The odd and even intersection properties

Victor Scharaschkin

Department of Mathematics University of Queensland St Lucia, Australia, 4072

victors@maths.uq.edu.au

Submitted: Dec 16, 2009; Accepted: Sep 7, 2011; Published: Sep 20, 2011 Mathematics Subject Classification: 05A15, 11A15

Abstract

A non-empty family S of subsets of a finite set A has the odd (respectively, even) intersection property if there exists non-empty $B \subseteq A$ with $|B \cap S|$ odd (respectively, even) for each $S \in S$. In characterizing sets of integers that are quadratic nonresidues modulo infinitely many primes, Wright asked for the number of such S, as a function of |A|. We give explicit formulae.

1 Introduction

Let A be a finite non-empty set, let $\mathcal{P}(A)$ denote its powerset, and let $\mathcal{S} \subseteq \mathcal{P}(A)$ be a non-empty collection of subsets of A. (We allow $\emptyset \in \mathcal{S}$, but not $\mathcal{S} = \emptyset$.) We say that \mathcal{S} has the even intersection property (EIP) with respect to A if there exists a non-empty set $B \subseteq A$ such that $|B \cap S|$ is even for each $S \in \mathcal{S}$. (The set B is required to be non-empty to avoid triviality.) Similarly, $\mathcal{S} \subseteq \mathcal{P}(A)$ has the odd intersection property (OIP) with respect to A if there exists a set $B \subseteq A$ (necessarily non-empty) with $|B \cap S|$ odd for each $S \in \mathcal{S}$. If |A| = n, let d(n), respectively e(n), be the number of $\mathcal{S} \subseteq \mathcal{P}(A)$ with the OIP, respectively the EIP. We shall obtain formulae for d(n) and e(n).

It is generally enough to consider these properties when $A = \bigcup S$. Indeed, in the odd case, if S has the OIP with respect to some set A (with appropriate $B \subseteq A$, say) then it has the OIP with respect to $\bigcup S$, since $B' = B \cap \bigcup S$ still has odd intersection with each $S \in S$ (in particular, B' is not empty). Thus in the odd case we may take $A = \bigcup S$ without loss of generality, and may simply speak of S having the OIP (without specifying A).

This observation does not hold in the even case, since $(B \cap \bigcup S)$ may be empty. However if $A \neq \bigcup S$ then S has the EIP trivially, since if $x \in A \setminus \bigcup S$ then $B = \{x\}$ has empty intersection with each $S \in S$. The OIP was introduced by Wright [9], [10] in the following context. If $T \subseteq \mathbb{N}$ is finite and non-empty, there are infinitely many primes p such that every element of T is a quadratic residue mod p [9, Theorem 2.3]. Consider the corresponding statement for quadratic nonresidues:

(*) Every element in T is a quadratic nonresidue mod p, for infinitely many primes p.

Wright [9, Lemma 2.5] gave a combinatorial characterization of the sets T satisfying (*). Namely, for each t in T let S_t be the set of primes dividing the square-free part of t, and let $S_T = \{S_t \mid t \in T\}$. Then (*) holds for T if and only if S_T has the OIP. Recently Hu [6] generalized some of these results to dth powers in the ring $\mathbb{F}_q[t]$.

The potential S with the OIP or EIP are drawn from $\mathcal{P}(\mathcal{P}(A))$, so there are 2^{2^n} sets to consider and exhaustive searching rapidly becomes impossible. Wright [11] found d(n) for $n \leq 3$, and asked for a general formula.

To state our result, recall [4] that the number of d-dimensional subspaces of an mdimensional \mathbb{F}_q -vector space is given by the *q*-binomial coefficient

$$\binom{m}{d}_{q} = \prod_{j=1}^{d} \frac{q^{m-j+1}-1}{q^{j}-1}, \qquad 0 \le d \le m.$$
(1)

(This expression is always an integer.) We show the following.

Theorem 1.1.

$$d(n) = \sum_{i=0}^{n-1} \left[(-1)^{n-i-1} \left(2^{2^i} - 1 \right) \binom{n}{i}_2 \prod_{j=1}^{n-i} (2^j - 1) \right], \tag{2}$$

$$e(n) = 1 + 2\sum_{i=0}^{n-1} \left[(-1)^{n-i-1} \left(2^{2^i-1} - 1 \right) \binom{n}{i}_2 2^{\binom{n-i}{2}} \right].$$
(3)

The exponent $\binom{n-i}{2}$ in (3) is a regular (not q) binomial coefficient. The sum in (3) can be interpreted as the number of S with the EIP with $\emptyset \notin S$, since except for $S = \{\emptyset\}$, S has the EIP if and only if $S \cup \{\emptyset\}$ does.

The symmetry between (2) and (3) becomes more apparent on writing $2^{\binom{n-i}{2}} = \prod_{j=1}^{n-i-1} 2^j$. If we let $\delta = 1$ in the EIP case and $\delta = 0$ in the OIP case we obtain

$$d(n), \ e(n) = \delta + \sum_{i=0}^{n-1} \left[(-1)^{n-i-1} \left(2^{2^i} - 1 - \delta \right) \binom{n}{i}_2 \prod_{j=1}^{n-i-\delta} \left(2^j - 1 + \delta \right) \right].$$
(4)

To prove Theorem 1.1 we identify $\mathcal{P}(A)$ with the vector space $V = \mathbb{F}_2^n$. Equation (2) is then proved in §2 using linear algebra to establish a recurrence relation satisfied by d(n). Equation (3) is derived in §3 by a simple counting argument. Except for some notation the two halves of the proof are independent.

The quantities d(n) and e(n) grow roughly as $2^{(2^{n-1}+n)}$. The first few values are:

n	1	2	3	4	5	6
d(n)	1	6	63	2880	1942305	270460574370
e(n)	1	7	71	3071	1966207	270499994623

and $e(10) > d(10) > 10^{150}$.

2 The Odd Intersection Property

In this section we prove that d(n) satisfies the following recurrence relation, for $n \ge 2$:

$$d(n) = (2^{n} - 1) \left(2^{2^{n-1}} - 1 - d(n-1) \right).$$
(5)

The formula (2) for d(n) in Theorem 1.1 follows by solving equation (5), with initial condition d(1) = 1. The general solution of a first order linear recurrence relation may be found in [3, §1.2] or [7, §2.2].

In what follows, the disjoint union of sets S_1, \ldots, S_n is denoted by $\bigsqcup_{i=1}^n S_i$. To avoid repeating wordy counting arguments, we formalize a trivial observation. If X is a set, $\mathcal{T} \subseteq \mathcal{P}(X)$ and Q is a boolean valued function (predicate) on $\mathcal{P}(X)$, then let $\mathcal{T}^Q = \{S \in \mathcal{T} \mid Q(S) \text{ holds}\}.$

Lemma 2.1. Let X be a non-empty finite set, let $\mathfrak{X} = \{X_1, \ldots, X_M\} \subseteq \mathfrak{P}(X)$, and suppose $|\mathfrak{P}(X_j)^Q| = N$ is independent of j. For $i \geq 0$ define "level sets"

$$\mathcal{Z}_i = \{ S \in \mathcal{P}(X)^Q \mid S \subseteq X_j \text{ for exactly } i \text{ of the } X_j \}.$$
(6)

Then

$$\left| \{ S \mid S \subseteq X_j \text{ for some } j, \text{ and } Q(S) \text{ holds} \} \right| = MN - \sum_{i \ge 2} (i-1) \cdot |\mathcal{Z}_i|.$$
(7)

Proof Clearly $|\{S \mid S \subseteq X_j \text{ for some } j, \text{ and } Q(S) \text{ holds}\}|$ is just $|\bigcup_{X_j \in \mathfrak{X}} \mathfrak{P}(X_j)^Q| = \sum_{i \ge 1} |\mathcal{Z}_i|$, while $MN = |\bigsqcup_{X_j \in \mathfrak{X}} \mathfrak{P}(X_j)^Q| = \sum_{i \ge 1} i |\mathcal{Z}_i|$.

Suppose V is a finite dimensional \mathbb{F}_2 -vector space and S is a subset of V. The subspace of V generated by S is denoted by $\langle S \rangle$. If $v \in V$, then the set $\{v+s \mid s \in S\}$ is denoted by v+S. A codimension one subspace¹ of V is called a *maximal* subspace. The complement $V \setminus W$ of a maximal subspace W of V is called a V-block. A non-empty subset of a V-block is called a V-subblock.

We define three families of subsets of V. Let $\mathcal{M}(V)$ be the collection of all maximal subspaces of V, $\mathcal{B}(V)$ the collection of all V-blocks, and $\mathcal{C}(V)$ the collection of all Vsubblocks:

$$\mathcal{C}(V) = \bigcup_{B \in \mathcal{B}(V)} \mathcal{P}(B) \setminus \{\emptyset\}.$$
(8)

¹The zero space has no maximal subspaces.

THE ELECTRONIC JOURNAL OF COMBINATORICS 18 (2011), #P185

In Corollary 2.4 we show that $\mathcal{B}(V)$ forms a symmetric block design, justifying the terminology.

The motivation for introducing these sets is that $|\mathcal{C}(V)| = d(n)$, where $n = \dim V$ (Lemma 2.5). To obtain the recurrence relation (5) we therefore need to consider V-blocks, and also W-blocks for $W \in \mathcal{M}(V)$ (sets of the form $W \setminus X$ where X has codimension one in W). We have the following simple properties.

Lemma 2.2. Let V be a finite dimensional \mathbb{F}_2 -vector space and suppose $U, W \in \mathcal{M}(V)$.

(a) If $U \neq W$ then $U \cap W \in \mathcal{M}(W)$.

- (b) We have $\mathcal{C}(W) \subseteq \mathcal{C}(V)$.
- (c) Suppose S is a W or V-subblock. Then $S \subseteq U$ if and only if S is a U-subblock.

Proof

(a) U + W is all of V, so $U/(U \cap W) \simeq (U + W)/W = V/W$ is 1-dimensional.

(b) Suppose $S \in \mathfrak{C}(W)$. Say $\emptyset \neq S \subseteq B \subseteq W$ with $W \setminus B \in \mathfrak{M}(W)$. Let $x \in V \setminus W$ and $X = \langle x \rangle \oplus (W \setminus B)$. Then $X \in \mathfrak{M}(V)$ and $\emptyset \neq S \subseteq V \setminus X$, so $S \in \mathfrak{C}(V)$.

(c) By (b) we may assume $S \in \mathcal{C}(V)$. Say $S \subseteq V \setminus X$ for some $X \in \mathcal{M}(V)$. Assume $S \subseteq U$. Then $U \cap X \in \mathcal{M}(U)$ by (a), and $S \subseteq U \setminus (U \cap X)$, so $S \in \mathcal{C}(U)$. The other implication is trivial.

From now on, assume that the set A is fixed, with $|A| = n \ge 1$ and let $V = \mathbb{F}_2^n$, viewed as a *n*-dimensional \mathbb{F}_2 -vector space. Fix the standard basis $\{e_i\}$ of V, where $e_i = (0, 0, \dots, 1, \dots, 0)$ has 1 in the *i*th coordinate and zeros elsewhere. If $x = \sum x_i e_i$ and $y = \sum y_i e_i$ define $x \cdot y = \sum x_i y_i$, viewed as an element in \mathbb{F}_2 . (Note that the definition of $x \cdot y$ depends on the basis $\{e_i\}$ chosen.) If $S \subseteq V$ is non-empty, let

$$S^{\circ} = \{ v \in V \mid s \cdot v = 0 \text{ for all } s \in S \},\$$

$$S' = \{ v \in V \mid s \cdot v = 1 \text{ for all } s \in S \},\$$

and write x° for $\{x\}^{\circ}$ and x' for $\{x\}'$.

Lemma 2.3.

- (a) The maps $x \mapsto x'$, $x \mapsto x^{\circ}$ give bijections $V \setminus \{0\} \to \mathcal{B}(V)$ and $V \setminus \{0\} \to \mathcal{M}(V)$ respectively.
- (b) There are $2^n 1$ V-blocks each with cardinality 2^{n-1} , and the same is true for maximal subspaces.
- (c) Assume $S \in \mathcal{C}(V)$ or $S \in \mathcal{C}(W)$ for some $W \in \mathcal{M}(V)$, and let $k = n \dim \langle S \rangle$. Then there are exactly 2^k V-blocks containing S, and exactly $2^k - 1$ maximal subspaces U of V containing S. Moreover, in each such U we have $S \in \mathcal{C}(U)$.

Proof Let $S = \{s_1, \ldots, s_m\}$, let $s_i = \sum a_{i,j}e_j$, and form the $m \times n$ matrix $A = (a_{i,j})$ of rank n - k. Then $S^\circ = \ker A$, so dim $S^\circ = k$. In particular, since $U \subseteq (U^\circ)^\circ$ holds for any subspace U, taking S = U we have dim $U = \dim(U^\circ)^\circ$, so $U = (U^\circ)^\circ$. Thus the maps $\{0, x\} \to x^\circ$ (for $x \neq 0$) and $W \to W^\circ$ give mutually inverse maps between the collection of all 1-dimensional and all maximal subspaces, proving (a) and (b).

Since $\mathcal{C}(W) \subseteq \mathcal{C}(V)$, in (c) we may assume S is a V-subblock. By (a), $S' = \{x \mid S \subseteq x'\}$ is (in bijection with) the set of V-blocks containing S, and hence is non-empty. Furthermore, S' is the set of solutions of $Ax = \underline{1}$ (the vector of all 1's), so $|S'| = |S^{\circ}| = 2^k$.

Finally, let $U \in \mathcal{M}(V)$. By Lemma 2.2(c) $S \subseteq U$ if and only if $S \in \mathcal{C}(U)$. So the number of $U \in \mathcal{M}(V)$ with $S \in \mathcal{C}(U)$ is just the number of maximal subspaces of V containing S. Such subspaces are in bijection with the maximal subspaces of $V/\langle S \rangle$, a k-dimensional space, containing $2^k - 1$ maximal subspaces by (b).

Note that (c) above implies that if we know that S is contained in exactly 2^k V-blocks or $2^k - 1$ maximal subspaces, we can deduce that $\dim \langle S \rangle = k$. We observe in passing that $S \subseteq T^{\circ}$ if and only if $T \subseteq S^{\circ}$, so the $(-)^{\circ}$ -operation forms a Galois connection (with itself) [8, Ch. 6].

The next result is not needed in our proof, but motivates the terminology. See [5, Ch. 14] or [2, Ch. 1.5] for definitions.

Corollary 2.4. For $n \ge 2$, the set $\mathcal{B}(V)$ forms a symmetric block design on the set $V \setminus \{0\}$, with $(v, k, \lambda) = (2^n - 1, 2^{n-1}, 2^{n-2})$.

Proof This follows on putting $S = \{x\}$ and $S = \{x, y\}$ with $x \neq y, x, y \neq 0$ in Lemma 2.3(c), since S' is clearly non-empty in each case.

We apply these results to the OIP. We identify $\mathcal{P}(A)$ with V by mapping a subset $T \subseteq A = \{a_1, \ldots, a_n\}$ to $v_T = \sum_{i=1}^n \chi_T(a_i)e_i$, where $\chi_T: A \to \mathbb{F}_2$ is the characteristic function of T. A collection S of subsets of A corresponds to a subset $S \subseteq V$. Those collections S with the OIP correspond to V-subblocks:

Lemma 2.5. Under the identification $\mathcal{P}(A) \simeq V$ a collection of subsets of A has the OIP if and only if it corresponds to an element of $\mathcal{C}(V)$. Thus

$$d(n) = |\mathcal{C}(V)|. \tag{9}$$

Proof If S and T are subsets of A, then $v_S \cdot v_T \equiv |S \cap T| \pmod{2}$. Thus for S a non-empty subset of V, S has the OIP \iff there exists $x \in V$ with $s \cdot x = 1$ for all $s \in S$ $\iff S \subseteq x'$ for some $x \in V \setminus \{0\} \iff S \subseteq B$ for some $B \in \mathcal{B}(V)$.

The identification $T \mapsto v_T$ depends on the basis $\{e_i\}$, as do the individual sets x'. However the collection $\{x' \mid x \neq 0\} = \mathcal{B}(V)$ is basis independent, as is equation (9). Thus for example $d(n-1) = |\mathcal{C}(W)|$ for any $W \in \mathcal{M}(V)$.

We now prove the recursion relation (5) for d(n). *Proof* (Of (2)) For $k \ge 1$ define

$$\mathcal{V}_k = \{ S \in \mathcal{P}(V) \mid S \neq \emptyset \text{ is a subset of exactly } 2^k V \text{-blocks} \}.$$
(10)

By Lemma 2.3(c)

 $\mathcal{V}_k = \{ S \in \mathcal{P}(V) \mid S \text{ is a } W \text{-subblock for exactly } 2^k - 1 \ W \in \mathcal{M}(V) \}.$ (11)

We apply Lemma 2.1 twice, with X = V. First take $\mathfrak{X} = \mathfrak{B}(V)$, and let Q(S) be the property $S \neq \emptyset$. By Lemma 2.3 the set \mathfrak{Z}_i is empty except if $i = 2^k$, and $\mathfrak{Z}_{2^k} = \mathcal{V}_k$. Applying equation (9) gives

$$d(n) = (2^n - 1)(2^{2^{n-1}} - 1) - \sum_{k \ge 1} (2^k - 1)|\mathcal{V}_k|.$$
(12)

Next take $\mathfrak{X} = \mathfrak{M}(V)$, and let Q(S) hold if and only if $S \in \mathfrak{C}(W)$ for some $W \in \mathfrak{M}(V)$. By Lemma 2.2(c) if Q(S) holds and $S \subseteq X_j \in \mathfrak{X}$ then $S \in \mathfrak{C}(X_j)$, so $\mathfrak{P}(X_j)^Q = \mathfrak{C}(X_j)$, and hence $|\mathfrak{P}(X_j)^Q| = d(n-1)$. Furthermore by Lemma 2.3 the set \mathfrak{Z}_i is empty unless $i = 2^k - 1$ for some $k \ge 1$, and $\mathfrak{Z}_{2^k-1} = \mathfrak{V}_k$. This gives

$$\sum_{k \ge 1} (2^k - 1) |\mathcal{V}_k| = (2^n - 1)d(n - 1).$$
(13)

Equation (5) follows from (12) and (13).

3 The Even Intersection Property

In this section we establish equation (3) for e(n). Let g(d) be the number of subsets of a d-dimensional \mathbb{F}_2 -vector space U that generate U. Under the identification $\mathcal{P}(A) \simeq V$,

$$S \subseteq V$$
 has the EIP $\iff \emptyset \neq S \subseteq W$ for some $W \in \mathcal{M}(V)$. (14)

Thus a non-empty set $S \subseteq V$ does not have the EIP if and only if it generates V, so $g(n) = 2^{2^n} - 1 - e(n)$ for $n \ge 1$. Since every subset $S \subseteq V$ gives rise to a subspace $U = \langle S \rangle$ in which (of course) S generates U, summing over all generating subsets of all subspaces of V gives

$$\sum_{d=0}^{n} \binom{n}{d}_{2} g(d) = 2^{2^{n}}.$$
(15)

We solve for g(n). Taking n = 1, 2, ..., m successively in equation (15) and subtracting the d = 0 terms gives rise to the linear system

$$B\begin{pmatrix} g(1)\\g(2)\\\vdots\\g(m) \end{pmatrix} = \begin{pmatrix} 2^{2^{1}}-2\\2^{2^{2}}-2\\\vdots\\2^{2^{m}}-2 \end{pmatrix},$$
(16)

where B is the $m \times m$ matrix in the next lemma.

Lemma 3.1. Let *B* be the lower triangular $m \times m$ matrix with (i, j) entry $\binom{i}{j}_2$ if $i \ge j$, and remaining entries 0. Then

$$(B^{-1})_{jk} = \begin{cases} (-1)^{j-k} 2^{\binom{j-k}{2}} \binom{j}{k}_2, & \text{if } j \ge k\\ 0, & \text{otherwise.} \end{cases}$$
(17)

Proof Let C be the $m \times m$ matrix with entries given by the right hand side of (17). Clearly BC is lower triangular, with 1's on the diagonal, so it remains to show $(BC)_{ik} = 0$ for i > k. This follows from Cauchy's q-binomial Theorem [1, equation 10.0.9]:

$$\sum_{h=0}^{N} q^{\binom{h}{2}} \binom{N}{h}_{q} t^{h} = \prod_{h=0}^{N-1} (1+q^{h}t),$$
(18)

and the identity $\binom{i}{j}_2\binom{j}{k}_2 = \binom{i}{k}_2\binom{i-k}{j-k}_2$. We have

$$(BC)_{ik} = \sum_{j=k}^{i} {\binom{i}{j}_2 \binom{j}{k}_2 (-1)^{j-k} 2^{\binom{j-k}{2}}} = {\binom{i}{k}_2} \sum_{h=0}^{i-k} 2^{\binom{h}{2}} {\binom{i-k}{h}_2 (-1)^h} = 0, \quad (19)$$

where the last step follows from writing h = j - k and applying (18) with t = -1 and q = 2.

Applying Lemma 3.1 to equation (16) gives (3), and completes the proof in the even case.

References

- G. E. Andrews, R. Askey, R. Roy, Special Functions, Cambridge University Press, 2000.
- [2] C. Colbourn, J. Dinitz (Eds.), The CRC Handbook of Combinatorial Designs, CRC Press, 1996.
- [3] S. Elaydi, An Introduction to Difference Equations, third ed., Springer, 2005.
- [4] J. Goldman, G–C. Rota, The number of subspaces of a vector space, Recent Progress in Combinatorics, Ed. W. T. Tutte, Academic Press (1969) 75–83.
- [5] R. Graham, M. Grötschel, L. Lovász (Eds.), Handbook of Combinatorics, Vol. 1, MIT Press, 1995.
- [6] S. Hu, A note on the *d*th power residue symbol of $\mathbb{F}_q[t]$, J. Number Theory 128 (2008) 2655–2662.
- [7] R. Mickens, Difference Equations, Theory and Applications, second ed., Chapman & Hall, 1991.
- [8] S. Roman, Field Theory, second ed., Springer, 2006.

- S. Wright, Patterns of quadratic residues and nonresidues for infinitely many primes, J. Number Theory 123 (2007) 120–132.
- [10] S. Wright, Quadratic residues and the combinatorics of sign multiplication, J. Number Theory 128 (2008) 918–925.
- [11] S. Wright, Some Enumerative Combinatorics Arising From a Problem on Quadratic Nonresidues, Australasian J. Combinatorics, 44 (2009) 301–315.