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Abstract

A non-empty family 8 of subsets of a finite set A has the odd (respectively, even)
intersection property if there exists non-empty B C A with |[BN.S| odd (respectively,
even) for each S € 8. In characterizing sets of integers that are quadratic non-
residues modulo infinitely many primes, Wright asked for the number of such 8, as
a function of |A|. We give explicit formulae.

1 Introduction

Let A be a finite non-empty set, let P(A) denote its powerset, and let § C P(A) be a
non-empty collection of subsets of A. (We allow () € 8, but not 8 = ().) We say that 8
has the even intersection property (EIP) with respect to A if there exists a non-empty set
B C A such that |[BN S| is even for each S € S. (The set B is required to be non-empty
to avoid triviality.) Similarly, 8 C P(A) has the odd intersection property (O1P) with
respect to A if there exists a set B C A (necessarily non-empty) with |B N S| odd for each
S € 8. If |[A] = n, let d(n), respectively e(n), be the number of § C P(A) with the orp,
respectively the EIP. We shall obtain formulae for d(n) and e(n).

It is generally enough to consider these properties when A = J 8. Indeed, in the odd
case, if 8§ has the O1P with respect to some set A (with appropriate B C A, say) then
it has the o1p with respect to J8, since B’ = B N [JS$ still has odd intersection with
each S € § (in particular, B’ is not empty). Thus in the odd case we may take A = J§
without loss of generality, and may simply speak of § having the o1p (without specifying
A).

This observation does not hold in the even case, since (B N J8) may be empty.
However if A # |8 then 8 has the EIP trivially, since if z € A\ |J8 then B = {z} has
empty intersection with each S € 8.
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The o1p was introduced by Wright [9], [10] in the following context. If 7" C N is
finite and non-empty, there are infinitely many primes p such that every element of 7" is
a quadratic residue mod p [9, Theorem 2.3]. Consider the corresponding statement for
quadratic nonresidues:

(%)  Every element in T is a quadratic nonresidue mod p, for infinitely many primes p.

Wright [9, Lemma 2.5] gave a combinatorial characterization of the sets T satisfying (x).
Namely, for each ¢t in T' let S; be the set of primes dividing the square-free part of ¢, and
let 87 = {S; |t € T'}. Then (%) holds for T" if and only if 87 has the o1p. Recently Hu [6]
generalized some of these results to dth powers in the ring F[t].

The potential § with the Oo1P or EIP are drawn from P(P(A)), so there are 22" sets
to consider and exhaustive searching rapidly becomes impossible. Wright [11] found d(n)
for n < 3, and asked for a general formula.

To state our result, recall [4] that the number of d-dimensional subspaces of an m-
dimensional F,-vector space is given by the g-binomial coefficient

d .
m qm—j-i-l_l
:lli <d<m. 1
()q Moa -1 ; 0<d<m (1)

(This expression is always an integer.) We show the following.

Theorem 1.1.
d(n) = : l(—1)“—i—1 (22" —1) CL)Q ﬁ(?—l)}, 2)
e(n) = 1+ 22 [(—1)’”—1 (222'—1 - 1) (?)2 2(”zi)] . (3)

n—1i

The exponent ("}") in (3) is a regular (not ¢) binomial coefficient. The sum in (3) can
be interpreted as the number of 8§ with the EIP with () ¢ 8, since except for § = {0}, 8
has the EIP if and only if 8§ U {0} does.

The symmetry between (2) and (3) becomes more apparent on writing 5("7)
H;—:ll_l 27. If we let § = 1 in the EIP case and § = 0 in the OIP case we obtain

n—1

d(n). e(n) =5+ {(—1)"—2‘—1 (221' 1 5) (7;)2 i:[_é (27 —1+ 5)] L@

7j=1

To prove Theorem 1.1 we identify P(A) with the vector space V = Fj. Equation (2) is
then proved in §2 using linear algebra to establish a recurrence relation satisfied by d(n).
Equation (3) is derived in §3 by a simple counting argument. Except for some notation
the two halves of the proof are independent.
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The quantities d(n) and e(n) grow roughly as 2" "+ The first few values are:

n (1123 4 5 6
d(n)|1]6|63]|2880 | 1942305 | 270460574370
e(n) | 1]7]71|3071 | 1966207 | 270499994623

and e(10) > d(10) > 101,

2 The Odd Intersection Property

In this section we prove that d(n) satisfies the following recurrence relation, for n > 2:

d(n) = (2" — 1) (22"’1 —1—d(n— 1)) . (5)

The formula (2) for d(n) in Theorem 1.1 follows by solving equation (5), with initial
condition d(1) = 1. The general solution of a first order linear recurrence relation may be
found in [3, §1.2] or [7, §2.2].

In what follows, the disjoint union of sets Si,..., S, is denoted by ||, S;. To avoid
repeating wordy counting arguments, we formalize a trivial observation. If X is a set,
T C P(X) and Q is a boolean valued function (predicate) on P(X), then let T¢ = {S €
T | Q(S) holds}.

Lemma 2.1. Let X be a non-empty finite set, let X = {X;,..., Xy} € P(X), and
suppose |P(X;)%| = N is independent of j. For i > 0 define “level sets”

2; ={S € P(X)?| S C Xj for exactly i of the X;}. (6)
Then
){S | S C X; for some j, and Q(S) holds}‘ =MN — Z(z —1)-|Z]. (7)
i>2

Proof Clearly ){S | S C X for some j, and Q(S) holds}| is just ‘UXjex(P(Xj)Q —
>i>1 1%, while MN = ) |_|Xjefx ?(Xj)Q) =2 is141Zil. 0

Suppose V is a finite dimensional Fo-vector space and S is a subset of V. The subspace
of V generated by S is denoted by (S). If v € V', then the set {v+s | s € S} is denoted by
v+ S. A codimension one subspace! of V is called a mazimal subspace. The complement
V \ W of a maximal subspace W of V is called a V-block. A non-empty subset of a
V-block is called a V' -subblock.

We define three families of subsets of V. Let M(V') be the collection of all maximal
subspaces of V', B(V) the collection of all V-blocks, and €(V') the collection of all V-

subblocks:
cv)y= {J 2B)\{0} (8)
)

BeB(V

!The zero space has no maximal subspaces.
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In Corollary 2.4 we show that B(V') forms a symmetric block design, justifying the ter-
minology:.

The motivation for introducing these sets is that |C(V)| = d(n), where n = dim V'
(Lemma 2.5). To obtain the recurrence relation (5) we therefore need to consider V-blocks,
and also W-blocks for W € M(V') (sets of the form W\ X where X has codimension one
in W). We have the following simple properties.

Lemma 2.2. Let V be a finite dimensional Fao-vector space and suppose U, W € M(V).
(a) If U # W then UNW € M(W).
(b) We have C(W) C C(V).
(c) Suppose S is a W or V-subblock. Then S C U if and only if S is a U-subblock.

Proof

() U+Wisallof V,so U/(UNW) ~ (U+W)/W =V/W is 1-dimensional.

(b) Suppose S € C(W). Say 0 #S C BC W with W\ BeM(W). Let z € V\W
and X = (z) @ (W \ B). Then X e M(V) and ) # S CV \ X, s0 S e€C(V).

(c¢) By (b) we may assume S € C(V). Say S C V' \ X for some X € M(V). Assume
SCU. Then UNnX € MU) by (a), and S C U\ (UN X), so S € C(U). The other
implication is trivial. O

From now on, assume that the set A is fixed, with [A| = n > 1 and let V = FJ
viewed as a n-dimensional Fo-vector space. Fix the standard basis {e;} of V, where
e; = (0,0,...,1,...,0) has 1 in the ith coordinate and zeros elsewhere. If z = > x;e; and
y = > ye; define x -y = > x;y;, viewed as an element in Fy. (Note that the definition of
x -y depends on the basis {e;} chosen.) If S C V' is non-empty, let

S° = {veV|s-v=0forall se S},
S" = {veV]s-v=1forall se S},
and write z° for {z}° and 2’ for {z}'.
Lemma 2.3.

(a) The maps x — =/, x +— x° give bijections V' \ {0} — B(V) and V \ {0} — M(V)
respectively.

(b) There are 2" — 1 V-blocks each with cardinality 2"~!, and the same is true for
maximal subspaces.

(c) Assume S € C(V) or S € C(W) for some W € M(V), and let k = n—dim(S). Then
there are exactly 2*¥ V-blocks containing S, and exactly 2¥ — 1 maximal subspaces
U of V containing S. Moreover, in each such U we have S € C(U).
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Proof Let S ={s1,...,Sm}, let s; =Y a; je;, and form the m x n matrix A = (a; ;) of
rank n — k. Then S° = ker A, so dim S° = k. In particular, since U C (U°)° holds for
any subspace U, taking S = U we have dim U = dim(U®)°, so U = (U°)°. Thus the maps
{0,2} — a° (for z # 0) and W — W° give mutually inverse maps between the collection
of all 1-dimensional and all maximal subspaces, proving (a) and (b).

Since C(W) C C(V), in (¢) we may assume S is a V-subblock. By (a), S’ = {z |
S C 2’} is (in bijection with) the set of V-blocks containing .S, and hence is non-empty.
Furthermore, S is the set of solutions of Az = 1 (the vector of all 1’s), so |S'| = |S°| = 2*.

Finally, let U € M(V). By Lemma 2.2(c) S C U if and only if S € C(U). So the
number of U € M(V) with S € C(U) is just the number of maximal subspaces of V'
containing S. Such subspaces are in bijection with the maximal subspaces of V/(S), a
k-dimensional space, containing 2*¥ — 1 maximal subspaces by (b). O

Note that (c) above implies that if we know that S is contained in exactly 2% V-blocks
or 2¥ — 1 maximal subspaces, we can deduce that dim(S) = k. We observe in passing
that S C 77 if and only if 7 C S°, so the (—)°-operation forms a Galois connection (with
itself) [8, Ch. 6].

The next result is not needed in our proof, but motivates the terminology. See [5,
Ch. 14] or [2, Ch. 1.5] for definitions.

Corollary 2.4. For n > 2, the set B(V) forms a symmetric block design on the set
V\ {0}, with (v, k,\) = (2" — 1, 271 2n=2),

Proof This follows on putting S = {z} and S = {z,y} with = # y, z,y # 0 in
Lemma 2.3(c), since S’ is clearly non-empty in each case. O

We apply these results to the orp. We identify P(A) with V' by mapping a subset
T CA=A{a,...,a,} to vy = > xr(a;)e;, where yr: A — Fy is the characteristic
function of T'. A collection 8 of subsets of A corresponds to a subset S C V. Those
collections & with the OI1P correspond to V-subblocks:

Lemma 2.5. Under the identification P(A) ~ V" a collection of subsets of A has the o1p
if and only if it corresponds to an element of C(V'). Thus

d(n) = [C(V)]. (9)

Proof If S and T are subsets of A, then vg-vr = [SNT| (mod 2). Thus for S a
non-empty subset of V', S has the O1P <= there exists x € V with s-x =1forall s € S
< S Cua forsomez €V \{0} < S5 C B for some B € B(V). O

The identification T — vy depends on the basis {e;}, as do the individual sets z’.
However the collection {z’ | x # 0} = B(V) is basis independent, as is equation (9). Thus
for example d(n — 1) = |C(W)]| for any W € M(V).

We now prove the recursion relation (5) for d(n).

Proof (Of (2)) For k> 1 define

Vi ={S €P(V) | S+#0is asubset of exactly 2¥ V-blocks}. (10)
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By Lemma 2.3(c)
Vi ={S €P(V) | Sisa W-subblock for exactly 2 —1 W € M(V)}. (11)

We apply Lemma 2.1 twice, with X = V. First take X = B(V), and let Q(S) be
the property S # (). By Lemma 2.3 the set Z; is empty except if i = 2%, and Zor = V.
Applying equation (9) gives

dn) = 2" = 1)@ = 1) = 3@ — 1)V (12)

k>1

Next take X = M(V), and let Q(S) hold if and only if S € (W) for some W € M(V).
By Lemma 2.2(c) if Q(S) holds and S C X; € X then S € C(Xj), so P(X;)? = C(X;),
and hence |P(X;)?| = d(n — 1). Furthermore by Lemma 2.3 the set Z; is empty unless
i =2F —1 for some k > 1, and Zox_; = V. This gives

> @ =DV = (2" = 1d(n—1). (13)

k>1

Equation (5) follows from (12) and (13). O

3 The Even Intersection Property

In this section we establish equation (3) for e(n). Let g(d) be the number of subsets of a
d-dimensional Fo-vector space U that generate U. Under the identification P(A) ~ V,

S CV hasthe EIP <= 0 # S CW forsome W € M(V). (14)

Thus a non-empty set S C V does not have the EIP if and only if it generates V', so
g(n) = 22" —1 —e(n) for n > 1. Since every subset S C V gives rise to a subspace
U = (S) in which (of course) S generates U, summing over all generating subsets of all

subspaces of V' gives
> (1) st =2 (1)
dj,

d=0

We solve for g(n). Taking n = 1, 2,...,m successively in equation (15) and subtracting
the d = 0 terms gives rise to the linear system

g(1) 22 — 2
2 2% — 2

F I S e (16)
g(m) 22" — 2

where B is the m X m matrix in the next lemma.
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Lemma 3.1. Let B be the lower triangular m x m matrix with (7, j) entry (;)2 if i > j,
and remaining entries 0. Then

(B = { (-1p= 2l (), g > 1)

0, otherwise.

Proof Let C be the m x m matrix with entries given by the right hand side of (17).
Clearly BC'is lower triangular, with 1’s on the diagonal, so it remains to show (BC);z = 0
for i > k. This follows from Cauchy’s g-binomial Theorem [1, equation 10.0.9]:

Zq(’;) (‘;\Z) th = 1:[(1 + "), (18)

and the identity (;)2 (i)2 = (2)2 (]Z:i)2 We have

=) () 29- () £ ()0 o

where the last step follows from writing h = j — k and applying (18) with t = —1 and
q=2. U

Applying Lemma 3.1 to equation (16) gives (3), and completes the proof in the even
case.
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