. Then G∗ ∼= P

n−⌈3g/2⌉+1
⌊g/2⌋,⌈g/2⌉,⌈g/2⌉ and

q1(G
∗) < n − ⌈3g/2⌉ + 5 + 4

n−⌈3g/2⌉+4
.
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Proof of Fact 2. By Fact 1, we have G∗ is obtained from by attaching n − ⌈3g/2⌉ + 1
pendent edges to a unique vertex u of P (⌊g/2⌋, ⌈g/2⌉, ⌈g/2⌉). Next we only need to prove
that u is a 3-vertex of P (⌊g/2⌋, ⌈g/2⌉, ⌈g/2⌉). Assume to contrary that u is a 2-vertex
of P (⌊g/2⌋, ⌈g/2⌉, ⌈g/2⌉). For convenience, set k = n − ⌈3g/2⌉ + 1. If k = 0, clearly
G∗ ∼= P 0

⌊g/2⌋,⌈g/2⌉,⌈g/2⌉.

 

1
G  

2
G  

3
G  4

G  
5
G  

Figure 3: Several special graphs.

Now we consider the case k = 1. If g ∈ {3, 4, 5}, then G∗ is isomorphic to one of Gi

(i ∈ {1, 2, 3, 4}, see Figure 3). Straightforward calculations show that q1(G1) = 5.4679 <
q1(P

1
1,2,2) = 5.7785, q1(G2) = 5.2361 < q1(P

1
2,2,2,) = 5.5141, max{q1(G3), q1(G4)} =

max{5.0664, 4.9891} < q1(P
1
2,3,3) = 5.3552, a contradiction. If g ≥ 6, then u can not

be simultaneously adjacent to the two 3-vertices of P (⌊g/2⌋, ⌈g/2⌉, ⌈g/2⌉) and the two
3-vertices are not adjacent. So dumu ≤ 1 + 2 + 3 = 6. Besides, dvi

mvi
≤ 2 + 2 + 3 = 7 if

vi is a 3-vertex different from u, dvi
mvi

≤ 3 + 3 = 6 if vi is a 2-vertex and dvi
mvi

= 3 if vi

is a pendent vertex. This implies that

max{du(du + mu) + dv(dv + mv)

du + dv

|uv ∈ E(G∗)} ≤ max{31

6
,
26

5
,
20

4
} =

26

5
,

since du + dv ∈ {4, 5, 6} for each edge uv ∈ E(G). By Lemma 2.7, we have q1(G
∗) ≤ 26

5
.

However, when g ≥ 6, G5 is a subgraph of P 1
⌊g/2⌋,⌈g/2⌉,⌈g/2⌉. Thus q1(P

1
⌊g/2⌋,⌈g/2⌉,⌈g/2⌉) >

q1(G5) = 3 +
√

5 > 26
5
. This is, q1(G

∗) < q1(P
1
⌊g/2⌋,⌈g/2⌉,⌈g/2⌉), a contradiction. Also we can

consider another more simpler method. When k = 1, we observe that any maximal graph
G on girth g ≥ 6 by Lemma 2.2 has a smaller signless Laplacian spectral radius than that
of the maximal graph of girth g = 5, namely G3, that is q1(G) < q1(G3) = 5.0664 < 26

5

by Lemma 2.3. So the result is also proved.
Next we consider the case k ≥ 2. We have that max{du + mu|u ∈ V (G∗)} at-

tains the maximal value just when u is simultaneously adjacent to the two 3-vertices
of P (⌊g/2⌋, ⌈g/2⌉, ⌈g/2⌉). In this case,

max{du + mu|u ∈ V (G∗)} = k + 2 +
k + 6

k + 2
≤ k + 4

since k ≥ 2. By Lemma 2.7, we have q1(G
∗) < k + 4 since G∗ is neither regular nor semi-

regular. However, by Lemma 2.6, q1(P
n−⌈3g/2⌉+1
⌊g/2⌋,⌈g/2⌉,⌈g/2⌉) > ∆+1 = k+4 since P

n−⌈3g/2⌉+1
⌊g/2⌋,⌈g/2⌉,⌈g/2⌉

is not a star. Note that P
n−⌈3g/2⌉+1
⌊g/2⌋,⌈g/2⌉,⌈g/2⌉ is neither regular nor semi-regular bipartite except
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that P 0
2,2,2

∼= K2.3 is a semi-regular bipartite graph. Thus if (n, g) 6= (5, 4),

q1(P
n−⌈3g/2⌉+1
⌊g/2⌋,⌈g/2⌉,⌈g/2⌉) < max{du +mu|u ∈ V (P

n−⌈3g/2⌉+1
⌊g/2⌋,⌈g/2⌉,⌈g/2⌉)} ≤ n−⌈3g

2
⌉+5+

4

n − ⌈3g
2
⌉ + 4

since k + 3 + 4
k+2

is increasing with nonnegative integer k.
As for (n, g) = (5, 4), we know that

q1(P
0
2,2,2) = 5 <

16

3
= n − ⌈3g

2
⌉ + 5 +

4

n − ⌈3g
2
⌉ + 4

. �

Theorem 3.4 Let G∗ have the maximal signless Laplacian spectral radius among
all graphs in B(n, g), where n ≥ ⌈3g/2⌉ − 1. Then G∗ ∼= P

n−⌈3g/2⌉+1
⌊g/2⌋,⌈g/2⌉,⌈g/2⌉ and

q1(P
n−⌈3g/2⌉+1
⌊g/2⌋,⌈g/2⌉,⌈g/2⌉) < n − ⌈3g/2⌉ + 5 + 4

n−⌈3g/2⌉+4
.

 

5

3,3

−nB  

k  

4

2,2,1

−nP  

k  

Figure 4: Graphs Bn−5
3,3 and P n−4

1,2,2.

Proof. We distinguish the two cases as follows:
Case 1. If g = 3, the corresponding graphs Bn−5

3,3 and P n−4
1,2,2 are shown in Figure 4,

then by Lemma 2.2, we have q1(B
n−5
3,3 ) < q1(P

n−4
1,2,2).

Case 2. If g ≥ 4, we have to show q1(B
n−2g+1
g,g ) < q1(P

n−⌈3g/2⌉+1
⌊g/2⌋,⌊g/2⌋,⌊g/2⌋). According to

the results above, q1(B
n−2g+1
g,g ) < n − 2g + 6 + 4

n−2g+5
≤ n − 2g + 7 since in this case

n ≥ 2g − 1. However q1(P
n−⌈3g/2⌉+1
⌊g/2⌋,⌊g/2⌋,⌊g/2⌋) > ∆ + 1 = n − ⌈3g/2⌉ + 5. Since g ≥ 4,

n − ⌈3g/2⌉ + 5 − (n − 2g + 7) = ⌊ g/2⌋ − 2 ≥ 0.
This completes the whole proof of Theorem 3.4. �
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