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Abstract

We use a randomised embedding method to prove that for all α > 0
any sufficiently large oriented graph G with minimum in-degree and out-
degree δ+(G), δ−(G) ≥ (3/8 + α)|G| contains every possible orientation of a Hamil-
ton cycle. This confirms a conjecture of Häggkvist and Thomason.

1 Introduction

An oriented graph is a loop-free simple graph where each edge is given an orientation. A
directed graph (digraph) is an oriented graph where we allow one edge in each direction
between each pair of vertices, that is, we allow cycles of length 2. The minimum semi-
degree δ0(G) of an oriented graph G (or a digraph) is the minimum of its minimum
outdegree δ+(G) and its minimum indegree δ−(G).

A fundamental result of Dirac states that a minimum degree of |G|/2 guarantees a
Hamilton cycle in any undirected graph G on at least 3 vertices. Following this result
several weaker conditions guaranteeing a Hamilton cycle have been found. One of the
famous of these is Ore’s theorem, which states that if d(x) + d(y) ≥ |G| ≥ 3 for all
x 6= y ∈ V (G) with xy 6∈ E(G) then G contains a Hamilton cycle. In some sense the
weakest possible condition of this type is Chvátal’s theorem.1 This gives a condition on
the (ordered) degree sequence of a graph which forces a Hamilton cycle, such that for any
(graphic) degree sequence not satisfying Chvátal’s conditions there exists a graph with a
degree sequence dominated by that sequence not containing a Hamilton cycle.

There is an analogue of Dirac’s theorem for digraphs due to Ghouila-Houri [5] which
states that every digraph D with minimum semi-degree at least |D|/2 contains a directed
Hamilton cycle. As with Dirac’s theorem, taking two disjoint cliques of as equal size as
possible demonstrates that this minimum degree condition can not be improved.

1Whilst it is widely regarded as such, it should be noted that Chvátal’s theorem does not quite imply
Ore’s theorem.
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Thomassen [23] asked the natural question of whether there exists an analogous result
for oriented graphs, where one expects to be able to obtain a weaker degree condition than
the bounds needed for digraphs. Häggkvist [7] constructed an example in 1993 showing
that a minimum semi-degree of (3n − 4)/8 was necessary and conjectured that this was
also sufficient. With Thomason [9] he showed in 1997 that for any α > 0 every sufficiently
large oriented graph G with minimum semi-degree at least (5/12 + α)|G| has a directed
Hamilton cycle. The author, together with Kühn and Osthus [14], finally confirmed in
2008 that, up to a linear error term, 3|G|/8 is indeed the correct bound. Following this
Keevash, Kühn and Osthus improved this to an exact result.

Theorem 1 (Keevash, Kühn and Osthus [11]). There exists n0 such that every oriented
graph G on n ≥ n0 vertices with δ0(G) ≥ (3n− 4)/8 contains a directed Hamilton cycle.

Christofides, Keevash, Kühn and Osthus [3] have also since found an efficient algorith-
mic proof of (a generalisation of) this result.

Nash-Williams [20] conjectured a digraph analogue of Chvátal’s theorem. This has
recently been approximately confirmed by Kühn, Osthus and Treglown [18]. There also
now exists a semi-exact degree condition result due to Christofides, Keevash, Kühn and
Osthus [4].

It is natural to ask whether these bounds only give us directed Hamilton cycles or
whether they give every possible orientation of a Hamilton cycle. Indeed this question
was answered for digraphs, asymptotically at least, by Häggkvist and Thomason in 1995.

Theorem 2 (Häggkvist and Thomason [8]). There exists n0 such that every digraph D
on n ≥ n0 vertices with minimum semi-degree δ0(D) ≥ n/2 + n5/6 contains every orien-
tation of a Hamilton cycle.

The question was asked originally for oriented graphs by Häggkvist and Thomason [9]
who proved that for all α > 0 and all sufficiently large oriented graphs G a minimum semi-
degree of (5/12 + α)|G| suffices to give any orientation of a Hamilton cycle. They conjec-
tured that (3/8 + α)|G| suffices, the same bound as for the directed Hamilton cycle up to
the error term α|G|. Whilst not asked explicitly before Häggkvist and Thomason’s paper,
there is some previous work of Thomason and Grant relevant to this area. Grant [6] proved
in 1980 that any digraph D with minimum semi-degree δ0(D) ≥ 2|D|/3 +

√
|D| log |D|

contains an anti-directed Hamilton cycle, provided that n is even. (An anti-directed cycle
is one in which the edge orientations alternate.) Thomason [22] showed in 1986 that every
sufficiently large tournament contains every possible orientation of a Hamilton cycle (ex-
cept possibly the directed Hamilton cycle if the tournament is not strong). The following
theorem confirms the conjecture of Häggkvist and Thomason.

Theorem 3. For every α > 0 there exists an integer n0 = n0(α) such that every oriented
graph G on n ≥ n0 vertices with minimum semi-degree δ0(G) ≥ (3/8+α)n contains every
orientation of a Hamilton cycle.
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Figure 1: The oriented graph constructed in Proposition 4

1.1 Robust Expansion

The property underlying the proofs of all the recent Hamilton cycle results so far stated is
robust expansion. This is a notion which was introduced by Kühn, Osthus and Treglown
in [18] and has proved to be the correct notion of expansion in a digraph when dealing
with this kind of question or when using the Diregularity lemma. Informally speaking, a
digraph G is a robust outexpander if all subsets of V (G) have outneighbourhoods larger
than themselves unless they are very large or very small and, moreover, this still holds
after the removal of a small number of edges.

Having a minimum semi-degree δ0(G) ≥ (3/8 + α)|G| for some α > 0, satisfying an
approximate Ore-type condition or satisfying an approximate Chvátal condition imply
robust outexpansion (see Lemma 11 in [18]). Hence an extension of Theorem 3 to robust
outexpanders would imply an approximate Ore-type result and a Chvátal-type approxi-
mate result for arbitrary orientations of Hamilton cycles. The author believes it is likely
that the argument given in this paper could be straight-forwardly extended to prove this.

1.2 Extremal Example

Häggkvist [7] constructed an example in 1993 giving a graph on n = 8k− 1 vertices with
minimum semi-degree (3n − 5)/8 containing no Hamilton cycle and Keevash, Kühn and
Osthus extended this to all n. This means that Theorem 1 is best possible and that
Theorem 3 is best possible up to the linear error term. Interestingly, this example can
be improved upon when considering arbitrary orientations. Hence the additive constant
in Theorem 1 is not the correct bound when seeking any orientation of a Hamilton cycle,
and it is an open question as to what the correct additional term should be.
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Proposition 4. There are infinitely many oriented graphs G with minimum semi-degree
exactly (3|G| − 4)/8 which do not contain an anti-directed Hamilton cycle.

Proof. Let n := 8m + 4 for some integer m ∈ N. Let G be the oriented graph obtained
from the disjoint union of two regular tournaments A and C on 2m+1 vertices and sets B
and D of 2m + 1 vertices by adding all edges from A to B, all edges from B to C, all
edges from C to D and all edges from D to A. Finally, between B and D we add edges
to obtain a bipartite tournament which is as regular as possible, i.e. the indegree and
the outdegree of every vertex differs by at most 1. So in particular every vertex in B
sends at least m edges to D. It is easy to check that the minimum semi-degree of G is
3m + 1 = (3n− 4)/8, as required.

Let us try to construct an anti-directed Hamilton cycle in G and let us start in B with
an edge going forwards. This edge can go either to C or to D. (Starting with an edge
oriented backwards produces an identical argument and result.) The next edge must go
backwards. It can go from C to either B or C. It can go from D to either B or C. So after
two steps we can be in either B or C. Our next edge must go forwards. If we are in B
our possible locations after the next two steps are B and C as before. From C we can go
forwards either to C or to D. Both options repeat situations we have already met. In no
case do we have a means to reach A whilst respecting the orientation of our anti-directed
Hamilton cycle. Hence the longest anti-directed cycle in G has length at most 3n/4 and
we have no anti-directed Hamilton cycle as claimed.

1.3 Pancyclicity

Recently the author, together with Kühn and Osthus, [13] showed that the minimum
semi-degree condition in Theorem 1 gives not only a Hamilton cycle but a cycle of every
possible length. It is natural to ask whether this can be extended to give all orientations of
all cycles of all possible lengths. A simple probabilistic argument implies that Theorem 3
gives arbitrary orientations of any cycle of linear length (i.e. for all α > 0, η > 0 every
sufficiently large oriented graph G with δ0(G) ≥ (3/8 + α)|G| contains every orientation
of any cycle of length at least η|G|). It remains an open question as to whether the
error term can be removed. The results on short cycles necessary to prove the exact
pancyclicity result in [13] can (with the addition of an error term in the minimum semi-
degree condition) also be extended to arbitrary orientations of cycles. In particular, the
following theorem can be obtained.

Theorem 5. Let α > 0. Then there exists n0 = n0(α) such that if G is an oriented graph
on n ≥ n0 vertices with minimum semi-degree δ0(G) ≥ (3/8+α)n then G contains a cycle
of every possible orientation and of every possible length.

A proof of Kelly, Kühn and Osthus of this result and extensions of the stronger results
on some short cycles can be found in [13], along with a number of related open problems.
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1.4 Overview of the Proof

The proof of Theorem 3 splits into two parts, both relying on the expansion properties
that our minimum semi-degree condition implies. The cases are distinguished by the
similarity of the Hamilton cycle C we are trying to embed to the standard orientation
of a Hamilton cycle. It turns out that the correct measure, at least for this problem, of
whether a cycle is close to a directed cycle is the number of pairs of consecutive edges
with differeLnt orientations. Given an oriented graph C we call the subgraph induced
by three vertices x, y, z ∈ V (C) a neutral pair if xy, zy ∈ E(C). Given an arbitrarily
oriented cycle C on n vertices let n(C) be the number of neutral pairs in C. Write C∗

n

for the standard orientation of a cycle on n vertices. When there is no ambiguity we will
merely write C∗.

The essential idea is to split the cycle up into alternating short and long paths and
use the probabilistic method to find an approximate embedding of the long paths into a
Hamilton cycle of the reduced graph created by applying a Regularity lemma for digraphs.
We connect these paths up greedily using the short paths and then adjust the embedding
to obtain something which, after the Blow-up lemma has been applied, gives us the desired
orientation of a Hamilton cycle in our graph.

The case distinction comes in the manner in which we alter our embedding. In Sec-
tion 7 we give the argument for cycles far from C∗, where we use the neutral pairs for our
adjustments. In Section 8 we assume that we have few neutral pairs, and thus many long
sections of C containing no changes in direction, and use these to adjust our embedding.

The number of exceptional vertices that the Diregularity lemma produces when applied
directly is too great for the method used here and hence some technical difficulties are
introduced. So we control the number of exceptional vertices by randomly splitting our
oriented graph G. In still vague, but slightly more precise terms, the Diregularity lemma
will for any ε > 0 give us a partition with the property of ε-regularity. It will also give us a
set of ‘exceptional vertices’ which are in some sense badly behaved, but tells us that these
make up at most an ε proportion of our vertices. Our method can only cope with ηn � εn
such vertices. Hence we split the vertices of our given graph G into two sets A and B
of roughly equal size (satisfying some ‘nice’ properties). We apply the Regularity lemma
to G[B], giving us at most ε|G| exceptional vertices V0. We then apply the Diregularity
lemma to G[A ∪ V0] only this time not with parameter ε but with η. This gives us at
most η|G| exceptional vertices V ′

0 . We then consider GB := G[(B \ V0) ∪ V ′
0 ], which

is ε-regular and has no exceptional vertices and GA := G − GB, which is η-regular and
has 0 � η|GA| exceptional vertices. Hence, at the cost of some technical work and having
to stitch everything back together we will be able to control the number of exceptional
vertices.

The next section contains much of the notation we use in this paper. In Section 3 we
introduce the forms of the Diregularity lemma and Blow-up lemma that we need later. In
Section 6 we prepare the oriented graph G and the cycle C for our approximate embedding
and in Section 5 prove the main tool needed to do this. Following that in Section 6 we
split into our two cases and in Section 7 (C is far from C∗) and Section 8 (C is close
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to C∗) we prove Theorem 3.

2 Notation

Given two vertices x and y of a digraph G, we write xy for the edge directed from x to y.
The order |G| of G is the number of its vertices. We write N+

G (x) for the outneighbourhood
of a vertex x and d+(x) := |N+

G (x)| for its outdegree. Similarly, we write N−
G (x) for the

inneighbourhood of x and d−(x) := |N−
G (x)| for its indegree. Given X ⊆ V (G) we denote

|N+
G (x)∩X| by d+

X(x), and define d−X(x) similarly. We write NG(x) := N+
G (x)∪N−

G (x) for
the neighbourhood of x. We use N+(x) etc. whenever this is unambiguous. We write ∆(G)
for the maximum of |N(x)| over all vertices x ∈ V (G). Given a set A of vertices of G, we
write N+

G (A) for the set of all outneighbours of vertices in A. So N+
G (A) is the union of

N+
G (a) over all a ∈ A. N−

G (A) is defined similarly. The directed subgraph of G induced
by A is denoted by G[A] and we write e(A) for the number of its edges. G − A denotes
the digraph obtained from G by deleting A and all edges incident to A.

Given two vertices x, y of a digraph G, an x-y path is a path with any orientation
which joins x to y. We call a path with the standard orientation a directed path. Given
two subsets A and B of vertices of G, an A-B edge is an edge ab where a ∈ A and b ∈ B.
We write e(A, B) for the number of all these edges. A walk in G is a sequence v1v2 . . . v`

of (not necessarily distinct) vertices, where vivi+1 or vi+1vi is an edge for all 1 ≤ i < `.
The length of a walk W is `(W ) := `−1. The walk is closed if v1 = v`. Given two vertices
x, y of G, the distance dist(x, y) from x to y is the length of the shortest directed x-y
path. The diameter of G is the maximum distance between any ordered pair of vertices.

We write [k] for the set {1, 2, . . . , k}. We write 0 < a1 � a2 � . . . � ak to mean
that we can choose the constants a1, a2, . . . , ak from right to left. More precisely, there
are increasing functions f1, f2, . . . , fk−1 such that, given ak, whenever we choose some
ai ≤ fi(ai+1), all calculations needed using these constants are valid.

3 The Diregularity lemma and the Blow-up lemma

In this section we collect all the information we need about the Diregularity lemma and
the Blow-up lemma. See [16] for a survey on the Regularity lemma and [15] for a survey
on the Blow-up lemma. We start with some more notation. The density of an undirected
bipartite graph G = (A, B) with vertex classes A and B is defined to be

dG(A, B) :=
eG(A, B)

|A||B|
.

We often write d(A, B) if this is unambiguous. Given ε > 0, we say that G is ε-regular
if for all subsets X ⊆ A and Y ⊆ B with |X| > ε|A| and |Y | > ε|B| we have that
|d(X, Y ) − d(A, B)| < ε. Given d ∈ [0, 1] we say that G is (ε, d)-super-regular if it is
ε-regular and furthermore dB(a) ≥ (d − ε)|B| for all a ∈ A and dA(b) ≥ (d − ε)|A| for

the electronic journal of combinatorics 18 (2011), #P186 6



all b ∈ B. (This is a slight variation of the standard definition of (ε, d)-super-regularity
where one requires dB(a) ≥ d|B| and dA(b) ≥ d|A|.)

The Diregularity lemma is a version of the Regularity lemma for digraphs due to Alon
and Shapira [1]. Its proof is quite similar to the undirected version. We will use the
degree form of the Diregularity lemma which can be easily derived (see e.g. [24]) from the
standard version, in exactly the same manner as the undirected degree form.

Lemma 6 (Degree form of the Diregularity lemma). For every ε ∈ (0, 1) and every
integer M ′ there are integers M and n0 such that if G is a digraph on n ≥ n0 vertices and
d ∈ [0, 1] is any real number, then there is a partition of the vertices of G into V0, V1, . . . , Vk

and a spanning subdigraph G′ of G such that the following holds:

• M ′ ≤ k ≤ M ,

• |V0| ≤ εn,

• |V1| = · · · = |Vk| =: m,

• d+
G′(x) > d+

G(x)− (d + ε)n for all vertices x ∈ G,

• d−G′(x) > d−G(x)− (d + ε)n for all vertices x ∈ G,

• for every ordered pair ViVj with 1 ≤ i, j ≤ k and i 6= j the bipartite graph (Vi, Vj)G′

whose vertex classes are Vi and Vj and whose edge set consists of all the Vi-Vj edges
in G′ is ε-regular and has density either 0 or at least d,

• for all 1 ≤ i ≤ k the digraph G′[Vi] is empty.

V1, . . . , Vk are called clusters, V0 is called the exceptional set and the vertices in V0

are called exceptional vertices. Note that in G′ all pairs of clusters are ε-regular in both
directions (but possibly with different densities). We call the spanning digraph G′ ⊆ G
given by the Diregularity lemma the pure digraph. Given clusters V1, . . . , Vk and the pure
digraph G′, the reduced digraph R′ is the digraph whose vertices are V1, . . . , Vk and in which
ViVj is an edge if and only if G′ contains a Vi-Vj edge. Note that the latter holds if and
only if (Vi, Vj)G′ is ε-regular and has density at least d. It turns out that R′ inherits many
properties of G, a fact that is crucial in our proof. However, R′ is not necessarily oriented
even if the original digraph G is. The following straightforward lemma, taken from a
paper of Kelly, Kühn and Osthus [14], shows that by discarding edges with appropriate
probabilities one can go over to a reduced oriented graph R ⊆ R′ which still inherits many
of the properties of G.

Lemma 7. For every ε ∈ (0, 1) there exist integers M ′ = M ′(ε) and n0 = n0(ε) such
that the following holds. Let d ∈ [0, 1], let G be an oriented graph of order at least n0 and
let R′ be the reduced digraph and G′ the pure digraph obtained by applying the Diregularity
lemma to G with parameters ε, d and M ′. Then R′ has a spanning oriented subgraph R
with
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(a) δ+(R) ≥ (δ+(G)/|G| − (3ε + d))|R|,

(b) δ−(R) ≥ (δ−(G)/|G| − (3ε + d))|R|,

(c) δ0(R) ≥ (δ0(G)/|G| − (6ε + 4d))|R|.

The oriented graph R given by Lemma 7 is called the reduced oriented graph. The
spanning oriented subgraph G∗ of the pure digraph G′ obtained by deleting all the Vi-Vj

edges whenever ViVj ∈ E(R′) \E(R) is called the pure oriented graph. Given an oriented
subgraph S ⊆ R, the oriented subgraph of G∗ corresponding to S is the oriented subgraph
obtained from G∗ by deleting all those vertices that lie in clusters not belonging to S as
well as deleting all the Vi-Vj edges for all pairs Vi, Vj with ViVj /∈ E(S).

At various stages in our proof we will need some pairs of clusters to be not just regular
but super-regular. The following well-known result tells us that we can indeed do this
whilst maintaining the regularity of all other pairs.

Lemma 8. Let ε � d, 1/∆ and let R be a reduced oriented graph of G as given by
Lemmas 6 and 7. Let S be an oriented subgraph of R of maximum degree ∆. Then we
can move exactly 2∆ε|Vi| vertices from each cluster into V0 such that each pair (Vi, Vj)
corresponding to an edge of S becomes (2ε, d/2)-super-regular and every pair corresponding
to an edge of R \ S becomes 2ε-regular with density at least d− ε.

In our proof of Theorem 3 we will also need a consequence of the Blow-up lemma of
Komlós, Sárközy and Szemerédi [17]. Roughly speaking, it says that an r-partite graph
formed by r clusters such that all the pairs of these clusters are (ε, d)-super-regular behaves
like a complete r-partite graph with respect to containing graphs of bounded maximum
degree as subgraphs.

Lemma 9 (Blow-up Lemma, Komlós, Sárközy and Szemerédi [17]). Given a graph F on
[k] and positive integers d and ∆ there exists a positive real ε0 = ε0(d, ∆, k) such that the
following holds for all positive numbers `1, . . . , `k and all 0 < ε ≤ ε0. Let F ′ be the graph
obtained from F by replacing each vertex i ∈ F with a set Vi of `i new vertices and joining
all vertices in Vi to all vertices in Vj whenever ij is an edge of F . Let G′ be a spanning
subgraph of F ′ such that for every edge ij ∈ F the graph (Vi, Vj)G′ is (ε, d)-super-regular.
Then G′ contains a copy of every subgraph H of F ′ with maximum degree ∆(H) ≤ ∆.
Moreover, this copy of H in G′ maps the vertices of H to the same sets Vi as the copy of
H in F ′, i.e. if h ∈ V (H) is mapped to Vi by the copy of H in F ′, then it is also mapped
to Vi by the copy of H in G′.

The tool we shall actually use is the following consequence of the Blow-up lemma.
The proof of it uses similar ideas to those in recent work of Christofides, Keevash, Kühn
and Osthus [3].

Lemma 10. Suppose that all the following hold:

• 0 < 1/m � ε � d � 1.
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• U1, . . . , Uk are pairwise disjoint sets of size m, for some k ≥ 6, and G is a digraph
on U1∪. . .∪Uk such that each (Ui, Ui+1)G is (ε, d)-super-regular (where by convention
we consider Uk+1 to be U1);

• A1, . . . , Ak are pairwise disjoint sets of vertices with (1 − ε)m ≤ |Ai| =: mi ≤ m
and H is a digraph on A1 ∪ . . . ∪ Ak which is a vertex-disjoint union of paths of
length at least 3, where every edge going out of Ai ends in Ai+1 for all i;

• S1 ⊆ U1, . . . , Sk ⊆ Uk are sets of size |Si| = mi;

• For each path P of H we are given vertices xP , yP ∈ V (G) such that if the initial
vertex aP of P belongs to Ai then xP ∈ Si and if the final vertex bP of P belongs
to Aj then yP ∈ Sj, and the vertices xP , yP are distinct as P ranges over the paths
of H.

Then there is an embedding of H into GS := G[
⋃

Si] in which every path P of H is
mapped to a path that starts at xP and ends at yP .

The following immediate consequence of the Blow-up lemma is needed in the proof of
Lemma 10.

Lemma 11. For every 0 < d < 1 and p ≥ 4 there exists ε0 > 0 such that the following
holds for 0 < ε < ε0. Let U1, . . . , Up be pairwise disjoint sets of size m, for some m, and
suppose G is a graph on U1∪ . . .∪Up such that each pair (Ui, Ui+1), 1 ≤ i ≤ p−1 is (ε, d)-
super-regular. Let f : U1 → Up be any bijective map. Then there are m vertex-disjoint
paths from U1 to Up so that for every x ∈ U1 the path starting at x ends at f(x) ∈ Up.

We also need the following random partitioning property of super-regular pairs which
says that with high probability (i.e. with probability tending to 1 as m → ∞) all new
pairs created by a random partition of a super-regular pair are themselves super-regular.

Lemma 12. Suppose that the following hold.

• 0 < ε < θ < d < 1/2, k ≥ 2 and for 1 ≤ i ≤ k we have ai, bi > θ with
∑k

i=1 ai =∑k
i=1 bi = 1.

• G = (A, B) is an (ε, d)-super-regular pair with |A| = |B| = m sufficiently large.

• A = A1 ∪ . . .∪Ak and B = B1 ∪ . . .∪Bk are partitions chosen uniformly at radnom
with |Ai| = aim and |Bi| = bim for 1 ≤ i ≤ r.

Then with high probability (Ai, Bj) is (θ−1ε, d/2)-super-regular for every 1 ≤ i, j ≤ k.

With these tools we can now prove Lemma 10.
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of Lemma 10. Enumerate the paths of H as P1, . . . , Pp and split them up arbitrarily into
paths of length 3, 4 or 5 such that Pi becomes Pi,1, . . . , Pi,qi

. Let ai,j and bi,j be the
initial vertex and the final vertex of Pi,j respectively. Then ai,j = bi,j−1 for 2 ≤ j ≤ qi.
Let Es consist of all ai,j belonging to the cluster As and similarly let Fs consist of all bi,j

belonging to the cluster As. For each ai,j ∈ Es pick a distinct vertex xi,j ∈ Ss and for
each bi,j ∈ Fs pick a distinct vertex yi,j ∈ Ss such that if ai,j = bi,j−1 then xi,j = yi,j−1,
xi,1 = xPi,j

and yi,mi
= yPi,j

. It is sufficient to show that there is an embedding of H in
which each path Pi,j is mapped to a path in GS starting at xi,j and ending at yi,j.

For a path Pi,j encode whether each edge in Pi,j goes forwards or backwards. If Pi,j

has length 3 then, writing f for an edge going from some A` to A`+1 and b for an edge
going from A` to A`−1, t encodes one of the following 23 = 8 possibilities:

fff ffb fbf fbb bff bfb bbf bbb.

Similarly there are 24 possibilities for paths of length 4 and 25 for those of length 5. We
divide the paths Pi,j into 56k subcollections based on the orientations of their edges. It
transpires that there are notational advantages in doing this by encoding the destination
of each vertex relative to the first. More precisely, we divide the paths into subcollections
Pi,t with 1 ≤ i ≤ k, 3 ≤ ` ≤ 5 and

t : {0, 1, . . . , `} → {−`,−` + 1, . . . , `}

encoding one of the 23 +24 +25 = 56 possibilities discussed above and the length ` = `(t)
of the paths. Note that we always have t(0) = 0. For example, a path oriented ffb would
have t : (0, 1, 2, 3) 7→ (0, 1, 2, 1). Pi,t contains all paths Pi,j of length ` starting in Ai with
each vertex in Pi,j going to the cluster relative to Ai given by t.

Observe that as |Ui \ Si| ≤ εm, every pair (Si, Si+1) is (2ε, d/2)-super-regular. We
first use a greedy algorithm to sequentially embed those collections Pi,t containing at
most d2m paths. That is, we pick any |Pi,t| vertices in Si to be the start of these paths,
and then construct these paths by selecting any (distinct) neighbours of these vertices in
the Sj appropriate for each vertex in each path. Each set Si is met by at most 11 × 56
of the collections so at any stage in this process we have used at most 6 × 11 × 56d2m
vertices from any cluster Ui. As we have d � 1 the restriction of any pair (Si, Si+1) to
the remaining vertices is still (4ε, d/4)-super-regular and so we can indeed do this.

Having embedded all the Pi,t containing few paths, we randomly split the remaining
vertices so that for each large Pi,t we have sets S0

i,t ⊆ Si+t(0)=i, S1
i,t ⊆ Si+t(1), . . . , S`

i,t ⊆
Si+t(`) each of size |Pi,t| > d2m. By Lemma 12 for each large collection Pi,t and for
all 0 ≤ r ≤ `−1 the pair (Sr

i,t, S
r+1
i,t ) if t(r+1) > t(r) or the pair (Sr+1

i,t , Sr
i,t) if t(r+1) < t(r)

is (4d−2ε, d/8)-super-regular with high probability. Thus for sufficiently large m we can
choose a partition with this property and apply Lemma 11 to embed each large Pi,t within
its allocated sets.
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4 Skewed Traverses and Shifted Walks

In this section we introduce some tools needed to tweak a random embedding of an
arbitrarily oriented Hamilton cycle into a directed Hamilton cycle of the reduced oriented
graph to make it correspond (in some sense) to the desired orientation of a Hamilton cycle
in our original graph.

The following crucial result says that our minimum semi-degree condition implies
outexpansion.

Lemma 13 (Kelly, Kühn, Osthus [14]). Let R be an oriented graph with δ0(R) ≥ (3/8 +
α)|R| for some α > 0. If X ⊂ V (R) with 0 < |X| ≤ (1 − α)|R| then |N+(X)| ≥
|X|+ α|R|/2.

Suppose that F is a Hamilton cycle (with the standard orientation) of the reduced
oriented graph R and relabel the vertices of R such that F = V1V2 . . . VM , where we
let M := |R|. Create a new digraph R∗ from R by adding all the exceptional vertices
v ∈ V0 to V (R) and adding an edge vVi (where Vi is a cluster containing m vertices)
whenever |N+

Vi
(v)| ≥ cm for some given constant c > 0. (Recall that m denotes the size

of the clusters.) The edges in R∗ of the form Viv are defined in a similar way. Let Gc

be the digraph obtained from the pure oriented graph G∗ by making all the non-empty
bipartite subgraphs between the clusters complete (and orienting all the edges between
these clusters in the direction induced by R) and adding the vertices in V0 as well as all
the edges of G between V0 and V (G− V0).

Let W be an assignment of the vertices of an arbitrarily oriented cycle C on n vertices
to the vertices of R∗ which respects edges (i.e. is a digraph homomorphism from C to R∗).
We denote by a(i) the number of vertices of C assigned to the cluster Vi. Observe that we
can think of W either as a (possibly degenerate) embedding into Gc or as a closed walk
in R∗. It will be useful to the reader to keep this duality in mind when reading the rest of
the proof We say that an assignment W of C to R∗ is γ-balanced if maxi |a(i)−m| ≤ γn
and balanced if a(i) = m for all 1 ≤ i ≤ M . Furthermore, we say that an assignment
(γ, µ)-corresponds to C if the following conditions hold.

• W is γ-balanced.

• Each exceptional vertex v ∈ V0 has exactly one vertex of C assigned to it.

• In every Vi ∈ V (R) at least m− µn of the vertices of C assigned to Vi have both of
their neighbours assigned to Vi−1 ∪ Vi+1.

We say that the assignment µ-corresponds to C if it (0, µ)-corresponds to C.
Once we have found such an assignment we can, with some work, use Lemma 10 to

show that it corresponds to a copy of C in G. Our immediate aim then is to find such a
closed walk corresponding to C.

Given clusters V and V ′, a skewed V -V ′ traverse T (V, V ′) is a collection of edges of
the form

T (V, V ′) := V Vi1 , Vi1−1Vi2 , Vi2−1Vi3 , . . . , Vit−1V
′.
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V

V ′

Vi2

Vi2−1

Vi1

Vi1−1

Figure 2: A skewed V -V ′ traverse

The length of a skewed traverse in the number of its edges minus one; so the length
of the above skewed traverse is t. Suppose that we have a γ-balanced assignment W
of C to R∗ and that each vertex of R has many neutral pairs of C assigned to it. We
would like to make this a balanced embedding by modifying W . Let Vi, Vj be clusters
with a(i) > m and a(j) < m. If Vi−1Vj ∈ E(R) then we could replace one neutral pair
assigned to Vi−1ViVi−1 in the embedding with Vi−1VjVi−1. This would reduce a(i) by
one and increase a(j) by one. Repeating this process would give the desired balanced
embedding. We can not guarantee though that Vi−1Vj ∈ E(R) so we are forced to use
skewed traverses to achieve the same effect, which we are able to show always exist under
certain conditions. Let

Vi−1Vi1 , Vi1−1Vi2 , Vi2−1Vi3 , . . . , Vit−1Vj.

be a skewed Vi−1-Vj traverse. Then replacing neutral pairs starting at Vi−1, Vi1−1, . . . , Vit−1

with the edges in the skewed Vi−1-Vj traverse we reduce a(i) by one, increase a(j) by one
and crucially do not alter a(k) for any Vk ∈ V (R)\{Vi, Vj}. See Figure 2 for an illustration
of this, where the dashed edges represent the neutral pairs which will be replaced by the
solid edges representing the edges of the skewed traverse. We always assume that a skewed
traverse has minimal length and thus that each vertex Vi ∈ V (R) appears at most once
as the first vertex of an edge in a skewed traverse.

Given vertices V, V ′ ∈ V (R) and a Hamilton cycle F of R, a shifted V -V ′ walk S(V, V ′)
is a walk of the form

S(V, V ′) := V Vi1FVi1−1 Vi2FVi2−1 . . . VitFVit−1 V ′,

where we write ViFVj for the path

ViFVj := ViVi+1Vi+2 . . . Vj,

counting indices modulo |F | = k. (The case t = 0, and thus a walk V V ′, is allowed.) We
say that W traverses F t times and always assume that a shifted walk S(V, V ′) traverses F
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as few times as possible. Its length is the length of the corresponding walk in R. Note
that if we can find a skewed V -V ′ traverse then we can find a shifted V -V ′ walk.

The most important property of shifted walks is that the walk W−{V, V ′} visits every
vertex in R an equal number of times. Observe also that by our minimality assumption
each vertex Vi is visited at most one time from a vertex other than Vi−1. I.e. of the t times
that Vi is visited at most one does not come from winding around F . This fact will be
useful later when we try and bound the number of edges of an embedding not lying on
the edges of F .

As with skewed traverses, we can use shifted walks to go from an approximate as-
signment W of a cycle C to a balanced assignment. Let Vi, Vj be clusters with a(i) > m
and a(j) < m. If Vi−1Vj, VjVi+1 ∈ E(R) then we could replace one section of W isomor-
phic to F by Vi−1VjVi+1FVi−1, that is, replace Vi−1ViVi+1 by Vi−1VjVi+1. This new section
has the same length as before and so would not alter the rest of W . Clearly we can not
ensure that such edges always exist. Instead we use shifted walks and replace a section of
the embedding that looks like FF . . . F with

S(Vi−1, Vj)S(Vj, Vi+1)FVi−1F . . . FVi−1;

where the F . . . F in the new embedding contains the appropriate number of F to ensure
that it is of exactly the same length as the section of the assignment it replaced. This
is a shifted walk from Vi−1 to Vj, then a shifted walk from Vj to Vi+1 and then wind
around F . By our definition of shifted walks each cluster will have the same number of
vertices assigned to it (except Vi−1, Vi and Vj) and the total number of vertices assigned
will not be altered. Clearly this method needs the cycle we’re trying to embed to contain
many long sections with no changes of orientation (and oriented in the same direction
as F ). In the case where the cycle we are trying to embed is close to C∗, the standard
orientation of a cycle, we are indeed able to ensure this.

Corollary 14. Let R be an oriented graph on k vertices with δ0(R) ≥ (3/8 + α)k for
some α > 0 and let F = V1V2 . . . Vk be a directed Hamilton cycle of R. Define r := d2/αe.
Then for any distinct V, V ′ ∈ V (R) there exists the following.

(i) A skewed V -V ′ traverse of length at most r.

(ii) A shifted V -V ′ walk traversing at most r cycles.

Proof. Let Ai be the set of vertices which can be reached from V by a skewed traverse of
length at most i and let A−

i := {Vi ∈ V (R) : Vi+1 ∈ Ai}. If |Ai| ≥ (1−α)k then N−(V ′)∩
A−

i 6= ∅ and we have a skewed V -V ′ traverse of length i+1. If |Ai| ≤ (1−α)k then we can
apply Lemma 13 (here we also need that N+(V ) 6= ∅) to get that |Ai+1| ≥ |Ai| + αk/2.
Since |Ar−2| > (1− α)k > k − |N−(V ′)| we again have N−(V ′) ∩A−

r−2 6= ∅ and hence the
desired skewed traverse.

This skewed traverse also gives the desired shifted walk, merely ‘wind around’ F after
each edge.
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When linking together sections of our cycle we will sometimes need to find a path
between two vertices which is not just short but is isomorphic to a path with given length
and orientation. To do this we use the following lemma of Häggkvist and Thomason.

Lemma 15 (Häggkvist and Thomason [9]). Let R be an oriented graph on k vertices
with δ0(R) ≥ (3/8 + α)k for some α > 0. Let 4dlog2(1/α)e ≤ k ≤ αk/4 and let P be
an arbitrarily oriented path of length k. Then, if k is large enough and V, V ′ ∈ V (R) are
distinct vertices, there exists a path from V to V ′ isomorphic to P .

5 An approximate embedding lemma

Our main tool in our proof of Theorem 3 is the following probabilistic result which says
that we can assign a series of paths Pi to the vertices of a small graph R such that each
vertex of R is assigned approximately the same number of vertices. Furthermore, we show
that if we have a collection of subpaths of the Pi we can assure that every vertex of R is
assigned a reasonable number of the starting points of these. When we talk about ‘greedily
embedding an oriented path Pi around a cycle F given a starting point V ∈ V (F )’ we
mean the following. Assign the first vertex of Pi to V . Given an embedding of some
initial segment of Pi which ends at V ′ ∈ V (F ) assign the next vertex of Pi to either the
successor or the predecessor of V ′ in F according to the orientation of the edge in Pi.

Lemma 16. Let R be an oriented graph on k vertices and let F be a Hamilton cycle
in R. Let P = {P1, . . . , Ps} be a collection of arbitrarily oriented paths on t vertices and
Q be a collection of pairwise disjoint oriented subpaths of the Pi. Then for any γ > 0 and
sufficiently large s there exists a map φ : [s] → V (R) such that if the paths are greedily
embedded around F with the embedding of each P (i) starting at φ(i) then the following
holds. Define a(i) to be the number of vertices in

⋃s
j=1 Pj assigned to Vi by this embedding

and define n(i,Q) to be the number of oriented subpaths in Q starting at Vi. Then for
all Vi ∈ V (R) ∣∣∣∣a(i)− st

k

∣∣∣∣ ≤ γst, (1)∣∣∣∣n(i,Q)− |Q|
k

∣∣∣∣ ≤ γst. (2)

To prove it we need the following well-known probabilistic bound (see [19] for example).

Theorem 17. Let X be a random variable determined by s independent trials X1, . . . , Xs

such that changing the outcome of any one trial can affect X by at most c. Then for
any λ > 0,

Pr(|X − E(X)| > λ) ≤ 2 exp

(
− λ2

2c2s

)
.
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of Lemma 16. We construct φ by picking each φ(i) independently and uniformly at ran-
dom. Observe that the assignment of any one path Pi can change the number of vertices
assigned to any vertex of R by at most t. Clearly E(a(i)) = st/k. By Theorem 17 we
have

Pr(|a(i)− st/k| > γst) ≤ 2 exp(−γ2s2t2

2t2s
) = 2 exp(−γ2s

2
) < 1/(2k)

for s � k.
A similar argument gives that the probability that n(i,Q) differs too much from the

expected value is at most 1/(2k). Thus the probability that there exists Vi which does not
have almost the expected number of vertices or almost the expected number of starting
points of paths in Q assigned to it by φ is less than 1. So with positive probability a map
constructed in this manner satisfies the conclusion of the lemma, and hence such a map
exists.

6 Preparations for the Proof of Theorem 3

6.1 The Two Cases

We split into two cases depending on the number of neutral pairs. Let G be an oriented
graph on n vertices with δ0(G) ≥ (3/8 + α)n for some constant 0 < α � 1. Let C be an
orientation of a cycle on n vertices with n(C) =: λn neutral pairs. Define the following
hierarchy of constants.

0 < ε1 � ε2 � ε3 � ε4 � ε5 � ε6 � α < 1.

Let Q be a maximal collection of neutral pairs all at a distance of at least 3 from each
other.

If λ � ε4 then let ε := ε6, εA := ε5 and ε∗ := ε4. The proof of this case is given in
Section 8.

Otherwise we have λ � ε3 and we set ε := ε3, εA := ε2 and ε∗ := ε1. The proof of
this case is in Section 7.

The following two sections, where we partition G and C in preparation for our em-
bedding, are common to both cases.

6.2 Preparing G for the Proof of Theorem 3

Define a positive constant d and integers M ′
A, M ′

B (all functions of α) such that

0 < ε∗ � 1/M ′
A � εA � 1/M ′

B � ε � d � α � 1.

Chernoff type bounds applied to a random partition of V (G) show the existence of a
subset A ⊂ V (G) with (1/2 − ε)n ≤ |A| ≤ (1/2 − ε)n such that every vertex x ∈ V (G)
satisfies

d+(x)

n
− α

10
≤ |N+

A (x)|
|A|

≤ d+(x)

n
+

α

10
(3)
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and similarly for d−(x). Apply the Diregularity lemma (Lemma 6) with parameters ε2,
d+8ε2 and M ′

B to G−A to obtain a partition of the vertex set of G−A into MB := k ≥ M ′
B

clusters V1, . . . , Vk and an exceptional set V0. Set B := V1 ∪ . . . ∪ Vk and mB := |V1| =
· · · = |Vk|. Let G′

B := G[B], let RB denote the reduced oriented graph obtained by an
application of Lemma 7 and let G∗

B be the pure oriented graph. By our choice of A we
have δ+(G − A)/|G − A| ≥ δ+(G)/n − α/9 and a similar bound for δ−. Hence we can
apply Lemma 7 to obtain

δ0(RB) ≥
(

δ0(G)

n
− α

4

)
|RB| ≥

(
3

8
+

3α

4

)
|RB|. (4)

So Theorem 1 gives us a Hamilton cycle FB of RB. Relabel the clusters of RB so
that ViVi+1 ∈ E(FB) for all i where we let Vk+1 := V1. We now apply Lemma 8 with FB

playing the role of S, ε2 playing the role of ε and d+8ε2 playing the role of d. This shows
that by adding at most 4ε2n further vertices to the exceptional set V0 we may assume that
each edge of RB corresponds to an ε-regular pair of density at least d (in the underlying
graph of G∗

B) and that each edge in FB corresponds to an (ε, d)-super-regular pair. Note
that the new exceptional set now satisfies |V0| ≤ εn.

Now apply the Diregularity Lemma with parameters ε2
A/4, d+2ε2

A and M ′
A to G[A∪V0]

to obtain a partition of the vertex set of G[A∪V0] into MA := ` ≥ M ′
A clusters V ′

1 , . . . , V
′
`

and an exceptional set V ′
0 . Let A′ := V ′

1 ∪ · · · ∪ V ′
` , let RA denote the reduced oriented

graph obtained from Lemma 7 and let G∗
A be the pure oriented graph. As before Lemma 7

implies that δ0(RA) ≥ (3/8 + 3α/4)|RA| and so, as before, we can apply Theorem 1 to
find a Hamilton cycle FA of RA. Then as before, Lemma 8 implies that by adding at
most ε2

A|A ∪ V0| further vertices to the exceptional set V ′
0 we may assume that each

edge of RA corresponds to an εA-regular pair of density at least d and that each edge
in FA corresponds to an (εA, d)-super-regular pair. Finally define GB := G[B ∪ V ′

0 ]
and nB := |GB| and observe that we now have

|V ′
0 | ≤ εA|A ∪ V0|/2 < εAnB. (5)

In both cases of our proof we now have

0 < ε∗ � 1/MA � εA � 1/MB � ε � d � α � 1.

6.3 Preparing C

We would like to divide C into a number of paths and use Lemma 16 to obtain an ε-
balanced assignment of C to R. Since we have split our graph G into two parts, we have
to split C into two paths PA and PB and embed these into (an oriented graph similar
to) G[A′] and GB respectively.

Define r := 4dlog2(4/α)e. Lemma 15 tells us that if P is an orientation of a path of
length r then between any two distinct vertices in V (RB) or in V (RA) there exists a path
isomorphic to P .
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Define

s := b(log n)2c, t :=

⌊
n− (s + 1)(r − 1)

s + 2

⌋
− 1 ≈ n

(log n)2
.

Recall that Q is a maximal collection of neutral pairs in C all at a distance of at least 3
from each other. If Q is large, i.e. we are in the case where C is far from C∗, let v∗ be a
vertex in C such that the subpath of C of length n/2 following v∗ and the subpath of C
preceding v∗ both contain at least 2|Q|/5 elements of Q. Divide C into overlapping paths
(by which we mean paths sharing endvertices)

C := Q1P1Q2P2 . . . Qs−1Ps−1QsPsQ
∗P ∗

where their lengths satisfy `(Pi) = t, `(Qi) = `(Q∗) = r and 2t ≤ `(P ∗) < 3t and Q1

starts at v∗. Let sB ∈ N be such that

1 < nB − sB(t + r) < `(P ∗)

and let
PB := P ∗

BQ1P1 . . . QsB
PsB

where P ∗
B is an end-segment of P ∗ of such length as to ensure `(PB) + 1 = nB. Let

PA := Q′
1P

′
1 . . . Q′

sA
P ′

sA
Q∗P ∗

A

where Q′
i := QsB+i, P ′

i := PsB+i, sA := s − sB and P ∗
A is an initial-segment of P ∗ which

overlaps P ∗
B in exactly one place. Observe that we now have

nB = sBt + sBr + `(P ∗
B) + 1 = |V (PB)| (6)

and define

nA := n− nB = sAt + (sA + 1)r + `(P ∗
A) + 1 = |V (PA)| − 2.

7 Cycle is Far From C∗

7.1 Approximate Embedding

First we use the probabilistic tools in Section 5 to assign the paths Pi to the clusters of RB

in such a way as to ensure that all the clusters are assigned approximately the same number
of vertices and the neutral pairs are relatively evenly distributed. Let QB ⊂ Q consist of
all neutral pairs from Q which are contained in the Pi and moreover are at a distance of
at least three from the ends of the Pi. Apply Lemma 16 to RB, PB := {P1, P2 . . . , PsB

}
and QB with ε∗ as γ to obtain an embedding of the Pi into V (RB) with∣∣∣∣a(i)− sBt

MB

∣∣∣∣ ≤ ε∗sBt,

∣∣∣∣n(i,QB)− |QB|)
MB

∣∣∣∣ ≤ ε∗sBt.
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for all Vi ∈ V (RB). (Recall that a(i) is defined to be the number of vertices of PB assigned
to the cluster Vi by the embedding.) In a slight abuse of notation let n(i) be the number
of neutral pairs in QB starting at Vi. Note that

|a(i)−mB|
(6)

≤
∣∣∣∣a(i)− sBt

MB

∣∣∣∣ +

∣∣∣∣sBr + 3t

MB

∣∣∣∣ ≤ ∣∣∣∣a(i)− sBt

MB

∣∣∣∣ + ε∗mB. (7)

The requirement that the neutral pairs in Q are at a distance of at least three from
each other means that |Q| ≥ n(C)/4. By the observation in Section 6.3 we know that PB

contains at least 2|Q|/5 ≥ λn/10 neutral pairs. The paths Qi and P ∗
B together contain

fewer than sBr + 3t neutral pairs and at most 4sB neutral pairs can be in the Pi but
within a distance of at most three from a Qi. Thus for all i

n(i) ≥ λn

10MB

− ε∗sBt− (sBr + 3t + 4sB) ≥ λnB

6MB

− 2ε∗nB ≥ λmB

7
.

For all 2 ≤ i ≤ sB we can join Pi−1 and Pi by a path in RB isomorphic to Qi using
Lemma 15. Furthermore we can greedily extend P1 backwards by a path isomorphic
to P ∗

BQ1. This will increase a(i) by at most sBr + 3t < ε∗mB for n sufficiently large. We
now have an assignment of PB to the clusters of RB which we can think of as a walk WB

in RB.

7.2 Incorporating the Exceptional Vertices

Let Gc
B be the digraph obtained from the pure oriented graph G∗

B by making all the
non-empty bipartite subgraphs between the clusters complete (and orienting all the edges
between these clusters in the direction induced by RB) and adding the vertices in V ′

0 as
well as all the edges of G between V ′

0 and V (GB − V ′
0). Our next aim is to incorporate

the exceptional vertices V ′
0 into the walk WB. We do this by considering the following

extension of RB. Define R∗
B ⊇ RB to be the digraph formed by adding to RB the vertices

in V ′
0 and, for v ∈ V ′

0 and Vi ∈ V (RB), the edge vVi if |N+
G (v) ∩ Vi| > αmB/10 and Viv if

|N−
G (v) ∩ Vi| > αmB/10.
Then for each v ∈ V ′

0 pick an inneighbour Vi ∈ V (RB) and change the assignment
of one neutral pair currently mapped to ViVi+1Vi to VivVi. We can always find such
an inneighbour as (3) implies that each exceptional vertex sees at least a three-eighths
proportion of the vertices in V (GB). This reduces a(i + 1) and n(i) by one. Figure 3
contains an illustration of this, where we consider WB as being in Gc

B and the dotted lines
as the section of the embedding to be replaced by the solid lines. After doing this for
every exceptional vertex we will have that for all Vi ∈ V (RB)

|a(i)−mB|
(7)

≤
∣∣∣∣a(i)− sBt

MB

∣∣∣∣ + ε∗mB

≤ (ε∗sBt + εAmB + |V ′
0 |) + ε∗mB

(5)
< 4εAnB,

(8)
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Vi+1

ViVi+2

v

Figure 3: Incorporating an exceptional vertex when C is far from C∗.

where the second term in the second line comes from greedily embedding the Qi. We
also still have a reasonable number of neutral pairs starting at each cluster of RB for
all Vi ∈ V (RB):

n(i) ≥ λmB

7
− |V ′

0 | >
λmB

7
− εAnB >

λmB

8
.

Note that of the a(i) vertices of PB assigned to any Vi ∈ V (R), at most εAnB + 2|V ′
0 | ≤

3εAnB do not have their neighbours assigned to Vi−1 ∪ Vi+1, where the first term came
from the Qi and the second came from incorporating the exceptional vertices. Thus we
currently have a (4εA, 3εA)-corresponding embedding of PB into R∗

B.

7.3 Adjusting the Embedding

We now adjust WB to obtain a 5εAMB-corresponding assignment of PB to R∗
B; i.e. we

adjust WB to ensure that a(i) = mB for all Vi ∈ V (RB). Recall from Corollary 14
that between any two vertices in RB there exists a skewed traverse of length at most r′ :=
d4/αe. Then for each cluster Vi ∈ V (RB) with a(i+1) > mB pick Vj ∈ V (RB) with a(j) <
mB and find a skewed Vi-Vj traverse of length q ≤ r′:

ViVk1 , Vk1−1Vk2 , Vk2−1Vk3 , . . . , VkqVkq−1, Vkq−1Vj.

As discussed in Section 4 we can use this skewed traverse to modify WB to reduce a(i+1)
by one, increase a(j) by one and leave the number of vertices assigned to every other cluster
of RB the same. We do this by, for every 0 ≤ p ≤ q, replacing a neutral pair Vkp−1VkpVkp−1

in WB by Vkp−1Vkp+1Vkp−1 where we define Vk0−1 := Vi and Vkq+1 := Vj.

Since
∑MB

i=1 |a(i) − mB| ≤ 4εAMBnB, doing this will consume at most 4εAMBnB

neutral pairs starting at any vertex of RB. This is fine though as for all Vi ∈ V (RB) we
have n(i) ≥ λmB/8 � 4εAMBnB. Each cluster Vi now has at most 3εAnB + 4εAMBnB <
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5εAMBnB vertices of PB assigned to it that do not have both their neighbours assigned
to Vi−1 ∪ Vi+1. Hence we have constructed a 5εAMB-corresponding embedding WB of PB

into R∗
B.

7.4 Finding a copy of PB in GB

We will now use Lemma 10 to find a copy of PB in GB. To do this we use WB to find an
embedding W ′

B of PB into GB such that

• Every vertex of WB in V ′
0 is unchanged in W ′

B.

• Each appearance of a cluster of RB in WB is replaced by a unique vertex in the
corresponding cluster in GB.

• Every edge of WB which does not lie upon an edge of FB is mapped to an edge
of GB.

First we split WB into two digraphs W 1
B and W 2

B. Let W 1
B consist of all maximal walks

ui,1ui,2 . . . ui,`i

in WB of length at least three whose edges all lie on FB. Let W 2
B consist of everything

not in W 1
B. Then W 2

B is a union of walks vi,1vi,2 . . . vi,ki
, where we relabel if necessary to

ensure that ui,1 = vi−1,ki−1
and ui,`i

= vi,1. In the next paragraph we will greedily find an
embedding of W 2

B into GB which will satisfy the third requirement above.
The walks in W 2

B are of one of three types. The first type comes from the incorporation
of an exceptional vertex, in which we have an exceptional vertex x ∈ V ′

0 and a cluster Vi ∈
V (RB) with |N−

G (x)∩Vi| > αmB/10. In this case we choose any two distinct vertices u, v ∈
N−

G (x) ∩ Vi, which we can do as there are at most |V ′
0 | � εmB � αmB/10 exceptional

vertices. The second type comes from the paths Qi and the path P ∗
B. These we find in G∗

B

(and hence in GB ⊇ G∗
B) greedily. We can do so as the total length of the Qi is at most

sBr+2t � εmB and all their edges are assigned to edges in RB corresponding to ε-regular
pairs of density at least d in G∗

B. The final type are pairs of edges ij, ji with i, j ∈ V (RB)
which come from the skewed traverses used to ensure that the correct number of vertices
of PB were assigned to each vertex of RB. There are at most 5εAMBn � εmB of these
and so we can again find these greedily. Note that our requirement that all the neutral
pairs in Q are at a distance of at least three from each other and the ends of the Pi implies
that we have now considered all possible walks in W 2

B. To satisfy the second condition
above we simply assign each vertex of WB not already assigned to a (distinct) vertex in
the corresponding cluster in GB. As WB is balanced (i.e. WB assigns exactly mB vertices
to each cluster) we can do this.

For all i let Si consist of the vertices of GB − V ′
0 to which the vertices of W 1

B that are
not at the end of a path have been assigned. We can now apply Lemma 10 to GB − V ′

0

with W 1
B as H, the ui,1 and ui,`i

as the xP and yP respectively and the Si as just defined.
Combining this with the embedding of W 2

B into G gives us a copy of PB in GB.
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7.5 Finding a copy of C in G

Recalling how we ‘chopped up’ C at the start of this section, let u, v ∈ V (GB) be the
vertices to which the endpoints of PB were assigned. To complete the proof of this case
we find a copy of PA in GA := G[A′ ∪ {u, v}] starting at v and ending at u. We find a
copy of PA exactly as we found the copy of PB with three differences. Firstly there are
no exceptional vertices. Secondly, recalling that

PA := Q′
1P

′
1 . . . Q′

sA
P ′

sA
Q∗P ∗

A,

we require that the embeddings of Q′
1 and P ∗

A start and end at v and u respectively.
Since Q′

1 is long enough for Lemma 15 we can specify the cluster to which its initial
vertex is assigned and use Lemma 15 to join it to P ′

1. We embed P ∗
A greedily and use Q∗

and Lemma 15 to connect it with the rest of the embedding. Hence we can indeed start
and end at the required vertices. This doesn’t affect the constants in the rest of the proof.
Since the number of exceptional vertices and the imbalances created by the approximate
embedding are both small (and small as functions of MA) we can proceed exactly as before
and find the desired cycle C in G. The calculations work as before as a result of us only
having two exceptional vertices. The equation (8) becomes

|a(i)−mA| ≤
∣∣∣∣a(i)− sAt

MA

∣∣∣∣ + ε∗mA

≤ (ε∗sAt + εAmA + |{u, v}|) + ε∗mA ≤ 4εAmA.

Hence from Section 7.4 we now have

MA∑
i=1

|a(i)−mA| ≤ 4εAMAmA,

which is fine as we will have that n(i) ≥ λmA/8 � 4εAMAmA for all clusters V ′
i ∈ V (RA).

8 Cycle is Close to C∗

Our argument closely follows that in the previous section, the difference being in the
means of correcting imbalances. To correct imbalances we will need long sections of PB

with no changes in orientation. Define `B := d 4
α
eMB, which is at least the maximum

length of a shifted walk between two vertices in RB. As before we split up C into PA

and PB, the only difference being that we do not need a special vertex v∗ this time. LetQ′
B

consist be the largest possible collection of paths in PB of length 3`B all at a distance of
at least 3 from each other, oriented in the same direction and containing no changes in
orientation. We will call these long runs. There are at least

m(PB,Q′
B) ≥ nB

3`B + 6
− 2λn ≥ αnB

14MB
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Vi

Vi+1

Vi+3

Vj

v

S(Vj, Vi+3)

Figure 4: Incorporating an exceptional vertex when C is close to C∗.

of these in PB. (We subtract 2λn not λn as both neutral pairs ViVi+1Vi and their in-
verse ViVi−1Vi kill possible long runs.)

Let QB be the subset of Q′
B containing those long runs contained in the Pi, at a

distance of at least 4 from the ends of all the Pi and all oriented in the same direction.
We assume that these are all oriented in the same direction as FB. Keeping only long runs
oriented in one direction loses us at most half of them. The paths Qi, the path Q∗P ∗

B and
the 3 vertices neighbouring them in the Pi in each direction can intersect at most 2s + 2
of the long runs and so, abusing notation slightly,

m(PB) ≥ αnB

28MB

− 2s− 2 ≥ αnB

30MB

for sufficiently large n, where we recall that PB := {P1, P2 . . . , PsB
}. Similarly defin-

ing `A := d 4
α
eMA and Q′

A and QA in the obvious way we have m(PA) ≥ α(nA)/30MA.
Apply Lemma 16 to RB, QB and PB with ε∗ as γ to obtain an embedding of the Pi

into V (RB) with∣∣∣∣a(i)− sBt

MB

∣∣∣∣ ≤ ε∗sBt, m(i) ≥ αnB

30M2
B

− ε∗sBt ≥ αnB

32M2
B

(9)

for all Vi ∈ V (RB), where we write m(i) for the number of elements of QB whose initial
vertex is assigned to Vi ∈ V (R).

For all 2 ≤ i ≤ sB we can join Pi−1 and Pi by a path in RB isomorphic to Qi using
Lemma 15. Furthermore we can greedily extend P1 backwards by a path isomorphic
to P ∗

BQ1. This will increase a(i) by at most sBr + 2t ≤ εAmB for n sufficiently large. We
now have an embedding of PB into RB which we can think of as a walk WB in RB.

Let G∗
B, Gc

B and R∗
B be defined exactly as in Section 7.2. Let v ∈ V ′

0 be an exceptional
vertex and let Viv, vVj ∈ E(R∗

B). (Vi and Vj exist by (3).) Take a long run in QB whose
initial vertex is currently assigned to Vi. Since MB divides `B it also ends at Vi. We cannot
replace the long run simply by VivVjFB . . . FB because this would not end at Vi. Thus it
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would require us to alter the rest of our approximate embedding, possibly causing (9) to
no longer hold. Instead we use shifted walks and a ‘jump’ to ensure that our modification
incorporates v into our walk and does not alter a(i) or m(i) significantly for any cluster
of RB. We replace the long run starting at Vi with the following walk

VivVjS(Vj, Vi+3)FBFB . . . FBVi,

where S(Vj, Vi+3) is a shifted walk from Vj to Vi+3. The number of FB is chosen so that
the new section has exactly the same length as the long run it replaces. This is illustrated
in Figure 4. This is a walk that goes out to v, back to Vj, follows a shifted walk to Vi+3

and then winds around F until we have a walk of length 3`B ending at Vi. This new walk
visits Vi+1 and Vi+2 one time fewer than previously and Vj one time more. Observe that
the shifted walk by definition visits every cluster in RB the same number of times, which
allows us to observe that we still end at Vi. Repeating this for each exceptional vertex
creates a new assignment now satisfying

|a(i)−mB|
(6)

≤
∣∣∣∣a(i)− sBt

MB

∣∣∣∣ +

∣∣∣∣sBr + 2t

MB

∣∣∣∣
≤ (εAsBt + εAmB + |V ′

0 |) + εAmB ≤ 3εAnB.

for all i. We also still have a reasonable number of long runs starting at each cluster.

m(i) ≥ αnB

32M2
B

− |V ′
0 | ≥

αnB

40M2
B

.

Note that of the a(i) vertices of PB assigned to Vi ∈ V (R), at most

εAmB + 4|V ′
0 | ≤ 5εAnB

do not have their neighbours assigned to Vi−1 ∪ Vi+1. The first term here comes from
connecting the Pi and the second term from incorporating the exceptional vertices: each
exceptional vertex has one direct edge to or from a given cluster in RB and the shifted
walk can add at most two edges outside FB to each cluster. Thus we currently have a
(5εA, 3εA)-corresponding assignment of PB into R∗

B.

8.1 Correcting the imbalances

We now adjust our current assignment of PB to R∗
B to obtain a 15εA-corresponding as-

signment, i.e. we adjust WB to ensure that a(i) = mB for all Vi ∈ V (RB). To do this we
find a pair Vi, Vj ∈ V (RB) such that a(i) > mB and a(j) < mB and replace a long run
starting at Vi−1 with the following walk:

S(Vi−1, Vj)S(Vj, Vi+1)FB . . . FBVi−1,

where the number of FB is chosen to ensure that the new section has length 3`B. This
walk removes the assignment of one vertex to Vi, assigns one extra vertex to Vj and does
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not change the number of vertices assigned to all other clusters in RB. Since
∑MB

i=1 a(i) =
mBMB we can always find such a pair unless we have corrected all the imbalances. Each
pair requires a long run and we still have at least αnB/40M2

B � 3εAnB of these starting at
each cluster and so can indeed correct all the imbalances. This leaves us with a balanced
assignment with at most

3εAnB + 4 · 3εAnB = 15εAnB

edges outside FB from each vertex. Hence there are at most 15εAMBnB � εmB edges in
total not in a path of length at least 3 all of whose edges lie on FB or not lying entirely
on FB. This is exactly the same position as in Section 7.4. We can now proceed as before
to first find a copy of PB in GB and then repeat the procedure with PA (using QA not QB)
to find the desired cycle C in G. This completes this section and the proof of Theorem 3.
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