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Abstract

An existing construction for face 2-colourable triangular embeddings of complete
regular tripartite graphs is extended and then re-examined from the viewpoint of
the underlying Latin squares. We prove that this generalization gives embeddings
which are not isomorphic to any of those produced by the original construction.

1 Introduction

Establishing the existence of a minimum genus surface embedding of each complete graph
K, was a crucial step in Ringel and Youngs’ solution of the famous Heawood map colour-
ing problem for surfaces of positive genus [17]. For some residue classes modulo 12 such
embeddings necessarily have all their faces triangular. Until 1999 the maximum number
of known nonisomorphic triangular embeddings of K, for any particular n in either an ori-
entable or nonorientable surface was a mere three [16]. Subsequent papers have established
that the number of such embeddings grows exponentially with n [1, 8, 11, 12, 13, 14, 15].
This number cannot exceed n™/3 and the best known lower bound, for a restricted infinite
class of values of n, is of the form n®”, where a is just less than 1 /864 [4, 7, 9]. A major
component of the proof of this best known lower bound is a recursive construction given
in [8] for face 2-colourable triangular embeddings of the complete tripartite graph K, ;, .
There is something of a lack of general constructions for such embeddings so extensions
of existing constructions are of interest. In the current paper we describe a generalization
of this construction that removes the need for a parallel class in one of the colours. We
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also identify the corresponding Latin squares, thereby generalizing the main result of [7].
A rather restricted version of this generalization was given in [3]. We prove that the fuller
version given here generates new embeddings which are not obtainable from the earlier
constructions given in [3, 7, 8].

The surfaces we consider will be closed, connected 2-manifolds, without a boundary.
Given a triangular embedding of some simple graph G with vertex set V(G), the rotation
at a vertex v € V(GQ) is the cyclically ordered permutation of vertices adjacent to v, with
the ordering determined by the embedding. Conversely, given a set of triangular faces
with each edge appearing in precisely two faces, the faces may be sewn together along
their common edges. If at each vertex v the resulting permutation of neighbouring vertices
is a single cycle, then the faces form a triangulation of some surface with the cycle at v
forming the rotation at v.

If row 7, column j contains entry k in the Latin square L then we write k = L(i, j) or
(i,7,k) € L. When a triangular embedding of K, ,, is face 2-colourable, the triangular
faces in each colour class determine a Latin square of order n by taking these faces as
the (row, column, entry) triples, where the row labels, the column labels and the entries
form the three sets of the partition. Thus a face 2-colourable triangular embedding of
K, ,,» may alternatively be described as a biembedding of the associated Latin squares
and we may use the terms triangles, triangular faces or triples interchangeably to refer to
the faces of the embeddings or to the triples of the Latin squares. The colour classes of a
face 2-coloured embedding will be taken as black and white. We write A > B to denote
the fact that the Latin square A biembeds with the Latin square B, and we also use this
notation to denote the biembedding itself, taking A white and B black. It was shown in
[5], by a very easy argument, that a face 2-colourable triangular embedding of K, , ,, i.e.
a biembedding of two Latin squares, is necessarily in an orientable surface.

A parallel class in a triangular embedding of K, ,, ,, is a set of n triangular faces that
cover all 3n vertices. A parallel class in one colour class of a face 2-colourable triangular
embedding of K, , , corresponds to a transversal in the associated Latin square of side
n, that is to say a set of n cells from the square that contains every entry symbol, and
covers every row and every column. A parallel class containing triangular faces from both
colour classes corresponds to a shared transversal having some cells from each of the two
Latin squares. Formally, (77, 75) is a shared transversal of a biembedding L; > Lo of two
Latin squares of side n if 77 is a partial transversal of L, 75 is a partial transversal of Lo,
|71 U T3] = n, and the triples of 7; U 75 cover every row, every column and every entry
symbol.

We say that the Latin square B is isotopic to A if A can be transformed to B by
applying permutations ¢,., ¢. and ¢, respectively to the row labels, column labels, and
entries. We say that two embeddings p and v of the same graph G are isomorphic if there
exists a permutation of the vertices of G that maps edges of u to edges of v and faces of
1 to faces of v.

For any remaining undefined items of terminology and for background information we
refer the reader to [2, 10, 17].

In the next section we describe a generalization of the recursive construction given in
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8] for face 2-colourable triangular embeddings of complete bipartite graphs K, , . The
original construction can be viewed in terms of the underlying Latin squares as described
in the following theorem taken from [7].

Theorem 1.1 Suppose that, for 0 < u < m —1, L > L), where L and each L., are of
order n and have row, column and entry labels {0,1,...,n — 1}. Suppose also that for
each (i,7) with 0 < i,j < n —1, Q;; > Q; ;, where both Q;; and Q; ; are of order m,
and have row, column and entry labels {0,1,...,m — 1}, and that the squares Q; ; have
a transversal T which is common for all pairs (i,j). Define A and A’, Latin squares of

order mn with row, column and entry labels {0,1,...,mn — 1}, by

Alnu+1i,nv+j) = nQ;;(u,v)+ L(i,j),
Alnu+i,nv+37) = nQi;(u,v) + K
L' (i,j) if there exists w such that (u,v,w) € T,

!
where k' = { L(i,j) otherwise,

forO<u,v<m—1and0<1i,7<n—1. Then Ara A’

Both the original construction and the version of it given in Theorem 1.1 require the
existence of a transversal in one colour class of some of the constituent Latin squares.
Our generalization, presented in Section 2, permits the transversal to be shared between
the two colour classes; this considerably extends the applicability of the construction. In
Section 3 we present an infinite class of biembeddings, none of which can be obtained
from Theorem 1.1 with m,n > 1 for any choices of the m biembeddings L < L, and n?
biembeddings Q;; > Q; ;. Furthermore, each of these new biembeddings is constructed
in the simplest possible way by our generalized construction, using just two biembeddings
L L/ and Q< Q.

2 Construction

The original construction from [8] produces a face 2-colourable triangular embedding of
K mn,mn from face 2-colourable triangular embeddings of K, ,,, ., and K, , . We now
describe our generalization using a labelling of the vertices of the embeddings that will
help in the subsequent discussion when we relate the construction to Latin squares.

So, suppose that for 0 < u < m — 1, ¢, is a face 2-coloured triangular embedding
of K, nn with vertex set R, U C, U E,, where R, = {rpusi : 0 < i <n-1}, C, =
{¢huri 0 <i<n-—1}and E, = {epusi : 0 < i < n— 1} are three disjoint sets. We
use the letters r, ¢ and e because these will later be related to the row, column and entry
labels of a Latin square. We also suppose that for each oriented white triangle (r;, c;, ex)
(= (Tnoti» Cno+js €notk)) Of ¢o, the ordered triple (7py+i, Coutjs €nusr) defines an oriented
white triangle of ¢, for each u € {0,1,...,m — 1}. In essence, this means that the
embeddings ¢, all have the “same” white triangles with the same orientations, although
the black triangles may be different. Then, for each pair (¢,7) with 0 < i,7 < n — 1,
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suppose that 1); ; is a face 2-coloured triangular embedding of K, », and that all of
these embeddings have a common parallel class P of triangular faces of which m; are
black and mgy are white, so that m; + mg = m. (The construction in [3] dealt with the
special case when m = 2 and m; = my = 1.) Initially, the supporting surfaces of all the
embeddings ¢, and 1); ; are taken to be disjoint from one another. For each u, let ¢;, be
the embedding obtained from ¢, by reversing the colours and the orientation.

Next list the n? white triangles of ¢g; without loss of generality, we can take these as
given by W;; = (r;,¢j, ex), where k is uniquely determined by (4, j). Then label the m
triangles forming the parallel class P in 1 j as (77,4 Crutj> Enurr), 0 < u < m—1, taking
care to respect the three vertex parts of the embedding, so that one vertex part receives
labels r*, another ¢* and the third e*. The order in which the triangles of P are taken is
immaterial except that the colours should be consistent, so that if (r);,.;, Crutjy €nusr) 19
black (respectively, white) then (17 .., ¢y, €n,i ) is black (white) for all (¢, j'). Then
each vertex of 1 ; is uniquely labelled. For each black triangle (77, ,;, Chiij> €nyrr) Of P
there is a corresponding oriented white triangle (744, Crutjs €nutk) of the embedding ¢,
and for each white triangle (7}, Cryuijs €nusr) Of P there is a corresponding oriented
black triangle (rnyti, Cnutjs €nutk) of the embedding ¢!,. We take the orientation of v ; to
be such that these triangles are oriented oppositely to the corresponding ones of ¢, and
¢,,. Figure 1 illustrates the situation in the particular case when the first m; triangles of
P are black and the last mq triangles of P are white.

Finally, cut out from the supporting surfaces each such pair of corresponding triangles,
one pair at a time, and identify the corresponding vertices (z* with =) and edges bordering
the two holes. After dealing with all mn? pairs of corresponding triangles in this fashion
the result is a face 2-colourable triangular embedding x of some graph G. To see that
G = Kpnmnmn, Dote that the vertex set of G is RUC UE, where R = {rpusi + 0 <
u<m-1,0<i<n-1}C ={cu :0<u<m-10<i<mn-1} and
E = {enuri :0<u<m—1,0<i<n-—1} are three disjoint sets. No edges are present
in G between any two vertices in R, and likewise for C' and E. Every edge rc with r € R
and ¢ € C appears precisely once in G, and likewise for the pairs CE and ER. For
example, the edge 7y, 4iCnytj is only in ¢, and 1); ;. After cutting out the triangles, this
edge borders a hole in both embeddings, so that after gluing it appears exactly once in
X- On the other hand the edge rpytiCnvtj, u # v, is only in 9, ;, and consequently it too
appears exactly once in Y.

We are now in a position to state our main result which interprets the above construc-
tion in terms of Latin squares. Using relabellings, there are many pairs of Latin squares
that can be used to represent the embedding x. Theorem 2.1 gives, what appears to us,
the most useful representation.
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Each ¢, is an embedding of K, , , and v; ; is an embedding of K, ;. m.

Figure 1. The construction.

Theorem 2.1 Suppose that, for 0 < u < m —1, L > L), where L and each L, are of
order n and have row, column and entry labels {0, 1,...,n —1}. Suppose also that for
each (i,7) with 0 <i,j <n—1, Q;; <1 Q; ;, where both Q;; and Q; ; are of order m, and
have row, column and entry labels {0,1,...,m — 1}, and that the squares Q;; and Q; ;
have a shared transversal T which is common for all pairs (i,7). Define A and A’, Latin
squares of order mn with row, column and entry labels {0,1,...,mn — 1}, by

Alnu+t,nv+j) = nQ;;(u,v)+k,
Anu+i,nv+j5) = nQ; (u,v)+k

2y
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! . ] . ] ..
where k — Lul(l,.]) if there. exists w such that (u,v,w) € T N Q;;,
L(i,j) otherwise,

and I — L;.(z',‘j) if there. exists w such that (u,v,w) € T NQ; ;,
L(i,j) otherwise,

for0<u,v<m-—1and0<i,j7<n-—1. Then Arx A"

Proof. Our proof makes use of the terminology established in the preceeding discussion,
which is similar to the terminology employed in [7]. Using ¢, = L > L], and v, ; = @Q; j

;,j, the embedding x of K., mnmn is produced as described above. The Latin squares
S and S’ such that y = S > 5" are then identified. Finally, permutations of the columns
and entries of S and S give A and A’, thereby establishing that A > A’.

Throughout the proof and subsequent discussions, we take the triangles determined
by Q;; and A to be white, and those determined by @Q; ; and A" to be black. Note that
the biembeddings L 1 L/ all have a common set of triangles determined by L. For
each u, we relabel the two Latin squares of the biembedding L > L! by adding nu to
each of the row, column and entry labels. This converts them to the range {nu,nu +
1L,nu+2,...,nu+n—1}. The resulting m embeddings of K, ,, , may then be represented
on m disjoint surfaces, and the vertex set of the u'" embedding ¢, may be taken as
R, UC,UE,, where R, = {rpui : 0<i<n—1}, C, = {cpusi : 0 <1 <n—1} and
E, ={epuri : 0 <i < n—1} are three disjoint sets representing the rows, columns and
entries of the relabelled Latin squares. The triple (7pu+i; Cruts, €nutr) Will be taken as a
white triangle of ¢, if and only if &k = L(7,j), and as a black triangle of ¢, if and only
if k = L/ (i,7). The embedding ¢/, is obtained by reversing both the orientation and the
colouring of ¢,.

Next suppose that 7 = {(au,Bu, ) : 0 < u < m — 1} where, for each u, v, =
Q; j(aw, Bu) or Qi j(au, By) (according as to whether the triple lies in @} ; or Q;;) for
every (7,7). Note that {a, : 0 < u <m—1} = {0,1,...,m — 1}, and similarly for
and . Also, without loss of generality, we may take c, = u for each u. For each of the
n? pairs (i,7), we relabel the two Latin squares Q;; and Q;; using the triangle (7, j, k)
defined by k& = L(i,j) and the transversal 7; each row label «, is renamed as nu + i,
each column label (3, is renamed as nu + j, and each entry label ~, is renamed as nu + k.
Since 7 covers all row labels, column labels and entry labels of Q;; and Q) ;, each of
these labels is renamed by this process. The resulting n* embeddings of K, ,,.m may
then be represented on n? disjoint surfaces, which we will take to be disjoint from those
of the biembeddings ¢,. The vertex set of the (i,7)™ embedding v;; may be taken as
R;;UC; UES;, where Rf; = {r,, ., : 0<u<m—1}, Cf; ={c},,; : 0 <u<m—1}
and Ef; = {1 0 <u<m— 1} are three disjoint sets representing the rows, columns
and entries of the relabelled Latin square.

Thus the triple (77, Crpsjs €npyr) defines a white triangle of 1, ; if and only if k =
L(1,7) and v, = Qi j(ow, By), and it defines a black triangle of 9); ; if and only if & = L(3, j)
and v, = Q; j (v, 3,). Note that if k = L(4, j) then (1}, 1, Crurj» €nusy) 18 @ black or white
triangle of ¢); ; according as to whether (o, By, V) is a black or white triple of 7', that is
to say whether it lies in 7 N Q; ; or in 7 N Q; ;.
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With the relabellings described in the previous two paragraphs, the biembeddings
¢, ¢ and 1, ; correspond precisely to the construction described at the start of this
section. By cutting out from the supporting surfaces each pair of corresponding triangles,
and identifying the corresponding vertices and edges, the result is a face 2-colourable
triangular embedding x of Ky mn.mn. Our labelling of the points gives this embedding
on the vertex set RUC U E, where R = {rpue; 0 0 < u <m—1,0<i <n-—1},
C={chusi :0<u<m—-1,0<i<n—-1}and £ = {epupi : 0<u<m—1,0<i<n—1}
are three disjoint sets. We next identify for x the two Latin squares S (white) and S’
(black) for which the biembedding S < S’ gives .

Take first a typical white triangle of x having the edge {7nu+i, Cnotj} If uw # v, or if
u = v and (o, By, V) is a triple from Q7 ; (i.e. if (e, Bu, ) € T is black), then this
triangle comes from the embedding 1; ;, and so the third vertex is e+ where k = L(i, j)
and w is given by 7, = Q; (o, [,). But if v = v and (ay, By, 7.) is a triple from Q; ;,
then this triangle comes from the embedding ¢!, (where the colours of ¢, are reversed),
and so the third vertex is e,y where k = L! (i, 7). Thus the Latin square S giving the
white triangles of x is represented with row, column and entry labels {0, 1,...,mn — 1}
by

S(nu+i,nv+j) = nw+k,
where v, = Qi (ay,ly)

_ L;(Za]) if u=v and (auaﬁu>7u) € Qi,ja
and k= { L(i, j) otherwise.

Take next a typical black triangle of y having the edge {rjut:,cno+;}. If u # v,
or if u = v and (au, By, ) is a triple from @, ;, then this triangle comes from the
embedding ; ;, and so the third vertex is ey,+, where k = L(4,j) and w is given by
Yo = Qi j(; By). But if u = v and (ay, Bu,7u) is a triple from @ ;, then this triangle
comes from the embedding ¢, and so the third vertex is e€,,+x where k = L! (i, 7). Thus
the Latin square S’ giving the black triangles of y is represented with row, column and

entry labels {0,1,...,mn — 1} by

S'(nu+i,nv+j) = nw+k,
where Yw = Q;J’(aua/@v)
L) ifu = and (o, Bu, ) € Q)
and k= { L(i, j) otherwise.

Our final step is to permute the row, column and entry labels of S and S’ to give new
Latin squares A and A’. We define

A(nay, +i,n0, +j) =nve +k & Shu+i,nv+j) =nw+k,
A'(na, +i,n8, +j) =nvye +k & S'(nu+i,nv+j)=nw+k,

where u,v,w € {0,1,...,m —1} and 4,75,k € {0,1,...,n — 1}. For example, the column
nv+ 7 of S becomes the column n(,+j of A. In fact, the row labels are unaltered because
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we have taken o, = u. Since S > .S’, we have A >a A'. Noting that L], = L, we have
for0<u,v<m-1land0<4ij<n-—1,

Alnu+i,nv +37) = nQ;;(u,v)+k,

Al(nu+i,nv+37) = nQ;;(u,v) + K&
L! (i,7) if there exists w such that (u,v,w) € T NQ;;,

where k = { L(i,7) otherwise,

and K — L,(i,7) if there exists w such that (u,v,w) € T NQ;;,
L(i,j) otherwise.

This completes the proof. 0O

Corollary 2.2 below gives a simplified version of Theorem 2.1, obtained by taking L/,
to be independent of u, and @;; and Q; ; to be independent of (7, j). It also introduces
a notation for the resulting squares A and A’ to emphasize their dependency on L, L', Q
and ()'. The corollary and the notation will be used in the next section.

Corollary 2.2 Suppose that L > L', where L and L' are of order n and have row, column
and entry labels {0,1,...,n—1}. Suppose also that Q 1 Q)', where Q) and Q) are of order

m and have row, column and entry labels {0,1,...,m — 1}, and that the squares Q@ and
Q' have a shared transversal T. Define Q(L,T,L") and Q'(L,T,L’) to be Latin squares
of order mn with row, column and entry labels {0,1,...,mn — 1}, by

Q(L,T,L)(nu+i,nv+j) = nQu,v)+k,
Q(L,T,LYnu+inv+j) = nQ(u,v)+k,

P :
where k — L (.z,.]) if there. exists w such that (u,v,w) € T N Q,
L(i,j) otherwise,
, L'(i,7) if there exists w such that (u,v,w) € T NQ’,
and k' = e :
L(i,j) otherwise,
forO<u,v<m—1and0<i,j<n-—1. Then Q(L,T,L) =< Q' (L, T,L).

3 New biembeddings

To demonstrate Theorem 2.1 we present an infinite class of biembeddings of Latin squares,
which cannot be obtained by the previous product constructions from [3, 8] in a non-
trivial way. By “non-trivial” we mean that both factors have orders strictly greater than
1. However, first we present a lemma about the “white” square of Theorem 1.1.

Lemma 3.1 Let A be the Latin square from Theorem 1.1. Then A is decomposable into n*
Latin squares A; j of orderm, 0 < 4,7 < m—1, defined by A, j(u,v) = A(nu+i,nv+j), 0 <
u,v < m—1, with entry labels {A; ;(u,v); 0 <wu,v <m-—1} ={t,n+t,...,(m—1)n+t}
fort = L(i,j).
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Proof. Fix i and j, 0 < 4,5 < n—1, and put ¢t = L(i,7). Consider the square sub-
array A; j(u,v) = A(nu + i,nv + j) of order m, 0 < u,v < m — 1. Since A, (u,v) =
A(nu+1i,nv + j) = nQ; j(u,v) + L(i, ) = nQ; ;(u,v) + t, the entries of A, ; are elements

of the set {t,n+t,...,(m—1)n+t}. Since there are exactly m of these elements and m is
the order of A; ;, the sub-array A, ; is a Latin square. Obviously, {4;;; 0 <i,j <n —1}
forms a decomposition of A. 0

We remark that the Latin square A from Theorem 1.1 is not necessarily decomposable
into Latin squares of order n, as can be deduced from Example 2.3 of [7].

By C,, we denote the cyclic Latin square of order n formed from the Cayley table of
the group (Z,,®). That is, Cy(i,7) = i @ j, where the addition is considered modulo n.
As our application of Theorem 2.1 is based on cyclic Latin squares, we need the following
lemma, see [2, page 145].

Lemma 3.2 Let p be a prime number. Then C, does not contain any Latin subsquare of
orderl, 1 <1l <p.

In our example we present a product construction for which m; # mgy (using the
notation preceding Theorem 2.1). For this we need a special biembedding of Latin squares.
Let C? be a Latin square of odd order n > 5 obtained from C), by the permutation of
0 1 234 ... n-1

columHSS0:<1 n—1 0 2 3 ... n—2

) . As an illustration, the square CY is shown

in Figure 2.
Lemma 3.3 Ifn is odd, n > 5, then C,, > CY.

Proof. We check the rotations around all row, column and entry vertices. The rotation
around row 7, 0 < i <n—1, is

i ¢ C0€iC1€14iCn—1€En—1+4iCn—2€n—24i ... C3 €344 C2E24,.

The rotations around columns are

Co = To€oTh—2€p—2Tn—4€n—yg ...73€371€1Tn-1€p-1Tn-3€n-3 ... T2E2,
C1 . Tg€1T1€aT9€3 ... Tph_2€Hn_1Tn—_1C€Ep,
Ci D T0€iTn—1€n—14iTn—2€n—2+; - .. T2€24;T1 €144,

Ch—1 * T0€pn-1Tp—2€p-3Tn—4€n_5...73€27T1€0Tn—-1€n—2Tn-3€En—4 ... T2€1,

where 2 < i <n — 2. Observe that in the rotations around ¢y and ¢,,_; we used the fact
that n is odd. The rotation around entry ¢, 0 <i <mn —1,is

€ 1 TiCoTn—24iC2Tn-34+iC3Tn—a4+4+iCq ... T24iCn—2T14;Cn—1Tn—1+iC1-

Thus, C,, > C? as required. O

We remark that the biembedding C),, > C¥ can also be obtained by the voltage
assignment construction presented in [6]. In the notation of [6], form B(r,e;«), where
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a=(0,1,n—1,n—2,...,2). Then for 2 <i < n — 2 place vertex ¢; into the lifted image
of the digon with voltages 7« + 1 and 4, and place c¢g, ¢1, ¢,_1 respectively into the lifted
images of the digons with voltages 2 and 0, 0 and 1, 1 and n — 1.

In the following matrix 7', in the first row we have the diagonal of ', and in the second
row we have the diagonal of C'?, n being odd and n > 5.

T _ 0 246 ... n—11 35 ... n—2
o 2 1 5 7 ... 0 2 4 6 ... 0
The highlighted entries determine a shared transversal 7% containing C,,(0,0), C#(1,1),
Cn(2,2), e Cn("T_l,"T_l), C;f("T“,"T“), Cn("‘;?’,"T”),...,

Cn(n—1,n—1), so that m; =n — 2 and my = 2.

0 1 2 0 1 2
00 1 2 L 01 20
03_1120 C3_1201

212 0 1 210 1 2
01 2 3 4 01 2 3 4
0/0 1 2 3 4 02 0 3 4 1

1|1 2 3 40 s 1|31 4 0 2

C5_223401 05_242013
313 4 0 1 2 3/0 3 1 2 4
414 0 1 2 3 411 4 2 3 0

Figure 2: The Latin squares C3, Cif, C5 and C¥.

Now we present our example. Denote by C the Latin square of order n defined by
Ct,j)=i@®j®1,0<1i,j <n—1, where the addition is modulo n. Then C, < CF,
see for example [5, 6]. Take L = C,, L' = C;F, Q = C,, and Q' = C¥, m being odd and
m > 5. Then, by Corollary 2.2, we have C,,(C,, 7%, CT) 1 C%(C,,T%, C).

Figure 2 shows C,,, C;r, C,, and C¥ in the particular case when n = 3 and m = 5.
The shared transversal 7% is shown highlighted in C5 and CY.

Put D = C5(Cs,7%,Cf) and D' = CZ(C3,7%,C5). The squares D and D’ are shown
on Figure 3, where the entries corresponding to 7% are highlighted. By Corollary 2.2 we
have D > D',

Returning to the general case, we will show that if p and ¢ are distinct odd primes,
q > 5, then u = Cy(C,, T%,CF) 1 C£(Cp, T%,C;F) cannot be obtained in a non-trivial
way by the construction presented in Theorem 1.1. Obviously, pu cannot be obtained
in a non-trivial way by the construction presented in [3] because C,(C,,7%,C;) and
C#(Cy, T?,C;) are Latin squares of odd order.
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Lemma 3.4 Let p and q be

tries {Sun(,7); 0 <i,j <p—1} = {pw,pw+1,...

onu and v.
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distinct odd primes, q
{C(Cp, T%,CF),C¥(C,, T?,CF)}. Then R is decomposable into Latin subsquares of or-
derl, 1 <l < pq, if and only if | = p. Moreover, such a decomposition is unique, formed
by q* Latin squares Sy, 0 < u,v < q—1, defined by S,(i,j) = R(pu—+1i,pv+j) with en-
,pw+ (p—1)} for suitable w depending

>

5,

and let R €




Proof. If R is decomposable into Latin subsquares of order [, 1 < [ < pq, then as p and ¢
are distinct odd primes, we have either [ = p or [ = q.

Fix v and v, 0 < u,v < ¢—1, and denote by S, , the sub-array of R of order p, defined
by Suw(i,7) = R(pu+i,pv+7), 0<4i,5 <p—1. Put

0 = { Cy(u,v) %f R = Cq(C’p,T@,C;;),
’ Cé(u,v) if R=CP(C,, T?,C)).

Then for every i and j, 0 < 4,j < p—1, we have S, (%, j) = pwy,+k, where 0 < k < p—1,
by Corollary 2.2. Since S, is a square sub-array of a Latin square and the order of S,
is p, we have {Sy(4,7); 0 <,7 <p—1} = {PWyp, Py +1,. .., pwyy + (p—1)} and Sy,
is a Latin square. Obviously, {S,,; 0 < u,v < ¢—1} forms a decomposition of R. It only
remains to show that this decomposition is unique.

As mentioned above, the entries of S, , are {pwy., pwu, + 1,...,pw.., + (p—1)}.
Replace every subsquare S, , of R by a single cell with entry w, , and denote the resulting
square by P. Then P = C, if R = C)(C),, T7%,C) and P = C? if R = C£(C,, T%,C)).
Hence, P is isotopic to a cyclic Latin square of order ¢.

Now suppose that S is a Latin subsquare of R of order [, such that S contains cells
from Sy, 4, and Sy, 4, for (ui,v1) # (ug,v2). Consider a mapping p from S to P, such
that the row pu + 7, column pv + j and entry pw, , + k is mapped to row u, column v
and entry w,,, respectively. For fixed u and v, all row, column, entry triples (pu + i, pv+
J, Wy + k) are mapped to (u,v,w,,) for any 4, j and k, 0 < ¢,5,k < p—1. Thus p(S)
is a Latin subsquare of P. By the assumption, p(S) contains cells (u,v1) and (ug, vy) for
(u1,v1) # (ug,v9), and so by Lemma 3.2 p(S) = P. Thus, S contains cells from every
Suws 0 <u,v < qg—1. Suppose that S contains r cells from one row of Sy, with entries
pwo o+ k1, pwoo+ ke, ..., pwoo+ k,. As the columns passing through these 7 cells contain
entries from the range [pwg o, pwoo + (p—1)] only in Sy, the square S contains 72 cells
from Spo. Consequently, all S, 0, 0 < u < ¢— 1, contain 72 cells of S, and hence all S, ,,
0 <wu,v < q—1, contain r? cells of S. Thus, the order of S is rq. Since [ € {p,q} and p
and ¢ are distinct primes, we conclude that r = 1 and | = ¢. It follows that S contains
rows 0+ ig,p+i1,...,(¢g—1)p +i,—1 and columns 0+ jo,p+ j1,..., (¢—1)p + j,—1, where
0 <10,J0,---,%-1,Jq—1 < p—1. Furthermore, for each ¢, 0 <t < ¢g—1, S contains exactly
one entry from [tp, (t+1)p — 1].

To obtain a contradiction to the supposition at the start of the preceding paragraph
we will consider the role of the shared transversal 7%. In order to do this we first make
the following definition. Given a Latin square L of order n (and with arithmetic in Z,),
we will call the set of cells {(0,7),(1,j—1),...,(n—1,7 —n+ 1)} a back diagonal of L.

Firstly consider the case when R = C,(C,, 7%, C). Subsquares S, are of two types.
Type 1 subsquares are those for which S, ,(7,7) = pwy, + Cp(4, j), and type 2 are those
for which Sy, (i,7) = pwy, + CF(i,5). There are ¢ — 2 subsquares S, of type 2, and
all remaining subsquares S, , are of type 1. For cells of S in type 1 subsquares we have
R(up + iy, vp + jy) = pwyy + (i ® Jy), where @ is considered in Z,. Consider the back
diagonals of S. Since m; = ¢ — 2, two of these back diagonals do not hit cells of type 2
subsquares. Assume that these diagonals contain cells (4o, gp+j,) and (o, (g+h)p+ Jg+n),
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0<g<g—1land1l<h<qg—1. As P isthe cyclic square C,, we have

wBJjg = 1uDJg-1 = 12BJg2 = ... = lg1DJgqs1,

10D Jgrn = UDJgrh1 = 12D Jgrn2 = .. = G 1D Jgrn—qr1-
Now subtracting iy ® j, = 91 ® jg—1 from iy @ jgin = 11 D Jgrp—1 We obtain joip, © j, =
Jg+h—1 © Jg—1. Analogously we get
Jo+h ©Jg = Jg+h-19Jg-1 = - = Jgth—q+1 O Jg—q+1, L€,
Jo+h©Jo =  J14n©O01 = .. = Je—1+h O Jg-1.
As1 < h<q—1and g is prime, we have

Jh©Jo =12 O Jh =Jsh ©J2n = = J(g—1)h © J(g-2)h = Jo © J(g—1)h-
Put f = jn © jo. Then f € Z, and
In=Jo® f, Jan=JoD2f, ..., Je-vp=Jo®@—1f Jo=Jo®qf,
the addition being in Z,. Since p and ¢ are coprime and 0 < f < p — 1, we have f = 0.
Consequently jo = j1 = - - - = j,—1 and analogously we can get ig = 7; = - -+ = i,_1. Recall

that for each ¢, 0 < ¢ < ¢g—1, S contains exactly one entry from [tp, (t+1)p—1]. For S, , of
type 2 we get R(up iy, up+ju) = Py +in®ju®1 # R((u—1)ptiy_1, (u+1)p+jus1) =
PWyy + 1y D Ju, so that S is not a Latin subsquare of R.

Secondly consider the case when R = C¢(C,, 7%, C}f). By reordering the columns of R
we can transform R into a Latin square R* which has a similar structure to Co(C,, 7%, C;f).
Then S; , and P* may be defined in relation to R* as S, , and P were defined in relation
to R. As before, P* = C,. The only difference between the two cases is that because
my = 2, only two Latin subsquares S; , of R* are of type 2, while all the others are of
type 1. Obviously, there are two back diagonals in S* which do not hit the two type
2 subsquares. Thus, as in the previous case, it can be shown that S* is not a Latin
subsquare of R*, and consequently S is not a Latin subsquare of R.

Hence, in either case, if R is decomposable into Latin subsquares of order [, 1 < [ < pq,
then every subsquare of the decomposition is a subsquare of S, , for some u and v,
0 <u,v <g—1. Since S, is isotopic to the cyclic square C), and p is a prime number,
the squares of the decomposition are exactly S, ., 0 < u,v < ¢ — 1, by Lemma 3.2. That
is, R is decomposable into Latin subsquares of order [ if and only if [ = p, and in such a
case the decomposition is unique. O

In the main theorem of this section we will utilize the decompositions of C,(C,, 7%, C;7)
and C¢(C,, T%,C;) derived in Lemma 3.4. Let R be a Latin square of order pg, where
p and ¢ are distinct primes. Then R will be called p-tidy if each S,,, 0 < wu,v < ¢ —1,
defined by S, ,(i,7) = R(pu+i,pv+7), 0 <i,5 < p—1, is a Latin subsquare of R with
entries {S,,(7,7) : 0<14,7 <p—1} = {pw,pw+1,...,pw+(p—1)} for some w depending
only on v and v.

By Lemma 3.4, both Cy(C,, T%,C)) and C¢(C,, T%,C;) are p-tidy Latin squares.
But we have more.
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Lemma 3.5 Suppose that R is a p-tidy Latin square. Let R* be obtained from R by
applying any one of the sixz possible permutations which mutually interchange the three
partite sets of R, namely the rows, columns and entries. Then R* is a p-tidy Latin
square.

Proof. First let R’ be obtained from a p-tidy Latin square R by interchanging the rows for
columns and vice versa. Define S, ,, 0 < v,u < g — 1, square arrays of order p, such that
Syu(d,1) = R(pv+j,pu+i), 0 < j,i <p—1. Then S, ,(j,7) = R(pu +i,pv + j). Since
R is a p-tidy Latin square, we have {5, ,(i,7); 0 <i,j <p—1} = {R(pu+i,pv+j); 0 <
i,j <p—1}={pw,pw+1,...,pw+ (p—1)} for some w, so that R’ is also a p-tidy Latin
square.

Now let R’ be obtained from a p-tidy Latin square R by interchanging the rows for
entries and vice versa. Then R'(pw + k,pv+ j) = pu+i if and only if R(pu+1i,pv+j) =
pw+k, 0<4,5,k <p—1and 0 <wu,v,w < q— 1. Define S, ,, square arrays of order p,
such that S, (k,j) = R'(pw + k,pv + j). Fix w and v and denote by ., a value such
that R(puy,» + 1, pv) = pw for some i, 0 < i < p — 1. Since R is a p-tidy Latin square,
we have {R(puy,, +i,pv+7); 0 <i,j <p—1} = {pw,pw+1,...,pw+ (p—1)}. Then
{S0u(k,3); 0< k,j <p—1} ={R(pw+k,pv+3); 0< k,j <p—1} = {py, Plwy +
1,...,puy. + (p—1)}, so that R’ is also a p-tidy Latin square.

Since every one of the six possible permutations mutually interchanging the three
partite sets of R can be composed from the two involutions considered above, the square

R* is a p-tidy Latin square. m

We will say that a biembedding of Latin squares o = A 1 B is a p-tidy biembedding
if both A and B are p-tidy Latin squares.

Theorem 3.6 Let p and q be distinct odd primes, ¢ > 5, and let p be the embedding
Co(Cp, T?,CF) 1 C2(Cy, T, CF). Then pu cannot be obtained by the product construction
presented in Theorem 1.1 in a non-trivial way.

Proof. By way of contradiction, suppose that u is obtained by Theorem 1.1 in a non-
trivial way. Then there are m (m > 1) biembeddings L < L], 0 < u < m — 1, of Latin
squares of order n and n? biembeddings Q; ; > Q;;, 0 <i,5 <m—1, of Latin squares of
order m, all Q; ; sharing a common transversal 7', such that the embedding v = A a A’
defined in Theorem 1.1 is isomorphic to .

Suppose X is an isomorphism from u = Cy(C,, T%,C) > CS(C,, T7,CF) to v =
A>a A’. By Lemma 3.4, both the squares appearing in u have a unique decomposition
into non-trivial Latin subsquares, and these subsquares have order p. Hence A and A’
must also have such a decomposition. By Lemma 3.1, A has a decomposition into Latin
subsquares of side m and, by assumption, m > 1. Hence, m = p, and consequently n = q.
The isomorphism x must be of the form x = y2x1, where y; is one of the six possible
permutations of the three sets {row labels}, {column labels}, {entries}, and x, permutes
the points within each of these sets.
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Now suppose that xy,u = By > B} = p/, say. Then you' = v, so that ¢/ and v are
isomorphic under a mapping that only permutes points within each of the sets of row
labels, column labels, and entries. By Lemma 3.5, 1/ is p-tidy. By Lemma 3.4, the unique
decomposition of By (B]) into Latin subsquares of order p is given by {S..} ({S,.,})
where 0 < u,v <q¢—1 and

Suw(i,j) = Bi(pu+i,pv+7),0 < i,j < p— 1, with entries pw + k,0 < k <p— 1,
Suo(i,J) = Bi(pu+i,pv+j),0 <4, j < p—1,with entries pw +k,0 <k <p— 1.

The decomposition of A into Latin subsquares of order p is formed by {A,,} where
0<u,v<qg—1and

Auo(iyj) = A(gi +u,qj +v),0 <i,j <p—1,with entries ¢k + w,0 < k <p— 1.
Now define 3, a permutation on {0,1,...,pg — 1}, by
Blpu+i)=qi+u, 0<i<p—-1 0<u<qg—1

Then define Y on i/ by applying 3 to the row labels, to the column labels, and to the entries
of By and B/ to form fi, say. Then i = yu' = Yxip and xoX 'fi = xoxipt = xp = v. If
i = By 1 B), say, where By = x(B;) and BY, = \(B), then the unique decomposition of
B, (B)) into Latin subsquares of order p, is given by

Tuw(i,j) = Ba(qi+u,qj +v)),0 <i,j <p— 1, with entries gk + w,0 < k <p—1,

T, ,(i,j) = By(qi +u,qj +v)),0 <i,j < p—1,with entries gk +w,0 <k <p—1.

The mapping Y2X ' is a permutation of the points within each of the sets of row
labels, column labels and entries. It takes i = By <1 B) to v = A <1 A’ in which the
decomposition of A is given by {A,,}. Since these decompositions are unique, each 4, ,
is the image of some T,/ ./, or each A, , is the image of some T;,,U,. So, if x2X ! maps
(say) the row points giy + u, gis + u to qi} + u’, qi, + v”, then v/ = ", and likewise for
column and entry points.

If we define Z; ;(u,v) = T,(7,7) (mod g), then

Zy j(u,v) = Z; j(u,v) (mod q), 0<1i,5,4,j7/<p—1, 0<u,v<qg—1.

Thus, working modulo ¢, for fixed u,v and varying 4, j, the entries T, , (¢, j) are all equal
and, by the argument in the previous paragraph, this remains the case after applying
X2X"'. So By (and likewise Bj) may be decomposed into p? square sub-arrays of side ¢
(the Z; ; in the case of B;) which are identical modulo ¢, by taking rows and columns
(i, 7) modulo p, and this remains the case after applying yax .

Since either xo Y H(Bz) or xox *(Bj) is A’, the same decomposition must apply to A’
However,

A (i) = Algi+u,qj +v)

. Li(u,v) if (i,4,k) € T for some k
_ ! 7 ) ’Jo )
= 4@ (h7) + { L(u,v) otherwise.
_ Li(u,v) if (4,4, k) € T for some k,
- L(u,v) otherwise.

} (mod g).
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But then if (¢,7,k) € 7 and (¢, ', k") ¢ T are triples of @), ,, we have (modulo q)

U,V

Ao (6:7) = Liu,v) # L(u,v) = A, (i, ).

This is a contradiction. Hence p and v cannot be isomorphic. O
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