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Abstract

The Kneser graph K(n, r) has as vertices all r-subsets of an n-set with two
vertices adjacent if the corresponding subsets are disjoint. It is conjectured that,
except for K(5, 2), these graphs are Hamiltonian for all n ≥ 2r + 1. In this note we
describe an inductive construction which relates Hamiltonicity of K(2r + 2s, r) to
Hamiltonicity of K(2r′+s, r′). This shows (among other things) that Hamiltonicity
of K(2r+1, r) for all 3 ≤ r ≤ k implies Hamiltonicity of K(2r+2, r) for all r ≤ 2k+1.
Applying this result extends the range of values for which Hamiltonicity of K(n, r)
is known. Another consequence is that certain families of Kneser graphs (K(27

13r, r)
for instance) contain infinitely many Hamiltonian graphs.

1 Introduction

Let S be a finite set. We write K(S, r) for the graph with vertex set S(r) = {X ⊆
S : |X| = r}, and two vertices adjacent if the corresponding sets are disjoint. Up to
isomorphism K(S, r) depends only on the cardinality of S and so for n ∈ N we write
K(n, r) for K({1, 2, . . . , n}, r).

The graphs K(n, r) are known as Kneser graphs. It is conjectured that K(n, r) is
Hamiltonian for all pairs (n, r) with n ≥ 2r + 1 except for (5, 2) (this is Petersen’ s
graph). However, this is only known in general when n is much larger than 2r + 1.
Specifically, Chen [2] showed that K(n, r) is Hamiltonian whenever

n ≥ 3r + 1 +
√

5r2 − 2r + 1

2
= (2.62 · · ·+ o(1))r.

Hamiltonicity is also known for several small values (see [3] and references therein). The
strongest results in this direction being that K(n, r) is Hamiltonian for all n ≤ 27, proved
by Savage and Shields [3] using a computer search.
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Intuitively the graph K(2r + s, r) should be more likely to be Hamiltonian when s is
large since it has higher degree and higher edge density then. However, it is not obvious
that this is true. For instance, does the Hamiltonicity of the family of graphs K(2r+2, r)
follow from the Hamiltonicity of the family of graphs K(2r + 1, r) (this intriguing family
of Kneser graphs is known as the odd graphs [1])?

We describe a construction which proves this and more:

Theorem 1. Let r ≥ 3 and n = 2r + s be even. If K(2a + s
2
, a) is either Hamiltonian or

K(5, 2) for all 1 ≤ a ≤ ⌊ r
2
⌋ then K(n, r) is Hamiltonian.

The exception made for K(5, 2) is clearly needed since Petersen’s graph is notoriously
non-Hamiltonian. In our constructions we get round this by using a Hamilton path in
K(5, 2) and modifying our arguments slightly.

We give two appealing corollaries of our main theorem.

Corollary 2. If K(2r + 1, r) is Hamiltonian for all 3 ≤ r ≤ k then K(2r + 2, r) is
Hamiltonian for all 3 ≤ r ≤ 2k + 1. In particular K(2r + 2, r) is Hamiltonian for all
r ≤ 27.

It appears that the best previously known result is that K(2r + 2, r) is Hamiltonian
when r ≤ 13 [3].

Proof. This follows immediately from Theorem 1 with s = 2 and the fact that K(2r+1, r)
is Hamiltonian for all 3 ≤ r ≤ 13 [3].

Corollary 3. If K(2r + 1, r) is Hamiltonian for all 3 ≤ r ≤ k then K(2k+1
k

r, r) is
Hamiltonian for infinitely many values of r.

A particular consequence of this and the fact that K(2r + 1, r) is Hamiltonian for all
3 ≤ r ≤ 13 [3] is that K(27

13
r, r) is Hamiltonian for infinitely many r.

Proof. We claim that under the assumptions given the graph K(2r+2l, r) is Hamiltonian
for all l ≥ 0, 3 ≤ r ≤ k2l. Given this claim, setting r = k2l provides infinitely many
Hamiltonian graphs in K(2k+1

k
r, r).

We will prove the claim by induction on l. The base case l = 0 is the statement that
K(2r +1, r) for all 3 ≤ r ≤ k. For the induction step we may assume that K(2r +2l−1, r)
is Hamiltonian for all 3 ≤ r ≤ k2l−1 which, by Theorem 1, implies that K(2r + 2l, r) is
Hamiltonian for all 3 ≤ r ≤ k2l.

2 Notation

For a, b ∈ N we write [a, b] for {a, a + 1, . . . , b} and [a] for [1, a].
The key idea is to relate the graphs K(n, r) and K(n

2
, a) by splitting the ground set [n]

into n
2

pairs, and considering how an r-subset of [n] intersects these. To this end we need
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some notation. Let n = 2m be even. Let pi = {2i − 1, 2i} so that the sets p1, p2, . . . , pm

partition [n]. If X ⊆ [n] we define:

X(i) =







0 if X ∩ pi = ∅
−1 if X ∩ pi = {2i − 1}

1 if X ∩ pi = {2i}
2 if X ∩ pi = pi

and identify X with the m-tuple (X(1), X(2), . . . , X(m)) ∈ {−1, 0, 1, 2}m.
We also define

A(X) = {i ∈ [m] : X(i) = 2},
B(X) = {i ∈ [m] : X(i) = ±1},

and
fX : B(X) → {±1}

to be the function with fX(i) = X(i).
It is clear that A(X) ∩ B(X) = ∅ and |X| = 2|A(X)| + |B(X)|. Moreover, the triple

(A(X), B(X), fX) determines the set X. In what follows it will be convenient to swap
between the representation of a set X by the X(i) and by (A(X), B(X), fX).

Let Sa,b = {X ⊆ [n] : |A(X)| = a, |B(X)| = b}. It is clear that

[n](r) =

⌊ r

2
⌋

⋃

a=0

Sa,r−2a,

and that this is a disjoint union. When a is an integer we denote by Ka(n, r) the subgraph
of K(n, r) induced by Sa,r−2a. When A is a set of integers we denote by KA(n, r) the
subgraph of K(n, r) induced by

⋃

a∈A Sa,r−2a.
A permutation of [n] induces an automorphism of the graph K(n, r). If the permuta-

tion preserves the partition of [n] into the pairs p1, . . . , pm then the automorphism induced
preserves the sets Sa,r−2a. In what follows when we refer to permuting or reordering the
pairs p1, . . . , pm we mean applying such an automorphism.

3 Construction

Throughout n = 2m will be even. Our strategy is to find cycles in each of Ka(n, r) and
then to join them up. Specifically, we first construct a Hamilton cycle H0 in K0(n, r).
Next we partition each of Ka(n, r) a ≥ 1 into a small number of cycles. Finally, we join
the cycles which partition K1(n, r) to H0, join the cycles which partition K2(n, r) to this
new cycle, and so on until we have a Hamilton cycle in K{0,1,...,⌊ r

2
⌋}(n, r) = K(n, r).

The existence of H0 is the content of Lemma 1. The partition of Ka(n, r) into cycles
is the content of Lemma 2. In each case we need some extra properties to carry out the
joining process.

If c ∈ {±1}k we denote the k-tuple −c by c.
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Lemma 1. For all r ≥ 3 and even n ≥ 2r + 2 there is a Hamilton cycle H in K0(n, r)
with the property that for every c ∈ {±1}r−2 there is an edge XY of H with

X = (c, 0,±1,±1, 0, . . . , 0
︸ ︷︷ ︸

m−r−1

)

Y = (c,±1, 0,±1, 0, . . . , 0
︸ ︷︷ ︸

m−r−1

).

Lemma 2. Let n = 2m and 1 ≤ a ≤ ⌊ r
2
⌋ with (n, r, a) 6= (10, 4, 2). If the graph K(2a +

m − r, a) is Hamiltonian or is K(5, 2) then the graph Ka(n, r) can be partitioned into
cycles C1, C2, . . . , Ck where k ≤ 2r−2a. Moreover, this can be done in such a way that:

1. for 1 ≤ i ≤ k, each of the cycles Ci contains an edge XY with

X = (c(i), 2, . . . , 2
︸ ︷︷ ︸

a

, 0, . . . , 0
︸ ︷︷ ︸

a

, 0, . . . , 0
︸ ︷︷ ︸

m−r

)

Y = (c(i), 0, . . . , 0
︸ ︷︷ ︸

a

, 2, . . . , 2
︸ ︷︷ ︸

a

, 0, . . . , 0
︸ ︷︷ ︸

m−r

)

where c(1), c(2), . . . , c(k) are distinct elements of {±1}r−2a,

and

2. there is some reordering of the pairs p1, . . . , pm with respect to which for every d ∈
{±1}r−2a−2 there is an edge XY in one of the Ci with

X = (d, 0, 0, . . . , 0
︸ ︷︷ ︸

a

,±1, 2, . . . , 2
︸ ︷︷ ︸

a

,±1, 0, . . . , 0
︸ ︷︷ ︸

m−r−1

)

Y = (d,±1, 2, . . . , 2
︸ ︷︷ ︸

a

, 0, 0, . . . , 0
︸ ︷︷ ︸

a

,±1, 0, . . . , 0
︸ ︷︷ ︸

m−r−1

).

We postpone the proofs of these until the next section and move on to using them to
prove Theorem 1.

We repeatedly use the concept of inserting one cycle in another. Suppose that we have
two vertex disjoint cycles

X = x1, x2, . . . , xk

Y = y1, y2, . . . , yl

in a graph G. If, for some i, j, we have xiyj, xi+1yj+1 ∈ E(G) then we can form a new
cycle by adding these edges and removing the edges xixi+1 and yjyj+1. Specifically, this
new cycle is

x1, x2, . . . , xi−1, xi, yj, yj−1, . . . , y1, yl, . . . , yj+1, xi+1, xi+2, . . . , xk.
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We refer to this construction as inserting cycle Y into cycle X. Note that we can insert
several cycles into X provided that the edges of X that we delete to do the insertion of
each are distinct.

Proof of Theorem 1. We assume that (n, r) 6= (10, 4) since our construction does not work
in this case. However, it is known that K(10, 4) is Hamiltonian so this is not a problem.
We will show, by induction on i, that a cycle containing all vertices of K{0,1,...,i}(n, r) can
be constructed, containing for each d ∈ {±1}r−2i−2 an edge XY with

X = (d, 0, 0, . . . , 0
︸ ︷︷ ︸

i

,±1, 2, . . . , 2
︸ ︷︷ ︸

i

,±1, 0, . . . , 0
︸ ︷︷ ︸

m−r−1

)

Y = (d,±1, 2, . . . , 2
︸ ︷︷ ︸

i

, 0, 0, . . . , 0
︸ ︷︷ ︸

i

,±1, 0, . . . , 0
︸ ︷︷ ︸

m−r−1

).

When i = ⌊ r
2
⌋ this gives a Hamilton cycle in K(n, r) and so this claim implies Theorem

1.
Lemma 1 shows that this is true for i = 0.
Now take 0 ≤ i ≤ ⌊ r

2
⌋ and suppose that the claim is true for i. Let Hi be a cycle in

K{0,1,...,i}(n, r) as guaranteed by the induction hypothesis. Take a partition of Ki+1(n, r)
into cycles C1, . . . , Ct as described by Lemma 2 (with a = i+1). Note that the conditions
of this Lemma are met since s

2
= m−r and we know that K(2a+ s

2
, a) is either Hamiltonian

or K(5, 2). By the first part of Lemma 2 each cycle in this partition contains an edge XY

with:

X = (c, 2, . . . , 2
︸ ︷︷ ︸

i+1

, 0, . . . , 0
︸ ︷︷ ︸

i+1

, 0, . . . , 0
︸ ︷︷ ︸

m−r

)

Y = (c, 0, . . . , 0
︸ ︷︷ ︸

i+1

, 2, . . . , 2
︸ ︷︷ ︸

i+1

, 0, . . . , 0
︸ ︷︷ ︸

m−r

)

for some c ∈ {±1}r−2i−2, with distinct vectors c(1), . . . , c(t) playing the role of c in cycles
C1, . . . , Ct respectively.

Further, by the induction hypothesis, for each d ∈ {±1}r−2i−2 there is an edge XY in
Hi with

X = (d, 0, 0, . . . , 0
︸ ︷︷ ︸

i

,±1, 2, . . . , 2
︸ ︷︷ ︸

i

,±1, 0, . . . , 0
︸ ︷︷ ︸

m−r−1

)

Y = (d,±1, 2, . . . , 2
︸ ︷︷ ︸

i

, 0, 0, . . . , 0
︸ ︷︷ ︸

i

,±1, 0, . . . , 0
︸ ︷︷ ︸

m−r−1

).

In particular for each c(j) we can find such an edge with d = c(j). These edges can be
used to insert each of the cycles C1, . . . , Ct into Hi. The fact that the c(j) are distinct
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means that we do not ever have to use the same edge to insert more than one cycle. The
result is a cycle containing all vertices of K{0,1,...,i+1}(n, r) which we will denote by H′

i+1.
Now we take a permutation of the pairs p1, . . . , pm with the properties of Lemma 2

part 2 and apply it to each vertex in H′
i+1. Note that under this permutation H′

i+1 is
mapped to another cycle containing all vertices of K{0,1,...,i+1}(n, r). We denote this new
cycle by Hi+1. By Lemma 2, for each d ∈ {±1}r−2i−2 there is an edge XY in one of the
cycles C1, . . . , Ct of the form:

X = (d, 0, 0, . . . , 0
︸ ︷︷ ︸

i+1

,±1, 2, . . . , 2
︸ ︷︷ ︸

i+1

,±1, 0, . . . , 0
︸ ︷︷ ︸

m−r−1

)

Y = (d,±1, 2, . . . , 2
︸ ︷︷ ︸

i+1

, 0, 0, . . . , 0
︸ ︷︷ ︸

i+1

,±1, 0, . . . , 0
︸ ︷︷ ︸

m−r−1

).

These edges are not destroyed by the insertion of C1, . . . , Ct into Hi because the only
edges destroyed in this process are of the form XY with B(X) = B(Y ). Hence Hi+1

satisfies the properties required and the proof is complete.

4 Proofs

Let B = B1, . . . , Bs be a sequence of b-subsets of [m]. For each 1 ≤ i ≤ s let A(i) =

A
(i)
1 , . . . , A

(i)
t be a sequence of a-subsets of [m] \Bi. We will use these sequences together

with a single function f : B1 → {±1} to construct a sequence P = P1, . . . , Pst of r-
subsets of [n] where r = 2a+ b (in fact in all our applications it will be a path in K(n, r)).
We will define the Pk by specifying B(Pk), A(Pk) and fPk

. Firstly, for 1 ≤ k ≤ st let
k = (x − 1)t + y with 1 ≤ x ≤ s and 1 ≤ y ≤ t. We set

B(Pk) = Bx; A(Pk) = A(x)
y .

We set fP1
= f and given fPk−1

define fPk
inductively as follows.

If BPk
\ BPk−1

= {r1, . . . , rl}, BPk−1
\ BPk

= {s1, . . . , sl} with r1 < r2 < · · · < rl and
s1 < s2 < · · · < sl then

fPk
(x) =

{
−fPk−1

(x) if k ∈ BPk
∩ BPk−1

fPk−1
(si) if x = ri.

Note that if BPk
= BPk−1

then fPk
(x) = −fPk−1

(x).
We denote the sequence P by P(B; f ;A(1), . . . ,A(s)) and refer to this construction as

the P construction.
An important point of the definition of the f is that it is reversible; if B(Pk−1), B(Pk)

and fPk
are given then fPk−1

is uniquely determined by the same rule as above.
We will use this construction to build paths in K(n, r) and so we will need to know

when consecutive sets in the sequence are disjoint. The following simple lemma will be
used.
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Lemma 3. If B, f and A(i) are as above and in addition we have:

1. A
(i)
1 ∩ Bi−1 = ∅ for all 2 ≤ i ≤ s,

2. A
(i)
t ∩ Bi+1 = ∅ for all 1 ≤ i ≤ s − 1,

3. each sequence A(i) is a path in K([m]\Bi, a) (that is A
(i)
k ∩A

(i)
k+1 = ∅ for all 1 ≤ i ≤ s,

1 ≤ k ≤ t − 1),

then P(B; f ;A(1), . . . ,A(s)) is a path in K(n, r).

Proof. Let X, Y be sets. We have that X ∩ Y = ∅ unless one of the following holds for
some i:

1. (X(i), Y (i)) = (±1, 2) or (2,±1),

2. (X(i), Y (i)) = (2, 2),

3. (X(i), Y (i)) = (1, 1) or (−1,−1).

For consecutive elements of P(B; f ;A(1), . . . ,A(s)) the first of these possibilities is ruled
out by conditions 1 and 2 of the Lemma. The second possibility is ruled out by condition
3 of the Lemma. The third possibility is ruled out by the definition of f .

For S a finite set we write G(S, r) for the graph with vertex set S(r) and two vertices
A and B adjacent if |A ∩ B| = r − 1. Up to isomorphism G(S, r) depends only on the
cardinality of S and so for n ∈ N we shall write G(n, r) for G([n], r).

Lemma 4. For all 1 ≤ r ≤ n the graph G(n, r) contains:

1. a Hamilton path which starts at the vertex [r], ends at the vertex [n− r + 1, n], and
contains

[r − 1] ∪ {r}, [r − 1] ∪ {r + 1}, [r − 1] ∪ {r + 2}, . . . , [r − 1] ∪ {n}

as consecutive vertices,

2. a Hamilton cycle which contains

[r − 1] ∪ {r}, [r − 1] ∪ {r + 1}, [r − 1] ∪ {r + 2}, . . . , [r − 1] ∪ {n}

as consecutive vertices.

Where if n = r we interpret the single vertex [n] as being both a Hamilton path and a
Hamilton cycle with the required properties.
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Proof. We use induction on n. The result clearly holds for n = 2 (interpreting the
single edge G(2, 1) as a cycle), We may assume, by part 1 of the inductive hypothesis,
that for all 1 ≤ k ≤ n − r + 1 there is a Hamilton path in G([k + 1, n], r − 1) from
[k + 1, k + r − 1] to [n − r + 2, n]. Adding k to each vertex gives a path Pk in G(n, r)
from [k, k + r − 1] to {k} ∪ [n − r + 2, n] containing all the vertices v ∈ G(n, r) with
min(v) = k. Denote the reverse of a path P by r(P ). Now the path required by part 1
is given by P1, r(P2), P3, r(P4), . . . , Pn−r+1, and the cycle required by part 2 is given by
r(P1), P2, r(P3), P4, . . . , Pn−r+1 (note that Pn−r+1 is a single vertex).

Proof of Lemma 2. Let b = r − 2a, s =
(

m

b

)
and t =

(
m−b

a

)
.

We use the P construction to define 2b paths in K(n, r) each containing st vertices.
These will form the building blocks for our cycles.

We start by taking B = B1, . . . , Bs to be a Hamilton cycle in G(m, b). By Lemma
4 (and relabelling elements of the ground set) we may take this cycle to have B1 =
[1, b − 2] ∪ {m − 1, m} and Bs−k = [1, b − 1] ∪ {m − k} for m − b ≥ k ≥ 0.

We now define sets Fi, Li for 1 ≤ i ≤ s inductively as follows:

• F1 = [m − a − 1, m − 2].

• Given Fi we take Li to be the lexicographically least element of [m](a) with

Li ∩ (Fi ∪ Bi ∪ Bi+1) = ∅

(such a set exists since m−|Fi∪Bi∪Bi+1| ≥ m−(a+b+1) ≥ r+1−(r−a+1) = a).

• Given Li we take Fi+1 to be the lexicographically least element of [m](a) with

Fi+1 ∩ (Li ∪ Bi ∪ Bi+1) = ∅

(again such a set exists since m − |Li ∪ Bi ∪ Bi+1| ≥ a).

We claim that Ls = [b, b + a − 1].
To see this note that for all t ∈ [b, b + a − 1] we have that t ∈ Bs−m+t but t 6∈ Bx

for x > s − m + t. Hence by construction t 6∈ Fs−m+t+1 and, since Lx is chosen to be
the lexicographically smallest suitable set, t ∈ Ls−m+t+1. It follows similarly that for all
s − m + t ≤ x ≤ s we have t 6∈ Fx and t ∈ Lx. In particular Ls = [b, b + a − 1].

The important consequence of this claim is that F1 ∩ (Ls ∪ Bs ∪ B1) = ∅ (since b +
a− 1 < m− a− 1) and so the property we demand in the construction of the Fi, Li holds
going “around the corner” from Bs to B1.

Assuming now that (m− b, a) 6= (5, 2) we let A(i) = A
(i)
1 , . . . , A

(i)
t be a Hamilton cycle

in K([m] \ Bi, a) with A
(i)
1 = Fi and A

(i)
t = Li. Such a cycle exists by the hypotheses of

the Lemma. Indeed, K([m]\Bi, a) is K(n
2
− b, r−b

2
) for some 0 ≤ b ≤ r−2 or equivalently

is K(r − b + n−2r
2

, r−b
2

) for some ⌊ r
2
⌋ ≥ r−b

2
≥ 1.

By Lemma 3, we have that P(B; f ;A(1), . . . ,A(s)) = P1, P2, . . . , Pst is a path in Ka(n, r)
for each of the 2b choices for f : B1 → {±1}. Moreover, each choice of f results in a
distinct path and (by the reversibility of the definition of f in the P construction) these 2b
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paths partition Ka(n, r). Finally, we can construct a bijection from the set of last vertices
of these paths to the set of first vertices of these paths by mapping (A(Pst), B(Pst), f) to
(A(P1), B(P1), g) where

g(x) =

{
−f(x) if x ∈ Xst ∩ X1

f(b − 1) if x = m − 1.

(Note that P1 = Pst \ {b − 1} ∪ {m − 1} so this is the same process as used to construct
the fX in the P construction.)

This results in the paths being joined to form at most 2r−2a cycles C1, . . . , Ck which
cover K(n, r).

Finally, we observe that there is an ordering of the pairs p1, . . . , pm for which we
have edges of the form required by part 1 of the Lemma. This follows from the fact
that if we permute the pairs p1, . . . , pm so that there is an edge XY in C1 with A(X) =
[r − 2a + 1, r − a], A(Y ) = [r − a + 1, r], B(X) = B(Y ) = [r − 2a] then there will be an
edge of this form in each of the Ci. Similarly there is a permutation of [m] resulting in
edges of the form required by part 2 of the Lemma. Every possible d occurs because the
pattern of A(X), B(X) going round the cycle does not depend on fX . That is, if X is
followed by Y in some Ci then A(Y ), B(Y ) depend only on A(X), B(X) and not on fX .

If (m − b, a) = (5, 2) then we use the same method but instead of a Hamilton cycle
in K(5, 2) use a Hamilton path. This means the choice of Fi and Li must be changed.
Specifically, given Fi we choose Li to be an arbitrary element of [m](2) with |Fi ∩ Li| = 1
and Li ∩ (Bi ∪ Bi+1) = ∅. The method for choosing Fi is as before. Now there is a
Hamilton path in K([m] \ Bi, 2) from Fi to Li and we use this as our A(i). We can still
choose Ls so that F1 ∩ (Ls ∪ Bs ∪ B1) unless Fs = {m − 5, m − 4} or {m − 3, m − 2}.
We can avoid these possibilities for Fs unless Ls−1 = {m − 5, m − 4} or {m − 3, m − 2}.
However, there is no possible Fs−1 for which these are the only choices for Ls−1 and so we
always have a suitable Ls−1, Fs, Ls.

Let L1, . . . , Lh, R1, . . . , Rh be pairwise disjoint k-sets with wi, xi ∈ Li and yi, zi ∈ Ri.
Let H(k, h) = (V, E) be the graph with

V =

h⋃

i=1

Li ∪
h⋃

j=1

Rj

and

E =

h⋃

i=1

{lr : l ∈ Li, r ∈ Ri} ∪
h⋃

i=1

{yiwi+1, zixi+1}

where we identify wh+1, xh+1 with w1, x1 respectively. We refer to the vertices wi, xi, yi, zi

as linking vertices.
So, H(k, h) comprises h pairwise disjoint copies of the complete bipartite graph Kk,k

arranged in a cycle with two independent edges going from the right-hand part of each
Kk,k to the left-hand part of its successor around the cycle.
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We also (with a slight abuse of notation) denote by H ′(k, h) any graph constructed
in the same way as H(k, h) but allowing the Li and Ri to be k-sets or (k − 1)-sets (but
requiring that |Li| = |Ri| for all i).

Lemma 5. For all h ≥ 2 and k ≥ 3 each of the graphs H(k, h) and H ′(k, h) contains a
Hamilton cycle. Moreover, if M is a set of independent edges, each lying in one of the
complete bipartite graphs induced by Li ∪Ri for 1 ≤ i ≤ h and with w1y1, x1y1 6∈ M , then
the Hamilton cycles can be chosen so as to include all edges in M .

Proof. We start from the linking vertex y1 ∈ R1. This is joined to a vertex w ∈ L2. Since
M is an independent set of edges and there are 2 linking vertices in R2, there is some
linking vertex y ∈ R2 with wy 6∈ M . We take a path through all vertices of L2 ∪ R2

which starts at w, contains all edges in M which lie in the bipartite graph induced by
L2 ∪ R2, and ends at y. Continuing inductively we produce a path ending at a linking
vertex z ∈ Rh. This can be joined to a vertex x ∈ L1 and the cycle can be completed
here (using the fact that the edge from x to y1 is not in M).

An identical argument applies to H ′(k, h).

We will prove Lemma 1 for odd r by finding a copy of H(r + 1, 2r−1) in K0(n, r) and
specifying a set M of independent edges in it satisfying the conditions of Lemma 5. By
this Lemma we can find a Hamilton cycle C in this graph containing all the edges in M .
We then partition the remaining vertices of K0(n, r) into cycles which can be inserted
into C using edges in M .

If r is even the strategy is identical except that a copy of H ′(r+1, 2r−1) must be used.

Proof of Lemma 1. Suppose first that r is odd. Let V be the set of vectors in {−1, 0, 1}m

which satisfy:

1. v1, . . . , vr ∈ {±1},

2. vr+1 = 1,

3. vr+2 = · · · = vm = 0,

4. |{i : vi = 1}| ≡ 0 mod 2.

Note that |V | = 2r−1.
For v ∈ V define

Lv = {X ∈ K0(n, r) : |{i : 1 ≤ i ≤ r + 1, X(i) = vi}| = r},
Rv = {X ∈ K0(n, r) : |{i : 1 ≤ i ≤ r + 1, X(i) = −vi}| = r}.

So Lv comprises sets X with a single 0 among the first r + 1 coordinates and with X(i)
agreeing with vi on the remaining r, while Rv comprises sets X with a single 0 among the
first r + 1 coordinates and with X(i) agreeing with −vi on the remaining r.
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The subgraph of K0(n, r) induced by Lv ∪Rv is isomorphic to Kr+1,r+1. For example,
if m = 4, r = 3, v = (+1,−1,−1, +1) we have:

Lv = {(+1,−1,−1, 0), (+1,−1, 0, +1), (+1, 0,−1, +1), (0,−1,−1, +1)}
Rv = {(−1, +1, +1, 0), (−1, +1, 0,−1), (−1, 0, +1,−1), (0, +1, +1,−1)}.

If m = 7, r = 3, v = (+1,−1,−1, +1, 0, 0, 0) then (0, 0, 0) is appended to each of the
elements of Lv, Rv above (and the graph induced is still K4,4).

The fact that r is odd means that the Lv and Rv are pairwise disjoint. We will refer
to the Kr+1,r+1 subgraphs described here as (L, R)-blocks.

We can order the elements of V cyclically as v1, v2, . . . , v2r−1 so that consecutive ele-
ments differ in exactly two coordinates. To achieve this take a cyclic ordering of {±1}r

with consecutive elements differing in exactly one coordinate (that is a Hamilton cycle in
the hypercube or Gray code). Taking alternate elements of this cycle and appending +1
followed by m− r−1 0s to each gives the required cyclic ordering. We note now (because
we will need it later) that we may choose this ordering so that the coordinate 1 does not
change value between v1 and v2.

If u is the predecessor of v in this ordering then, because u and v differ in only two
coordinates, we can find w, x ∈ Ru and y, z ∈ Lv with wy, xz ∈ E(K0(n, r)). It follows
that we have a copy of H(r + 1, 2r−1) in K0(n, r).

For each c ∈ {±1}r−2 choose an edge XY within some (L, R)-block of the form

X = (c, 0,±1, +1, 0, . . . , 0
︸ ︷︷ ︸

m−r−1

)

Y = (c,±1, 0,−1, 0, . . . , 0
︸ ︷︷ ︸

m−r−1

).

For each such c there are two choices for such an edge, and so we can make our choice
avoiding edges in the block induced by Lv1

∪Rv1
. Call this set of (necessarily independent)

edges M1.
If m = r + 1 then our copy of H(r + 1, 2r−1) is a spanning subgraph of K0(n, r). By

Lemma 5 there is a Hamilton cycle in this graph containing all edges in M1. This satisfies
the conditions required by Lemma 1.

If m > r + 1 then we need to deal with the vertices in T = [m](r) \ [r + 1](r).
Let B = B1, . . . , Bl be any ordering of the sets in T and let A(i) = ∅ for 1 ≤ i ≤ l.

Now for each f : B1 → {±1} we have that P(B; f ;A(1), . . . ,A(l)) is a path in K0(n, r)
containing l vertices. Between them these 2b paths contain every vertex in T exactly once.
We can join these paths into cycles as in the proof of Lemma 2. That is, we join the last
vertex (Bl, ∅, f) to the first vertex (B1, ∅, g) where g is constructed from f, Bl, B1 exactly
as fPk

is constructed from fPk−1
, Bk−1, Bk in the definition of the P construction.

We may assume (by choosing B suitably) that B1 = [3, r + 2], B2 = {2} ∪ [4, r + 2].
This means that each cycle contains an edge (B1, ∅, f)(B2, ∅, g). If f(r + 1) = −1 then
pick any edge in the block Lv ∪ Rv with

v = (±1, g(2),−f(3), . . . ,−f(r + 1), 0, . . . , 0).
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If f(r + 1) = 1 then pick any edge in the block Lv ∪ Rv with

v = (±1,−g(2), f(3), . . . , f(r + 1), 0, . . . , 0).

Let this set of edges be M2. We can choose these edges so that M2 ∩M1 = ∅, M1 ∪M2 is
independent, and the edges in M2 are not incident with any linking vertices in the block
induced by Lv1

∪Rv1
. By Lemma 5 there is a Hamilton cycle in our copy of H(r+1, 2r−1)

containing all edges in M1 ∪ M2. Inserting the cycles partitioning T into this using the
edges in M2 gives a Hamilton cycle in K0(n, r) which satisfies the conditions required by
Lemma 1.

If r is even then the same argument holds except for the fact that the Lv and Rv are
no longer pairwise disjoint; for example R(+1,−1,−1,−1,+1) and L(−1,+1,+1,+1,+1) both contain
(+1,−1,−1,−1, 0). We can get round this by deleting the set X with X(r + 1) = 0
from Lv and Rv for all v ending with +1, +1. This gives H ′(r + 1, 2r−1) as a subgraph of
K0(n, r). Notice that we never delete a set which will play the part of w, x, y, z in linking
the bipartite blocks since the two coordinates which vary between the u and v associated
with consecutive bipartite blocks never include r + 1. We claim that those vertices in the
set

U = {X : B(X) = [r], |{i : X(i) = 1}| ≡ 0 mod 2}
have not been included. Indeed, if X ∈ U then modifying X by setting X(r + 1) to be 1
does not produce a vector in V . It follows that X is not in any LV . Similarly, modifying
X by setting X(r + 1) to be −1 and negating all coordinates does not produce a vector
in V and so X is not in any Rv.

Notice that U consists of 2r−1 vertices comprising 2r−2 pairs (X, Y ) with X(i) = −Y (i).
We let M3 be the set of all edges XY within (L, R)-blocks with B(X) = B(Y ) =

[2, r+2]. By our choice of ordering of V the edges in M3 are not incident with any linking
vertices in the block induced by Lv1

∪Rv1
. We now choose M1 and M2 as before, ensuring

also that M1, M2, M3 are pairwise disjoint and that M1 ∪M2 ∪M3 is an independent set.
By Lemma 5 there is a Hamilton cycle in our copy of H ′(r + 1, 2r−1) containing all edges
in M1 ∪ M2 ∪ M3. We insert the pairs of vertices in U into this using the edges in M3.
Finally, as before, we insert the cycles partitioning T into this using the edges in M2. This
gives a Hamilton cycle in K0(n, r) satisfying the conditions required by Lemma 1.
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