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Abstract

We consider a variant of the Cops and Robbers game where the robber can move
s edges at a time, and show that in this variant, the cop number of a connected

graph on n vertices can be as large as Ω(n
s

s+1 ). This improves the Ω(n
s−3

s−2 ) lower
bound of Frieze et al. [5], and extends the result of the second author [10], which
establishes the above bound for s = 2, 4.

1 Introduction

The game of Cops and Robbers, introduced by Nowakowski and Winkler [11] and inde-
pendently by Quilliot [13], is a perfect information game played on a finite graph G. There
are two players, a set of cops and a robber. Initially, the cops are placed on vertices of
their choice in G (where more than one cop can be placed at a vertex). Then the robber,
being fully aware of the cops placement, positions herself in one of the vertices of G. Then
the cops and the robber move in alternate rounds, with the cops moving first, where every
cop may move in each round and players are permitted to remain stationary on their turn
if they wish. The players use the edges of G to move from vertex to vertex. The cops
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win and the game ends if eventually a cop steps into the vertex currently occupied by the
robber; otherwise, i.e., if the robber can elude the cops indefinitely, the robber wins. The
parameter of interest is the cop number of G, which is defined as the minimum number of
cops needed to ensure that the cops can win. We will assume that the graph G is simple
and connected, because deleting multiple edges or loops does not affect the set of possible
moves of the players, and the cop number of a disconnected graph obviously equals the
sum of the cop numbers for each connected component.

For a survey of results on the cop number and related search parameters, see [6]. The
best known open question in this area is Meyniel’s conjecture, published by Frankl [4].
It states that for every graph G on n vertices, O(

√
n) cops are enough to win. This

is asymptotically tight, i.e. for every n there exists an n-vertex graph with cop number

Ω(
√

n). The best upper bound found so far is n2−(1−o(1))
√

log2 n ([5, 7, 14]).
Here we consider the variant where in each move, the robber can take any path of

length at most s from her current position, but she is not allowed to pass through a
vertex occupied by a cop. The parameter s is called the speed of the robber. This variant
was first considered in [3]. Frieze et al. [5] showed that the cop number of a connected

n-vertex graph can be as large as Ω(n
s−3

s−2 ). Later, the second author improved the lower
bound to Ω(n

s

s+1 ) for s = 2, 4 [10]. In this note we show that this lower bound holds for
all s.

2 The main result

Let k be a positive integer. For a vertex u of a graph G, Nk(u) denotes the set of vertices
whose distance from u is exactly k. If k = 1, then we simply write N(u). If A is a subset
of vertices, then NA

k (u) denotes the set of vertices v such that:

• The distance between u and v is k, and

• for every shortest (u, v)-path uu1u2 . . . uk−1v, we have u1 /∈ A.

Note that for every u, A and k, N
A∩N(u)
k (u) = NA

k (u). For vertices u, v, we denote their
shortest-path distance by d(u, v). The diameter of G is the maximum distance between
any two vertices of G.

Lemma 1. Let s, d, m be positive integers and q be a positive real such that qds/2 is an
integer larger than m. Let G be a d-regular bipartite graph of diameter larger than s with
the following properties:

(1) For every two vertices u, v of G of distance at most s + 1, there are at most m
distinct shortest (u, v)-paths.

(2) For every vertex u of G and every subset A of size at most m, |NA
s (u)| ≥ qds.

Then, assuming the robber has speed s, the cop number of G is at least q2ds/24ms.
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Proof. Let us first define a few terms. A cop controls a vertex u if the cop is on u or on an
adjacent vertex. A cop controls a path if it controls a vertex of the path. The cops control
a path if there is a cop controlling it. A vertex r is safe if there is a subset X ⊆ Ns(r) of
size qds/2 such that for all x ∈ X, all shortest (r, x)-paths are uncontrolled.

Let the number of cops be c with c < q2ds/24ms, and we will show that the robber
can evade forever. If this many cops can capture the robber, then they can capture her
from any starting configuration. Thus we may assume that the cops all start in one vertex
u, and the robber starts in a vertex r at distance s + 1 from u. Such two vertices exist as
G has diameter larger than s. Property (2) gives Ns(r) ≥ qds, and by property (1), the
cops control at most m vertices of Ns(r). Since qds − m > qds/2, the robber is in a safe
vertex at the starting configuration. Hence we just need to show that if the robber is in a
safe vertex before the cops move, then she can move to a safe vertex after the cops move.

Suppose that the robber is in a safe vertex r, so by definition, there is a subset
X ⊆ Ns(r) of size qds/2 such that for all x ∈ X, all shortest (r, x)-paths are uncontrolled.
Denote by A the set of vertices of all shortest (r, x)-paths for all x ∈ X. In particular,
r ∈ A and X ⊆ A. Now, the cops move to new positions. At this moment there is no cop
in A, so the robber is able to move to any vertex of X in her turn; thus to complete the
proof, we need to show that there is a safe vertex in X.
Claim. Every vertex u /∈ A has at most m neighbors in X.

Proof. If u has no neighbor in X, then the claim is true, otherwise let x ∈ X be adjacent
to u. Note that as d(r, x) = s, we have d(r, u) ∈ {s−1, s, s+1}. The graph G is bipartite,
so d(r, u) 6= s. If d(r, u) = s − 1 then u is on a shortest (r, x)-path, which contradicts the
assumption u /∈ A. Therefore, d(r, u) = s + 1, and x is on a shortest (r, u)-path. Hence
by property (1), the number of neighbors of u in X is at most m.

Remark. It can be shown using a similar argument that every x ∈ X has at most m
neighbors in A.

By an escaping pair we mean a pair (x, y) of vertices with x ∈ X and y ∈ NA
s (x). We

call x the head and y the tail of the pair. By the remark, the set A ∩ N(x) has at most

m elements, and property (2) ensures that |NA
s (x)| = |NA∩N(x)

s (x)| ≥ qds. That is, every
x ∈ X is the head of at least qds distinct escaping pairs. We say that an escaping pair
(x, y) is free if all shortest (x, y)-paths are uncontrolled. We just need to prove that there
is an x ∈ X such that x is the head of at least qds/2 free escaping pairs, because then
x would be a safe vertex, and the robber, having speed s, can move to x in her move.
If (x, y) is an escaping pair, then every shortest (x, y)-path is called an escaping path.
By definition, every escaping path can be written as u1u2u3 . . . us+1, where u1 ∈ X and
u2 /∈ A.
Claim. Each cop controls at most 3msds escaping paths.

Proof. We first prove that every vertex v is on at most ds + msds−1 escaping paths, and
if v /∈ X, then v is on at most msds−1 escaping paths. Let u1u2u3 . . . us+1 be an escaping
path with u1 ∈ X and u2 /∈ A, such that v is its i-th vertex, i.e. v = ui.
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Assume first that i 6= 1. There are at most d choices for each of ui−1, . . . , u2, and for
each of ui+1, ui+2, . . . , us+1. By the previous claim, once u2 is determined, there are at
most m choices for u1. Consequently, for each 2 ≤ i ≤ s + 1, v is the i-th vertex of at
most mds−1 escaping paths, so if v /∈ X then v is on at most msds−1 escaping paths.

If i = 1 then v ∈ X and there are at most d choices for each of u2, u3, . . . , us+1, thus
each v ∈ X is the first vertex of at most ds escaping paths. This shows that v is on at
most ds + msds−1 escaping paths.

Recall that since the robber was in a safe vertex before the cops’ move, no cop is in
A at this moment. By the previous claim, each cop controls at most m vertices of X,
through which he can control at most m(ds + msds−1) escaping paths. Through every
other neighbor he can control at most msds−1 escaping paths. He controls d + 1 vertices
in total, so he controls no more than

m(ds + msds−1) + (d + 1 − m)(msds−1) ≤ 3msds

escaping paths.

Since there are c cops in the game, the cops control at most 3msdsc escaping paths.
By controlling each escaping path, the cops can decrease the number of free escaping pairs
by at most 2 (as each path has two endpoints), hence the number of non-free escaping
pairs is at most 6msdsc.

Now we prove that there is an x ∈ X such that x is the head of at least qds/2 free
escaping pairs, completing the proof. Recall that every x ∈ X is the head of at least
qds escaping pairs. Hence if there were no x ∈ X such that x is the head of at least
qds/2 free escaping pairs, then every x ∈ X would be the head of at least qds/2 non-free
escaping paths. As by definition of safeness, X has size qds/2, this would imply that the
number of non-free escaping pairs is at least (qds/2)2, which is larger than 6msdsc. This
contradiction shows that the robber can evade c cops forever. �

Let k, s be positive integers and d = 2k. Let x1, x2, . . . , xd be the d elements of GF (2k)
represented as column vectors of length k over Z2. Let H be the following 1 + k(s + 1)
by d matrix over the field Z2:

H =















1 1 . . . 1
x1 x2 . . . xd

x3
1 x3

2 . . . x3
d

...
...

. . .
...

x2s+1
1 x2s+1

2 . . . x2s+1
d















Let S = {e1, e2, . . . , ed} ⊆ Z
1+k(s+1)
2 be the set of columns of H . It is known that every set

of 2s+ 3 columns of H is linearly independent over Z2 (c.f., e.g., [1]), hence, in particular,
every (2s + 2)-subset of S is linearly independent over the field Z2. Let G be the graph

with vertex set Z
1+k(s+1)
2 , and with vertices u, v adjacent if u − v ∈ S (the Cayley graph

of the additive group Z
1+k(s+1)
2 with respect to S).
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Lemma 2. If d ≥ 2(s + 1)!, then the graph G has the following properties.

(i) G is connected.

(ii) G is d-regular.

(iii) G is bipartite.

(iv) For every two vertices u, v of G of distance at most s + 1, there are at most (s + 1)!
distinct shortest (u, v)-paths.

(v) For every vertex u of G and every subset A of size at most (s + 1)!, |NA
s (u)| ≥

(d/2s)s.

(vi) G has diameter larger than s.

Proof. (i) To show connectivity one has to prove that every element of Z
1+k(s+1)
2 can be

written as a linear combination of members of S, which is equivalent to the matrix
H having rank 1 + k(s + 1). Note that H has 1 + k(s + 1) rows, thus we need to
show that no nontrivial linear combination of its rows over Z2 is the zero vector.
But it is known that the rows 2, 3, . . . , 1 + k(s + 1) generate a dual BCH code, and
every nontrivial linear combination of them has almost the same number of zeros
and ones (see [9]).

(ii) This is clear as |S| = d.

(iii) This follows from the fact that each member of S has 1 as its first coordinate, hence
there is no odd-size subset of S whose sum of members is zero.

(iv) Let u, v be two vertices of G of distance m, where m ≤ s + 1. Each shortest
(u, v)-path has length m and thus corresponds to a unique ordered representation

u − v = s1 + s2 + · · · + sm,

with s1, . . . , sm ∈ S. If some s ∈ S appears more than once in this summation,
then we can delete a pair of them (we are in Z2, so s + s = 0) and find a shorter
representation (and a shorter (u, v)-path), which does not exist. So s1, . . . , sm are
distinct. Any other shortest (u, v)-path gives another ordered representation

u − v = s′1 + s′2 + · · · + s′m,

in which s′1, . . . , s
′

m are distinct by a similar argument, and we have s1 + · · ·+ sm +
s′1 + · · ·+ s′m = 0. By linear independence of every (2s + 2)-subset of S, (s′1, . . . , s

′

m)
is a permutation of (s1, . . . , sm). Therefore, the number of ordered representations
of u− v using m members of S is m!, so the number of shortest (u, v)-paths in G is
also m!, which is not more than (s + 1)!.
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(v) Without loss of generality, we may assume that A ⊆ N(u). Every a ∈ A can be
written as a = u + ei for some ei ∈ S. There is a set B ⊆ S of size at least d − |A|
such that for every e ∈ B, u + e /∈ A. For every s-subset {ei1 , . . . , eis} of B, we have
a vertex u + ei1 + · · ·+ eis of distance s from u. These vertices are all in NA

s (u) and
are distinct, because of the linear independence of every (2s+2)-subset of S. Hence
we have

|NA
s (u)| ≥

(

d − |A|
s

)

≥
(

d − |A|
s

)s

≥ ds

(2s)s
,

where the last inequality follows from d ≥ 2(s + 1)! ≥ 2|A|.

(vi) By linear independence of every 2s + 2 members of S, the distance between vertices
0 and e1 + · · · + es+1 is at least s + 1. �

Theorem 1. Let s be a fixed positive integer denoting the speed of the robber. For every
n, there exists a connected n-vertex graph with cop number Ω(ns/s+1).

Proof. Take k0 large enough so that d = 2k0 satisfies d ≥ 2(s+1)! and ds > 4(s+1)!(2s)s.
We may assume that n > 21+k0(s+1). Let k ≥ k0 be the largest integer with 21+k(s+1) ≤ n,
and let n0 = 21+k(s+1). By the way k is defined, we have n < 2s+1n0, so n = Θ(n0). Let
G be the graph described above with parameters k, s. Let m = (s + 1)! and let q satisfy

the equation qds = 2
⌊

ds

2(2s)s

⌋

. By Lemma 2, G is a connected bipartite d-regular graph

with n0 = O(ds+1) vertices and diameter larger than s. Also, for every two vertices u, v
of G of distance at most s + 1, there are at most m distinct shortest (u, v)-paths, and for
every vertex u of G and every subset B of size at most m,

|NB
s (u)| ≥ (d/2s)s ≥ qds.

Moreover, qds/2 is an integer and

qds/2 =

⌊

ds

2(2s)s

⌋

≥ ds

4(2s)s
> m.

Now by Lemma 1, if the robber has speed s, then the cop number of G is Ω(ds) =
Ω(n0

s/s+1) = Ω(ns/s+1). Let G′ be the graph obtained by joining some vertex of G to an
endpoint of a path with n − n0 vertices. It is easy to check that G′ is a connected graph
on n vertices, whose cop number is the same as the cop number of G, which is Ω(ns/s+1).

�

3 Concluding remarks

Following the notation of [10], let fs(n) be the maximum cop number of a connected
n-vertex graph when the robber has speed s. It is well-known that f1(n) = Ω(

√
n) (the

standard construction comes from the incidence graph of a projective plane, see, e.g.,
[12]). Meyniel conjectured that in fact f1(n) = Θ(

√
n) [4]. Frieze et al. [5] showed
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that fs(n) = Ω(n
s−3

s−2 ). They also showed that when the robber can move through an
unblocked path of arbitrary length in her turn, the cop number can be Ω(n). The second
author conjectured that fs(n) = Θ(ns/s+1) for every s [10]. In the present note we
proved that fs(n) = Ω(ns/s+1), so the natural open question is to prove or disprove that
fs(n) = O(ns/s+1). This seems to be a difficult problem (even for the case s = 1 the best
known bound is f1(n) ≤ n1−o(1), which is far from the conjectured O(

√
n) bound), and

the only general upper bound, given by Frieze et al., is the following: If α = 1 + s−1, then

fs(G) ≤ nα−(1−o(1))
√

log
α

n. Another interesting line of research is to study the maximum
cop number of certain classes of graphs, e.g., random graphs - see [2, 8] for several results.
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