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Abstract

Riis [Electron. J. Combin., 14(1):R44, 2007] introduced a guessing game for
graphs which is equivalent to finding protocols for network coding. In this paper
we prove upper and lower bounds for the winning probability of the guessing game
on undirected graphs. We find optimal bounds for perfect graphs and minimally
imperfect graphs, and present a conjecture relating the exact value for all graphs to
the fractional chromatic number.

1 Introduction

An active area of research in communication theory during the last ten years has been
the development of protocols for network coding [ACLY00]. In network coding there are
several senders and receivers who wish to pass messages between each other, however the
routers in the network can only send one message at a time. In order to avoid bottlenecks,
network coding allows the routers to compute and distribute new messages, as long as the
receivers can compute the senders’ original message from the collection of new messages
they received in its stead.

In [Rii07b], Riis connected network coding to the much older problem of finding an
optimal Boolean circuit for a Boolean function. In that paper, Riis disproved a conjecture
of Valiant in circuit complexity and showed that both network coding and this form of
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circuit complexity were equivalent to a certain type of multiplayer guessing game on a
graph.

The guessing game can be described as follows: Each vertex v of a, directed or undi-
rected, graph G is assigned a player, also denoted by v, and a uniformly random integer
from {1 . . . s}. A player v can see the numbers assigned at the neighbours of v, or in-
neighbours in the directed case, but not the number at v. Without communication, each
player must now make a guess as to the value of its own random number. The team of
players wins if all of them guess correctly their own value, and loses if anyone is incorrect.
The objective is to now find a strategy which makes the winning probability as large as
possible. At first it might seem like there is no way of getting a higher winning probability
than s−n on an n vertex graph, but Riis observed that this is far from being the case. If
G is the complete graph, the players can use the following simple strategy: Each player
picks the unique number such that the sum of that and all other numbers is 0 modulo s.
If every player follows this strategy they will all be correct when the sum of all numbers
is 0 modulo s, which happens with probability s−1, a value which does not even depend
on n.

In [Rii07b], Riis considered this game on general directed graphs, where player v can
see the number at vertex u if and only if there is an edge from u to v. Motivated by
this general question, in this paper we study the problem for undirected graphs. As we
shall see, the problem of finding optimal guessing game strategies can be translated into
a question regarding the size of the largest independent set in an auxiliary graph, and
using this graph we can find good bounds for the winning probabilities.

Here is an outline of the paper. In the next section we give some formal definitions and
prove some basic bounds for the winning probability of the guessing games. In Section 3,
we explain how the guessing numbers can be determined by computing the fixed points
of some specific maps. We also use the methods developed there to show that there is
a naturally defined limit of the guessing numbers which we call the asymptotic guessing
number. In Section 4, we find lower bounds on the guessing numbers using fractional
clique covers. In Section 5, we define the code graph of the guessing game and prove
that the guessing number can be computed by determining the independence number of
this graph. In Section 6, we find upper bounds on the guessing numbers using entropy
inequalities and pose a conjecture regarding the asymptotic guessing number of each
graph. Finally in Section 7 we consider some generalisations of the methods of the paper
in similar contexts.

As pointed out by the anonymous referee several of the results in this paper has
independently been developed by Riis, with various co-authors, for the directed version of
the game and we have given references for these directed graph results where they appear.

2 Definitions and some basic bounds

We start out by making a more formal definition of the guessing game.

Definition 2.1. In the guessing game on a graph G, each vertex v is assigned an integer
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xv ∈ {1, . . . , s} uniformly at random.
Given a vertex v of a graph G, a strategy for player v for the guessing game on G is a

function fv : {1, . . . , s}N(v) → {1, . . . , s}. The value of fv is called v’s guess. A strategy F
for the guessing game on G is a sequence of functions (fv)v∈V (G) such that each function
fv is a strategy for player v for the guessing game.

We say that the players win if all guesses are correct and we write Cor(F) to denote
this event.

We now define the guessing number of the graph via the winning probability in the
optimal strategy for that graph.

Definition 2.2. The guessing number gn(G, s) of a graph G with respect to the positive
integer s is the largest β such that there exists a strategy F for the guessing game on G
such that with probability 1

sn−β every player v guesses its own value xv, i.e. Pr (Cor(F)) =
1

sn−β .

In general, one could consider strategies where each player makes a random choice
based on the available information. However there is always an optimal strategy which is
deterministic, so we only consider deterministic strategies.

Lemma 2.3. Every randomised strategy for the guessing game on a graph G has winning
probability at most 1

sn−gn(G,s) .

Proof. A randomised strategy can be described by assigning a probability Pr(F) to each
deterministic strategy F . However the winning probability of such a strategy is

∑

F

Pr(F)Pr (Cor(F)) 6 max
F

Pr (Cor(F)) =
1

sn−gn(G,s)
.

Using this terminology we can now give a formal version of the strategy for the com-
plete graph which we described in the introduction.

Example 2.4. Let G be the complete graph Kn on n vertices. We define a strategy
for the guessing game on G by defining fv to map the sequence (xu)u∈N(v) to the unique
integer x′

v ∈ {1, . . . , s} such that x′
v +

∑

u∈N(v) xu is divisible by s. We will call this the
clique strategy. Observe that all the players guess correctly if and only if x′

v = xv for every
v ∈ V (G) which holds if and only if

∑

v∈V (G) xv is divisible by s. The probability of this

event is thus 1
s
. Since the probability that a single player guesses its own value correctly

is also 1
s
, this cannot be improved and we find that gn(Kn, s) = n − 1.

From the clique strategy we can define a natural strategy for general graphs by parti-
tioning the vertex set into cliques.

Definition 2.5. A clique cover, or clique partition of a graph G is a partition of V (G) into
vertex disjoint cliques. The clique cover number cp(G) of G is the minimum cardinality
of a clique cover of G.
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Note that the cliques in a clique cover of G induce a partition of the complement of
G into independent sets, i.e. a proper vertex colouring of G. Hence cp(G) = χ

(

G
)

.
We can now give a lower bound for the guessing number in terms of the clique cover

number, and an upper bound in terms of the independence number of G. As usual, we
let α(G) denote the size of the largest independent set in G.

Lemma 2.6.

1. For every graph G and every positive integer s, gn(G, s) > n − cp(G)

2. For every graph G and every positive integer s, gn(G, s) 6 n − α(G)

Proof. 1. A strategy giving this bound can be constructed by taking a minimal clique
cover and letting the players in each clique follow the clique strategy for that clique.
This gives probability at least 1

scp(G) that all players guess correctly.

2. Let I be a maximum independent set in G and let F = (fv)v∈V (G) be a strategy. We
choose the random number (xu)u∈V (G) in two stages. In the first stage, we generate
all numbers xu with u /∈ I. Observe that since I is independent all functions fu

with u ∈ I can now be determined. In the second stage, we generate all numbers
xu with u ∈ I and observe that the probability that player v guesses correctly is
exactly 1/s with the events being independent. It follows that Pr (Cor(F)) 6 s−α(G)

as required.

We call the strategy used in part 1 of the proof of the above lemma, the clique cover
strategy.

Even these two simple bounds are enough to determine the guessing numbers exactly
for large classes of graphs. In fact, these two bounds determine the guessing number of G
precisely when α(G) = cp(G). One particularly natural class which satisfies this property
is the class of perfect graphs, introduced by Berge [Ber63]. This is the class of graphs such
that χ(H) = ω(H) for all induced subgraphs of G. A classical theorem of Lovász [Lov72]
tells us that a graph is perfect if and only if its complement is perfect. In our context this
means that for a perfect graph G we have α(G) = ω(G) = χ

(

G
)

= cp(G)

Corollary 2.7. If G is perfect then gn(G) = n − α(G).

This tells us among other things that if G is bipartite then gn(G, s) = n−α(G). One
striking consequence is that a disjoint union of n K2’s, i.e. a matching of size n has the
same guessing number as the complete bipartite graph Kn,n, despite being a subgraph of
it having a factor of n fewer edges. In other words, all this extra information that the
players have in playing the guessing number for Kn,n contributes nothing to the winning
probability for the guessing game on this graph compared with the guessing game on the
matching of size n.
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3 Fixed points and the asymptotic guessing number

Another way of describing the guessing problem is in terms of fixed points of the mappings
given by different strategies. Note that a strategy F can be viewed as a mapping from
As = {1, . . . , s}V (G) into itself. The strategy F guesses correctly on a given outcome
of random numbers x = (xv)v∈V (G) if F(x) = x. Thus the problem of finding a good
strategy for the guessing game can be interpreted as finding a mapping F : As → As

with as many fixed points as possible, where fv only depends on xu ∈ N(v). We call a
mapping with the given dependence structure a strategy mapping and denote the set of
all strategy mappings on As by S(G, s). As similar discussion in terms of fixed points was
given in [WCR09].

If we let Fix(F) denote the number of fixed points, then we can compute the guessing
number as

gn(G, s) = max
F∈S(G,s)

logs Fix(F)

Let us define Fix(G, s) = maxF∈S(G,s) Fix(F).
While the guessing number is given by the maximum number of fixed points for a

mapping of this type there are also mappings at the other extreme with no fixed points,
for every non-trivial graph.

Example 3.1. Let G = K2 and take s = 2. Let the first player guess the same value as he
sees (i.e. the outcome of the random experiment of the second player), and let the second
player guess the opposite of the value it sees. For this strategy, Fix(F) = 0. Thus for
every graph with at least one edge there exists a strategy which never guesses all values
correctly, and this can be extended to larger s as well. This is of course to be expected
as the average number of fixed points over all strategy mappings is 1. So if we are able
to find strategy mappings with more fixed points, then there must also exist strategy
mappings with no fixed points at all.

So far, for all the examples of graphs we have seen, the guessing number was inde-
pendent of s. Our earlier results show that in order to see a dependence on s we must
consider non-perfect graphs. The strong perfect graph theorem [CRST06] tells us that a
graph is perfect if and only if neither G nor its complement contains an induced odd cycle
of length at least five. So we turn our attention to the five cycle C5, which is the smallest
non-perfect graph.

Example 3.2. Let G = C5, be the cycle on 5 vertices. Since α(C5) = 2 and χ(C5) = 3,
Lemmas 2.6 and 2.6 give 2 6 gn(G, s) 6 3 for every s.

For s = 2, let F be the strategy where a vertex guesses 2 if both its neighbours
have value 1, and guesses 1 otherwise. This strategy guesses correctly on the following
x: {11212, 12112, 12121, 21121, 21211}. Thus we have gn(C5, 2) > log2 5, and a quick
computer check shows that this is indeed optimal.

For s = 3, let F be the strategy where a vertex guesses 2 if both its neighbours have
value 1, guesses 3 if at least one neighbour has values 3 and no neighbour has value 2,
and guesses 1 otherwise. This strategy has Fix(F) = 11 and a computer check shows
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that it is the best symmetric strategy. However by computer check, using the methods of
the next section, we know that there exists a more complex, vertex dependent, strategy
which is optimal and has Fix(F) = 12. This strategy guesses correctly on the following
x:
{11111, 11231, 12323, 12331, 21112, 22212, 23312, 23323, 23331, 31113, 31233, 31323} In
this strategy each vertex uses a strategy which is distinct from that of every other vertex.
Thus we have gn(C5, 3) = log3 12 < gn(C5, 2). As pointed out by the referee this settles
a question by Yun posed in [Yun09], asking if the symmetric strategy is optimal.

For s = 2k we can create a strategy by writing each xv in base 2 and following the
clique strategy in each specific bit separately. This strategy will have Fix(F) = 5k, and
so gn(C5, 2

k) > gn(C5, 2).
Comparing the cases s = 2, s = 3 and s = 4 we see that gn(C5, s) is not monotone in

s.

The guessing number gn(G, s) is of course bounded by the number of vertices of G but
as we have seen in the previous example it is not monotone. One may wonder whether the
sequence (gn(G, s))s>1 tends to a limit or not. We will show that this is indeed the case
but first we go on to prove a few simple lemmas concerning the properties of Fix(G, s).

Lemma 3.3. Fix(G, s + 1) > Fix(G, s) + 1

Proof. Given any strategy mapping F = (fv)v∈V (G) for the guessing game on G with
respect to s, we extend this to a strategy mapping F ′ = (f ′

v)v∈V (G) for the guessing game
on G with respect to s + 1 as follows: If xu = s + 1 for at least on u ∈ N(v), then
f ′

v(x) = s + 1, otherwise f ′
v(x) = fv(x

′), where x′ is obtained from x by defining x′
u to

be equal to xu if xu ∈ {1, . . . , s} and equal to 1 otherwise. Observe that F ′ is indeed a
strategy mapping, every fixed point of F is also a fixed point of F ′ and moreover F ′ has
(s + 1, . . . , s + 1) as a fixed point as well.

Lemma 3.4. If H is a subgraph of G then Fix(H, s) 6 Fix(G, s)

Proof. Given a strategy mapping F for the guessing game on H , we extend it to a strategy
mapping F ′ for the guessing game on G by defining f ′

v(x) to be equal to fv({xu : u ∈
V (H)}) if v ∈ V (H) and to be identically 1 otherwise. It is immediate that F ′ is a
strategy mapping having at least as many fixed points as F .

The last inequality is very far from being strict, as shown by our earlier example with
the balanced complete bipartite graph on 2n vertices versus the matching of size n.

We can also bound the number of fixed points for composite values of s

Lemma 3.5. Fix(G, s1s2) > Fix(G, s1)Fix(G, s2)

Proof. This follows by simply writing each random number xv as (a − 1)s1 + b, with
b ∈ {1, . . . , s1} and a ∈ {1, . . . , s2}, and using the optimal mappings for s1 and s2 to
guess a and b independently.
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Theorem 3.6. The limit lims→∞ logs Fix(G, s) exists, and is at most |V (G)|. Moreover,
it is equal to sups∈N

logs Fix(G, s).

Proof. Suppose G has n vertices and let us write as = Fix(G, s). By the definition of
Fix(G, s) it follows that as 6 sn for every s and so if the limit exists then it is at most n.
By Lemma 3.3 we have that as+1 > as for every s ∈ N and by Lemma 3.5 we have that
ast > asat for every s, t ∈ N. Our aim is to show that lims→∞ logs as exists and is equal
to sups∈N

logs as. Given s, t ∈ N we claim that

logs as >
k

k + 1
logt at,

where k = ⌈log s/ log t⌉. The result immediately follows. Indeed, given ε > 0, let ℓ =
sups∈N logs as and take t large enough such that logt at > (1−ε)ℓ. With this t fixed, we can
now pick s large enough such that k/(k+1) > (1−ε). We deduce that logs as > (1−ε)2ℓ,
thus lim inf logs as > ℓ and so lim logs as exists and is equal to ℓ. To prove the claim,
observe that

logs as =
logt as

logt s
>

logt atk

logt t
k+1

>
logt a

k
t

k + 1
=

k

k + 1
logt at.

Hence may introduce the following asymptotic version of the guessing number.

Definition 3.7. The asymptotic guessing number gn(G) of G is

gn(G) = lim
s→∞

logs Fix(G, s)

Example 3.8. Let us return to C5. We have already seen that gn(C5, 2
k) > gn(C5, 2) =

log2 5. It follows that gn(C5) > log2 5. In particular gn(C5) > 2. In the next section we
will improve further on this bound.

4 Lower bounds via fractional clique covers.

So far we have determined exactly the guessing numbers of perfect graphs and found
a non-trivial lower bound for the asymptotic guessing number of C5. In fact, a much
better bound can be derived for both C5 and other non-perfect graphs by making use of
a fractional coverings. Before defining fractional coverings we introduce the t-fold blow
up of graphs and the blow-up strategy.

Definition 4.1. Given a graph G we define the t-fold blow up of G, denoted by Gt, as
follows: For each vertex v in G there are t vertices v1, . . . , vt in Gt with vertices vi and uj

being neighbours in Gt if and only if v and u are neighbours in G.

Later we will also need the following special case of the strong graph product.

Definition 4.2. The strong product of Kt and G, denoted Kt ∗ G is the graph obtained
from Gt by adding all edges of the form (vi, vj) for each vertex v in G.
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We can use the t-blow up of G to obtain better bounds for the guessing number of G
with respect to values of s which are perfect t powers.

Definition 4.3. Let G be a graph, let t be a positive integer and let s = st
1 for some

integer s1 > 1. Given any strategy F for Gt with respect to s1, we can obtain a strategy,
which we call the blow-up strategy, for G with respect to s as follows: If x is the number
assigned to a vertex v of G, we write x =

∑t

i=1(xi−1)si−1
1 , where xi ∈ {1, . . . , s1} for each

i. Then we assign the numbers x1, . . . , xt to the vertices v1, . . . , vt of Gt. We then follow
the strategy F on Gt. If y1, . . . , yb are the numbers guessed by F at vertices v1, . . . , vb,
then the number guessed by the blow-up strategy at vertex v will be y =

∑t

i=1(yi−1)si−1
1 .

We note that a similar blow-up strategy can be used in the case that s is a product
of t (not necessarily equal) integers strictly greater than 1. We discuss how this can be
done in subsection 7.1.

Theorem 4.4. Let G be a graph and let t, s1 be positive integers. Then gn(G, s1
t) >

gn(Gt, s1).

Proof. It is immediate that we can partition Gt into t vertex disjoint copies of G. Let F
be the strategy on Gt with respect to s1 which follows the best possible strategy on each
of these t copies of G. We now follow the blow-up strategy. The winning probability is
at least s

−t(n−gn(G,s1))
1 = s−(n−gn(G,s1)) and the result follows.

We could have in fact proved this theorem using Lemma 3.5 instead. We will see a
more powerful application of the blow-up strategy after we introduce fractional coverings
of graphs.

Definition 4.5. A fractional clique cover of a graph G is a family of cliques H1, . . . , Ht

of G together with non-negative weights w1, . . . , wt such that
∑

{i:v∈Hi}
wi > 1 for all

v ∈ V (G). The minimum value of
∑t

i=1 wi over all clique covers H1, . . . , Ht of G is known
as the fractional clique cover number of G and is denoted by cpf(G). It is also known as

the fractional chromatic number of the complement G of G, denoted by χf(G).

It is well known that cpf (G) is always a rational number and that α(G) 6 cpf (G) 6

cp(G). Similarly, we have that ω(G) 6 χf (G) 6 χ(G). One of the basic results in
fractional graph theory lets us relate the fractional chromatic number to the chromatic
number of a suitable blow up of the original graph. For these and other results on
fractional graph theory we refer the reader to [SU97].

Theorem 4.6. For each graph G there exists a positive integer t, with such that χf (G) =
χ(Kt∗G)

t
. Equivalently, considering the complement of Kt ∗ G, we have cpf(G) = cp(G

t
)

t

Observe that for any positive integer t and any integer multiple s of t we have that
χ(Kt ∗ G)/t 6 χ(Ks ∗ G)/s 6 χf(G). In particular, if t is an integer for which the
consequence of Theorem 4.6 holds, then it also holds for any integer multiple of t. Note
that considering the complement of G, there is an integer t (not necessarily the same as
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the one given by Theorem 4.6) such that cp(Gt) = tcpf(G). So we can use a combination
of the clique cover strategy and the blow-up strategy to obtain better strategies for the
guessing game.

Definition 4.7. Let G be any graph and let t be any positive integer such that cp(Gt) =
t cpf (G). Then the fractional clique strategy is defined by taking the blow-up strategy of
G with respect to the clique cover strategy of Gt.

Example 4.8. Consider the fractional clique strategy for C5. The fractional chromatic
number of C5 is 5

2
and a fractional clique strategy for C5 can be obtained by using the

clique cover strategy on the 2-fold blow up C2
5 of C5. This graph is depicted in Figure 1,

with a clique covering given by the thick edges.

Figure 1: C2
5 with a clique cover shown as thick edges.

Theorem 4.9. Let t be any positive integer as in Definition 4.7 . Then gn(G, s) >

n − cpf(G) whenever s is a perfect t-power. In particular, gn(G) > n − cpf (G).

Proof. We apply the fractional clique strategy. We have cp(Gt) = t cpf(G) and so, if
|V (G)| = n and s = st

1, then the winning probability is

s
−(tn−cp(Gt))
1 = s

−(tn−t cpf (G))

1 = s−(n−cpf (G)).

The result follows. The result for the asymptotic guessing number also follows immediately
since gn(G, s) > n − cpf(G) holds for infinitely many s.

For the five-cycle, and other symmetrical graphs, we can apply the following well
known lemma (Proposition 3.1.1 in [SU97]).

Lemma 4.10. If G is a vertex transitive graph on n vertices then χf(G) = n
α(G)

and

cpf(G) = n
ω(G)

.
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Two simple classes of vertex transitive graphs are the odd cycles and their comple-
ments.

Example 4.11. For C5, Lemma 4.10 improves our previous bounds to gn(C5, s) >
5
2

for
every s which is a perfect square. This is exactly half way between the two simple bounds
given by α(C5) and χ(C5). For the odd cycles in general, we find that gn(C2k+1, s) >

2k+1
2

for every s which is a perfect square, and for their complements we find gn(C2k+1, s) >

(2k + 1) − 2k+1
k

= 2k − 1 − 1
k

for every s which is a perfect k-power. Hence, by the
strong perfect graph theorem [CRST06], we have found improved bounds for the class of
minimally imperfect graphs.

For the odd cycles, the improvement given by considering cpf(G) instead of cp(G) is
bounded. However there are families of graphs where the improvement can be arbitrarily
large.

Example 4.12. Given positive integers n, r with n > 2r, the Kneser graph G = Kn:r has
the family of all r-subsets of {1, . . . , n} as its vertices with two vertices being neighbours if
and only if the corresponding sets are disjoint. These graphs are clearly vertex transitive
on

(

n

r

)

vertices. It is immediate that ω(G) = ⌊n/r⌋. The Erdős-Ko-Rado theorem implies

that α(G) =
(

n−1
r−1

)

and so by Lemma 4.10 we get that χf (G) = n/r. So the guessing

number of G is gn(G, s) =
(

n

r

)

− n
r
, for every s which is a perfect rth power. For the

Kneser graphs taking the r-fold blow up of Kn:r will give a working clique cover strategy,
see Chapter 3 of [SU97] for full details of the blow ups of Kneser graphs..

On the other hand, by Lovász’ solution to Kneser’s conjecture, we have χ(G) = n −
2r + 2 and so the simple clique cover strategy only gives gn(G, s) >

(

n

r

)

− (n − 2r + 2).
So if n = tr, then we get an improvement of (t − 2)(r − 1).

The family of Kneser graphs has some additional importance in connection with frac-
tional cover due to the fact that the fractional chromatic number of a graph can be
completely described in terms of which Kneser graphs G has homomorphisms into, see
Chapter 3 of [SU97].

Other graphs with large gaps between the bounds can be found by e.g. using the
Mycielski construction or the strong graph product, under which fractional chromatic
numbers are multiplicative. See [SU97] for more details on these and other constructions
for graphs with prescribed fractional chromatic numbers.

5 The code graph

In the previous section we have seen that the guessing number can be described in terms of
the number of fixed points of the strategy maps, and since this is a finite set of mappings
of a finite set it is in principle possible to find the optimal strategy for a given G and s
by an exhaustive search. We also saw how to provide good lower bounds for the guessing
number in terms of χf (G), but we did not find matching upper bounds in general. Our
next aim is to introduce the code graph for the guessing game with a given G and s
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and, using this graph, both provide a more efficient computational procedure for finding
optimal strategies and a conjecture as to what the asymptotic guessing number gn(G)
should be.

Independently of us a “guessing graph” is introduced by Gadoleau and Riis in [GR10].
For undirected graphs our code graph and their guessing graph are equivalent, however
they also develop the guessing graph for general directed graphs. In that setting they also
develop analogue theorems of our Theorem 5.2 and the first part of Theorem 5.4, and
prove that the guessing graph is vertex transitive. We refer the reader to [GR10] for a
further discussion of the relationship between these and other conflict graphs used in the
literature.

Let Ω(n, s) denote the set of all strings of length n over the alphabet {1, . . . , s}. Given
a graph G on n vertices we will usually identify Ω(n, s) with As = {1, . . . , s}V (G). Our
ultimate aim is to determine which subsets of Ω(n, s) are fixed point sets of some strategy
map F on G.

Definition 5.1. The code graph X(G, s) has vertex set Ω(n, s) with two vertices x and
y of X(G, s) being adjacent if and only if there is a vertex v of G such that xv 6= yv but
xu = yu for all u ∈ N(v)

As the next theorem shows, the code graph completely describes the set of optimal
strategies for the guessing game.

Theorem 5.2. Let I be a set of vertices of X(G, s). Then I is the set of fixed points of
an optimal strategy mapping F if and only if it is a maximal independent set.

Proof. Let F be a strategy mapping (not necessarily optimal) having I as its set of fixed
points. Let x, y ∈ I and suppose that they are neighbours in X(G, s). Then there exist
at least one vertex v of G such that xv 6= yv but xu = yu for all u ∈ N(v). But x, y are
fixed points of F and so xv and yv can be determined by the values of xu and yu with
u ∈ N(v). Thus xv = yv, a contradiction.

Conversely, given a maximum independent set I, we define a mapping F : As → As as
follows: For each vertex v of G and each vertex x of X(G, s), if there is an x′ ∈ I such that
x′

u = xu for each u ∈ N(V ) then we define fv(x) = x′
v. Otherwise, we define fv(x) = 1.

Note that since I is an independent set then each fv is well-defined and the mapping
F = {fv}v∈V (G) is a strategy mapping. We claim that F has I as its the set of fixed
points. Indeed, by construction every element of I is a fixed point of F . Moreover, since
the set of fixed points of F is an independent set containing the maximum independent
set I, then it must be equal to I. It now follows that F is optimal as no other strategy
mapping can have more fixed points.

It follows that we can compute the guessing number of G by computing the indepen-
dence number of X(G, s)

Corollary 5.3. For every positive integer s and every graph G we have that

gn(G, s) = logs(α(X(G, s))).
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Our simple bounds for the guessing number can easily be translated into properties of
the code graph.

Theorem 5.4.

1. If α(G) = t, then α(X(G, s)) 6 sn−t.

2. If χ(G) = k, then α(X(G, s)) > sk.

Proof.

1. Let I be an independent set of size α(G) = t in G. Given x, y ∈ Ω(n, s) we say
that they are equivalent if and only if xu = yu for every u /∈ I. Observe that this
is an equivalence relation with each equivalence class being a clique in X(G, s) and
having size exactly st. Every independent set of X(G, s) can contain at most one
element from every such clique and therefore it can have size at most sn−t.

2. Let H1, . . . , Hk be a clique cover of G of size k and let I be the set of all elements
of x ∈ X(G, s) such that

∑

v∈Hi
xv ≡ 0 mod s for each 1 6 i 6 k. Then it is easily

seen that I is an independent set of X(G, s) of size sk.

The bound from Theorem 4.9 can also be translated into this setting by considering
the code graph of Gt, for a suitable value of t.

The code graph has sn vertices. Given any pair of strings of length n we can decide in
time n2 if they are adjacent in the code graph or not. Having constructed the code graph
we can now use standard algorithms for finding maximum independent sets to find both
the guessing number and optimal guessing strategies. Using e.g. the maximum indepen-
dent set algorithm from [TT77] we get the following upper bound on the complexity of
determining the optimal strategy.

Corollary 5.5. There exists an algorithm which constructs the optimal guessing strategy
in time at most 2

1
3
sn

The upper bound here is of course prohibitively large, however it can be reduced by
using the large automorphism group of X(G, s), e.g. using methods similar to those of
[RAMS04].

Lemma 5.6. X(G, s) is vertex transitive and Aut(G) ⋊ Z
n
s ⊆ Aut(X(G, s)), with the

semidirect group product ⋊ as described in the proof.

Proof. Let φ be an automorphism of G and let y ∈ Z
n
s . Then the automorphism (φ, y) of

Aut(X(G, s)) is defined by

(φ, y)(x)v = (x + yφ(v))φ(v)

where the elements of Ω(n, s) are viewed as vectors in Z
n
s with addition defined compo-

nentwise. It is straightforward to verify that this is indeed an automorphism of X(G, s)
and that (φ, y) ◦ (φ′, y′) = (φ ◦ φ′, y + y′) as required.
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6 Upper bounds via entropy inequalities

Our next aim is to show that our bound on the guessing number for odd cycles and their
complements given in Example 4.12 is sharp. As a tool we will use entropy inequalities of
discrete random variable. Recall that given a discrete random variable X with outcomes
labelled 1, . . . , N , its binary entropy is defined as

H(X) =

N
∑

i=1

Pr(X = i) log2 Pr(X = i),

It will be more convenient for what follows to work with the s-entropy instead

H(X) =

N
∑

i=1

Pr(X = i) logs Pr(X = i).

From now on, we will drop the subscripts and follow the convention that all our logarithms
are with base s. The conditional entropy of X given another random variable Y is the
entropy

H(X|Y ) =
∑

i,j

Pr(X = i, Y = j) log Pr(X = i|Y = j).

We will use the following properties of the entropy function.

Theorem 6.1. Let X, Y, X1, . . . , Xn be discrete random variables

1. H(X) > 0 with equality if and only if X is determenistic.

2. If X takes values in a set S, then H(X) 6 log |S| with equality if and only if X is
uniformly distributed on S.

3. H(X, Y ) = H(X|Y ) + H(Y ).

4. H(X|Y ) > 0 with equality if and only if X is determined by Y .

5. H(X|Y ) 6 H(X) with equality if and only if X and Y are independent.

6. For A ⊆ {1, . . . , n}, let XA denotes the random vector of Xi’s with i ∈ A. With this
notation, H is a submodular function, i.e.

H(XA∪B) + H(XA∩B) 6 H(XA) + H(XB).

For these and other properties of the entropy function we refer the reader to [CT06,
AS08]. Recently, entropy inequalities have been used used to derive bounds for other
problems in combinatorics, see [Rad03] for a survey.

Theorem 6.2. For each k, s ∈ N we have that gn(C2k+1, s) 6
2k+1

2
.
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Proof. Assume that the vertices of C2k+1 are numbered as 1, . . . , 2k + 1 with N(i) =
{i−1, i+1} where addition and subtraction are done modulo 2k+1. Let I be a maximum
independent set of X(C2k+1, s) and let X = (X1, X2, . . . , X2k+1) be the characteristic
vector of an element picked uniformly at random from I. By property (2), we have that
H(X) = log |I|. We will now proceed to bound H(X) from above. When estimating
entropies we will need to consider many quantities of the form H(XB) and in order to
simplify our notation we will write them as H(B) instead.

Since X is a fixed point of a strategy mapping, we know that Xi is determined
by Xi−1 and Xi+1. In particular, X is determined just by the random variables
X2, X3, X5, X7, . . . , X2k+1 and so by properties (3) and (4) we have that

H(X) = H(X|2, 3, 5, . . . , 2k + 1) + H(2, 3, 5, . . . , 2k + 1)

= H(2, 3, 5, . . . , 2k + 1)

Applying now properties (3) and (5) we get that

H(X) 6 H(2, 3) + H(5, 7, . . . , 2k + 1),

and by property (2) it follows that

H(X) 6 H(2, 3) + log(sk−1) = H(2, 3) + k − 1.

Likewise, we have

H(X) 6 H(1, 2, 3, 4) + H(6, 8, . . . , 2k) 6 H(1, 2, 3, 4) + k − 2.

Adding these inequalities and using property (6) we get that

2H(X) 6 H(2, 3) + H(1, 2, 3, 4) + 2k − 3

6 H(1, 2, 3) + H(2, 3, 4) + 2k − 3.

But since X2 is determined by X1 and X3 we have that H(1, 2, 3) = H(1, 3) 6 log(s2) = 2
and similarly H(2, 3, 4) 6 2. Putting all these together we get

log |I| = H(X) 6
2k + 1

2

and so by Lemmas 5.2 and 5.3 we get that gn(C2k+1, s) 6
2k+1

2

For C5, the case k = 2 in the theorem, this inequality was proved in [Rii07a] as well.
Using a larger family of index sets we can similarly find a bound for the guessing

number of the complement of an odd cycle.

Theorem 6.3. For each k, s ∈ N we have that gn(C2k+1, s) 6 2k − 1 − 1
k
.
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Proof. Assume that the vertices of C2k+1 are numbered as 1, . . . , 2k + 1 with N(i) =
[2k + 1] \ {i − 1, i + 1} where addition and subtraction are done modulo 2k + 1. Let I
be a maximum independent set of X(C2k+1, s) and let X = (X1, X2, . . . , X2k+1) be the
characteristic vector of an element picked uniformly at random from I. By property (2)
we have that H(X) = log |I|. We will now proceed to bound H(X) from above.

For each i ∈ [2k+1], let Ji = [2k+1]\{i−1, i+1} and Ki = [2k+1]\{i}. Observe that
Xi is uniquely determined from the values of all Xj with j 6= i and so H(X) = H(Ki).
Observe also that for any S ⊆ Ji we have that

H(X) = H(Ki−1) 6 H(Ji) + H(S ∪ {i + 1}) − H(S) 6 2k − 2 + H(S ∪ {i + 1}) − H(S).

Indeed, the first inequality follows from property (6) by taking A = Ji and B = S∪{i+1},
and the second inequality follows from property (2). Similarly, we have

H(X) 6 2k − 2 + H(S ∪ {i − 1}) − H(S),

since Xi is determined by Xi−1 and xi + 1.
Let T = {3, 5, . . . , 2k + 1}. Applying the second inequality with S = T and i = 2 we

get
H(X) 6 2k − 2 + H(T ∪ {1}) − H(T )

Applying the first inequality repeatedly with S = T ∪{1}, T ∪{1, 2}, T ∪{1, 2, 4}, . . . , T ∪
{1, 2, 4, . . . , 2k − 6} and i = 1, 3, 5, . . . , 2k − 5 respectively we get

H(X) 6 2k − 2 + H(T ∪ {1, 2}) − H(T ∪ {1})

H(X) 6 2k − 2 + H(T ∪ {1, 2, 4})− H(T ∪ {1, 2})

· · ·

H(X) 6 2k − 2 + H(T ∪ {1, 2, 4, . . . , 2k − 4}) − H(T ∪ {1, 2, 4, . . . , 2k − 6})

and summing all these together with the previous inequality up we get

(k − 1)H(X) 6 2(k − 1)2 + H(J2k−1) − H(T ) 6 2k(k − 1) − H(T ).

Since also

H(X) = H(3, 4, . . . , 2k + 1) 6 H(T ) + H(4, 6, . . . , 2k) 6 H(T ) + (k − 1),

we get
kH(X) 6 (2k + 1)(k − 1)

and the result follows.

Here we have found that if G is a minimally imperfect graph then its guessing number
is at least gn(G, s) 6 n − χf(G) for every value of s. We also know from the previous
section that equality holds for infinitely many values of s. In particular it holds for every
s which is a perfect b-power for some b which can be determined from G. We also know
from Section 2 that gn(G, s) > n−χf (G) for every perfect graph G, where in fact we even
have equality for every value of s. We conjecture that this inequality is true in general.
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Conjecture 6.4. For every graph G and every positive integer s we have gn(G, s) 6

n−χf (G). In particular gn(G, s) = n−χf (G) for every value of s for which the fractional
clique strategy can be used and so gn(G) = n − χf (G).

It would also be of interest to find the guessing number for values s where the fractional
clique strategy cannot be used. Even for C5 we know only the value for s = 3, and we
can obtain some bounds for other non-perfect squares via Lemmas 3.3 and 3.5.

For values of s other than perfect squares we do not even have a full understanding of
the guessing numbers for odd cycles.

Example 6.5. For s = 2 we have computed the independence numbers of the code
graphs for small odd cycles using a standard linear programming solver. We found that
α(X(C7, 2)) = 8, α(X(C9, 2)) = 16 and α(X(C11, 2)) = 32, i.e. exactly the values attained
by the clique strategy on these graphs. For C7, we also found that α(x(C7, 3)) = 29 > 33,
so here the clique strategy is not optimal.

We close this section with two problems.

Problem 6.6. Is the clique strategy optimal for gn(C2k+1, 2) for all k > 3?

Problem 6.7. Is the clique strategy optimal for gn(C2k+1, 3) for all k > 4?

7 Generalisations

7.1 Nonuniform random numbers

In the results so far we have assumed that all random numbers xv were picked uniformly
at random from the single set {1, . . . , s}. However there are two extensions which could
naturally appear. The first is to assume that the random numbers are independent as
before but each xv comes from some non-uniform distribution Pv, which may depend on
v. The second is to allow the different xv to come from sets Sv which may vary in size
with v. The code graph approach from the previous section can easily be adapted to both
of these modifications.

In order to deal with distinct Pv we can give each string in Ω(n, s) a weight
∏

v Pv(xv)
and use a strategy given by a maximum weight independent set. With this weighting the
maximum weight will correspond to the maximum winning probability.

Likewise the code graph can easily be adapted to differing Sv by replacing the uniform
Ω(n, s) with the product set

∏

v Sv, using the same neighbour relation as before.

7.2 Directed graphs

In [Rii07b] the emphasis was on directed graphs, as this is the case used in network coding
and boolean circuits. While our discussion has mainly been in terms of undirected graphs
there are several methods and bounds which can be generalized to directed graphs as well.
The directed case has been studied in great detail in [GR10], where the code graph for
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directed graphs is introduced and studied. We will here only give a brief discussion of the
connections to our work on fractional covergins.

The code graph X(G, s) can be defined for a directed graphs by replacing the neigh-
bourhood of v used in in Definition 5.1 with the set of in-neighbours of v, i.e. the set of
vertices from which there is a directed edge to v. As before the guessing number is given
in terms of the maximum independent sets of X(D, s).

Recall that a directed graph is acyclic if it is not possible to walk along a cycle by
following the directions of its edges. Given a directed graph D let ~α(D) denote the size of
the largest induced subgraph of D which is acyclic. This parameter can be used in place
of the independence number to bound the guessing number of D. The following theorem
was proven in [WCR09]

Theorem 7.1 ([WCR09]). Let D be a digraph on n vertices. Then gn(D, s) 6 n− ~α(D)

As in the clique strategy we may construct strategies for larger directed graphs by
partitioning their vertex set into disjoint copies of smaller graphs, following the opti-
mal strategies independently on each part of the partition. However unlike for ordinary
graphs, where the cliques played a pivotal role, there does not seem to be a canonical
family of directed graphs to partition the graph into. The most natural analogue of the
complete graphs are tournaments, which are directed complete graphs, but since there are
tournaments which are acyclic, some additional conditions seem to be required. Given
any family of directed graphs with known values of their guessing numbers we may also
use fractional covers using these graphs in the same way as we did in Theorem 4.9.

7.3 Infinite graphs

It is also natural to ask what happens if we play the guessing game on infinite graphs. We
begin by consider the countably infinite complete graph with s = 2, say. As a comparison,
recall that the winning probability on any finite complete graph with s = 2 is 1/2.

Consider the set {0, 1}N of countably infinite 0, 1-sequences. We would like to find a
‘large’ subset A of this set such that any two sequences in A differ in at least two places.
Having found such an A, we can then define a natural strategy F which has A as its set of
fixed points. It is not difficult to partition {0, 1}N into two sets A and B such that both
of them have the property that any two of their sequences differ in at least two places:
One just defines an equivalence relation ∼ on {0, 1}N by saying that two sequences x, y
are equivalent if and only if they differ in a finite number of places. For every equivalence
class C of ∼ we then pick a sequence x ∈ C and define Ax to be the set of all sequences
in C which differ from x in an odd number of places and Bx to be the set of all sequences
in C which differ from x in an even number of places. It is easy to check that A = ∪xAx

and B = ∪xBx have the required properties.
This is great as it seems to show that the winning probability for this graph is also

1/2. However there is one catch. The sets A, B above were constructed using the axiom
of choice and in fact it is not too difficult to see that they are not measurable. For our
purposes however, we want to calculate the winning probability and so we must require
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that each individual strategy fv : {0, 1}N → {0, 1} is measurable. So the question now
translates to finding a measurable subset A of {0, 1}N such that any two sequences of
A differ in at least two places and A has as large a measure as possible. Then for each
k ∈ N, the strategy fk : {0, 1}N → {0, 1} defined by fk(x) = 0 if the sequence x′ obtained
from x by making its k-th digit 0 belongs to A and fk(x) = 1 otherwise, is a measurable
strategy. Moreover the set of fixed points A′ of the strategy mapping F = (fk)k∈N is a
measurable subset of {0, 1}N containing A and so it has the same measure as A.

We proceed to show that any such A must have measure 0. Observe that this is
immediate if A is an open subset of {0, 1}N (under the product topology). Indeed the sets
Ux,n = {y : yi = xi ∀ i 6 n} form a basis for the topology and clearly no such set can
be a subset of A as x, x′ ∈ Ux,n where x′ is obtained from x by changing its (n + 1)-th
digit. If there is such a set A of positive measure, then we can find a basic open set
Ux,n such that m(A ∩ Ux,n) > 51m(Ux,n)/100. Now let A0 be the set of all sequences in
A ∩ Ux,n whose (n + 1)-th digit is 0 and let B0 be the set of all sequences obtained from
A0 by changing the (n + 1)-th digit to 1. We define A1 and B1 analogously. Now observe
that A0, A1, B0, B1 are disjoint subsets of Ux,n with m(A0)+m(A1) > 51m(Ux,n)/100 and
m(A0) = m(B0), m(A1) = m(B1). It follows that m(A0 ∪ A1 ∪ B0 ∪ B1) > m(Ux,n), a
contradiction.

So even in the complete countably infinite graph it turns out that the winning proba-
bility for the guessing game is 0.
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