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Abstract

We give a short and direct proof of a remarkable identity that arises in the

enumeration of labeled trees with respect to their indegree sequence, where all edges

are oriented from the vertex with lower label towards the vertex with higher label.

This solves a problem posed by Shin and Zeng in a recent article. We also provide a

generalization of this identity that translates to a formula for the number of rooted

spanning forests with given indegree sequence.

1 Introduction

In a recent paper [5], Shin and Zeng consider the enumeration of labeled trees with respect
to their indegree sequence, where each edge is oriented towards the vertex whose label is
higher. This is called the local orientation of a labeled tree in [5], as opposed to the global
orientation of a rooted labeled tree, in which all edges are oriented towards the root.

In both settings, one can define the indegree sequence λ = 1e12e2 . . . (here, ei is the
number of vertices of indegree i) of a rooted tree on n labeled vertices, which is always a
partition of n−1. A classical refinement (see for example [6, Corollary 5.3.5]) of Cayley’s
formula for the number of labeled trees states that the number of rooted labeled trees
with fixed root r and global indegree sequence λ is given by

(n − 1)!2

e0!(0!)e0e1!(1!)e1e2!(2!)e2 . . .
, (1)

where e0 = n−e1−e2−· · · . Since the relationship between trees and functions (more pre-
cisely, functional digraphs) will also be important in our present context, it is worthwhile
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pointing out that (1) can be obtained in a very elegant way by considering functional
digraphs, see Section 5.3 of [6] for details.

Shin and Zeng now gave a bijective proof that (1) is also the number of labeled trees
with local indegree sequence of type λ, a result that was previously conjectured by Cotterill
[1] in the context of algebraic geometry and also proved by Du and Yin [2].

On the other hand, one has a generating function for labeled trees by their local
indegree (see [4, Eq. (8)] and also [3, Theorem 4]): let Tn be the set of all labeled trees
with labels 1, 2, . . . , n, and let indegT (i) be the local indegree of i in T . Then

∑

T∈Tn

n
∏

i=1

x
indegT (i)
i = Pn(x1, x2, . . . , xn) = xn

n−1
∏

j=2

(jxj + xj+1 + · · ·+ xn).

Combining this with (1), one obtains a curious algebraic identity: by the type of a
monomial xa = xa1

1 xa2

2 · · ·xan
n , we mean the partition λ = 1e12e2 · · · of the monomial’s total

degree in which ei is the number of exponents i in the monomial. Let now λ = 1e12e2 · · ·
be any fixed partition of n − 1, and write e0 = n − e1 − e2 − · · · . Then

∑

type x
a=λ

[xa]Pn(x1, x2, . . . , xn) =
(n − 1)!2

e0!(0!)e0e1!(1!)e1e2!(2!)e2 · · ·
, (2)

as was pointed out by Shin and Zeng in the aforementioned paper. They asked for a
direct proof of this identity, which will be given here. Indeed, we prove a slightly more
general identity:

Theorem 1. If λ = 1e12e2 · · · is any partition of n − k + 1 and e0 = n − e1 − e2 − · · · ,
then

∑

type x
a=λ

[xa]

n
∏

j=k

(jxj + xj+1 + · · · + xn) =
n!(n − k + 1)!

e0!(0!)e0e1!(1!)e1e2!(2!)e2 · · ·
.

Note that identity (2) is the special case k = 2 of this theorem.

2 Proof of the main theorem

We use the standard notation [n] = {1, 2, . . . , n}. Let us interpret the left hand side in
terms of functions from [k..n] = [n]\[k−1] = {k, k+1, . . . , n} to itself, with the additional
requirement that f(r) ≥ r for all r. Let the set of all such functions be Fk,n. Multiply
the product out to get

n
∏

j=k

(jxj + xj+1 + · · ·+ xn) =
∑

f∈Fk,n

C(f)

n
∏

j=k

x
|f−1(j)|
j ,

where C(f) =
∏

j∈Fix f j is the product over all fixed points of f . We can eliminate
this coefficient by noting that any function f ∈ Fk,n can be obtained from a function
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g : [k..n] → [n] by the rule f(r) = Φg(r) = max(g(r), r), and it is easy to see that each
f is obtained from precisely C(f) different functions g. Hence the product can also be
written as

n
∏

j=k

(jxj + xj+1 + · · ·+ xn) =
∑

g:[k..n]→[n]

n
∏

j=k

x
|(Φg)−1(j)|
j .

Any function h whose domain is [k..n] induces a set partition on [k..n] whose blocks are
precisely the different preimages. Let the type of a set partition be the number partition
whose elements are the block sizes. We have to determine the number of functions g :
[k..n] → [n] such that Φg induces a set partition of type λ.

In fact, we can obtain even more: let A = (A1, A2, . . . , Am) be any set partition of
[k..n] whose type is λ (it follows that m = e1 + e2 + · · · = n − e0). Let ai be the largest
element of Ai, and assume that n = a1 > a2 > · · · > am.

Now suppose that Φg induces the set partition A. There is only one possibility for
the value of Φg(A1), namely n, hence g(r) = n for all r ∈ A1 \ {n}, but there are n

different choices for g(n) = g(a1). Likewise, there are n − a2 choices for Φg(A2) (namely
a2, a2 + 1, . . . , n − 1), but if Φg(A2) = a2, one has a2 choices for g(a2), so that one has
n−1 possibilities altogether. Then there are n−a3 −1 choices for Φg(A2), but a3 choices
for g(a3) if Φg(A3) = a3 and thus a total of n − 2 choices, etc.

If follows that the number of possible functions g for which Φg induces a fixed set
partition (A1, A2, . . . , Am) is always

n(n − 1) · · · (n − m + 1) =
n!

(n − m)!
=

n!

e0!
.

Furthermore, there are precisely

(n − k + 1)!

e1!(1!)e1e2!(2!)e2 · · ·

set partitions of [k..n] whose type is λ, which completes the proof.

Bearing in mind that the number of rooted forests with r given roots on [n] is precisely
rnn−r−1, it is natural to ask whether the more general identity has an interpretation for
forests. This turns out to be the case: let Tr,n be the set of all rooted labeled forests with
labels 1, 2, . . . , n and roots 1, 2, . . . , r. We consider the local orientation on these forests.
Again by [4, Eq. (8)], one has

∑

T∈Tr,n

n
∏

i=1

x
indegT (i)
i = rxn

n−1
∏

j=r+1

(jxj + xj+1 + · · ·+ xn).

Hence we have the following generalization of the result of Du and Yin:

Theorem 2. The number of rooted labeled forests with labels 1, 2, . . . , n and roots
1, 2, . . . , r whose type with respect to the local orientation (defined in analogy to the type
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of a labeled tree) is a given partition λ = 1e12e2 · · · of n − r is given by

r(n − 1)!(n − r)!

e0!(0!)e0e1!(1!)e1e2!(2!)e2 · · ·
,

where again e0 = n − e1 − e2 − · · · .

Note that an analogous result holds for the global orientation as well (see [6, Corollary
5.3.5]). It is quite probable that the arguments of Du and Yin [2] and Shin and Zeng [5]
for trees carry over to the case of forests as well.

Let us finally point out a reformulation of Theorem 1 in terms of symmetric functions.
Note that the type of a monomial remains unchanged if the variables are permuted. If we
consider the symmetrized polynomial

1

n!

∑

σ∈Sn

n
∏

j=k

(jxσ(j) + xσ(j+1) + · · · + xσ(n)),

then all monomials of the same type λ have to have the same coefficient, which is

n!(n − k + 1)!

e0!(0!)e0e1!(1!)e1e2!(2!)e2 · · ·

/

n!

e0!e1!e2! · · ·
=

(n − k + 1)!

(1!)e1(2!)e2 · · ·

(dividing by the number of monomials of type λ). This means, however, that

1

n!

∑

σ∈Sn

n
∏

j=k

(jxσ(j) + xσ(j+1) + · · · + xσ(n)) = (x1 + x2 + · · ·+ xn)n−k+1. (3)

It might be interesting to study more general expressions of the form

1

n!

∑

σ∈Sn

ℓ
∏

i=1

(

n
∑

j=1

aijxσ(j)

)

and see under which conditions the sum simplifies as in (3) (and whether there are any
combinatorial interpretations, if this is the case).
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