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Abstract

Brooks’ Theorem states that a connected graph G of maximum degree ∆ has
chromatic number at most ∆, unless G is an odd cycle or a complete graph. A result
of Johansson shows that if G is triangle-free, then the chromatic number drops to
O(∆/ log ∆). In this paper, we derive a weak analog for the chromatic number of
digraphs. We show that every (loopless) digraph D without directed cycles of length
two has chromatic number χ(D) ≤ (1−e−13)∆̃, where ∆̃ is the maximum geometric
mean of the out-degree and in-degree of a vertex in D, when ∆̃ is sufficiently large.
As a corollary it is proved that there exists an absolute constant α < 1 such that
χ(D) ≤ α(∆̃ + 1) for every ∆̃ > 2.

Keywords: Digraph coloring, dichromatic number, Brooks theorem, digon, sparse
digraph.

1 Introduction

Brooks’ Theorem states that if G is a connected graph with maximum degree ∆, then
χ(G) ≤ ∆ + 1, where equality is attained only for odd cycles and complete graphs. The
presence of triangles has significant influence on the chromatic number of a graph. A
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result of Johansson [7] states that if G is triangle-free, then χ(G) = O (∆/ log ∆). In
this note, we study the chromatic number of digraphs [4], [9], [12] and show that Brooks’
Theorem for digraphs can also be improved when we forbid directed cycles of length 2.

Digraph colorings and the Brooks Theorem

Let D be a (loopless) digraph. A vertex set A ⊂ V (D) is called acyclic if the induced
subdigraph D[A] has no directed cycles. A k-coloring of D is a partition of V (D) into
k acyclic sets. The minimum integer k for which there exists a k-coloring of D is the
chromatic number χ(D) of the digraph D. The above definition of the chromatic number of
a digraph was first introduced by Neumann-Lara [12]. The same notion was independently
introduced much later by the second author when considering the circular chromatic
number of weighted (directed or undirected) graphs [9]. The chromatic number of digraphs
was further investigated by Bokal et al. [4]. The notion of chromatic number of a digraph
shares many properties with the notion of the chromatic number of undirected graphs.
Note that if G is an undirected graph, and D is the digraph obtained from G by replacing
each edge with the pair of oppositely directed arcs joining the same pair of vertices, then
χ(D) = χ(G) since any two adjacent vertices in D induce a directed cycle of length two.
Another useful observation is that a k-coloring of a graph G is a k-coloring of a digraph
D, where D is a digraph obtained from assigning arbitrary orientations to the edges of
G. Mohar [10] provides some further evidence for the close relationship between the
chromatic number of a digraph and the usual chromatic number. For digraphs, a version
of Brooks’ theorem was proved in [10]. Note that a digraph D is k-critical if χ(D) = k,
and χ(H) < k for every proper subdigraph H of D.

Theorem 1.1 ([10]). Suppose that D is a k-critical digraph in which for every vertex
v ∈ V (D), d+(v) = d−(v) = k − 1. Then one of the following cases occurs:

1. k = 2 and D is a directed cycle of length n ≥ 2.

2. k = 3 and D is a bidirected cycle of odd length n ≥ 3.

3. D is bidirected complete graph of order k ≥ 4.

Neumann-Lara [12] first proved a tight upper bound on the chromatic number of a
digraph.

Theorem 1.2 ([12]). Let D be a digraph and denote by ∆o and ∆i the maximum out-
degree and in-degree of D, respectively. Then

χ(D) ≤ min{∆o, ∆i}+ 1.

In this paper, we study the chromatic number of digon-free digraphs. For digon-
free planar digraphs, it was conjectured by Neumann-Lara [13], and independently, by
Škrekovski in [4], that the chromatic number is at most 2. This conjecture is also related
to a recent work of Aharoni, Berger and Kfir [1].
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We study improvements of Theorem 1.2 for digon-free digraphs using the following
substitute for the maximum degree. If D is a digraph, we let

∆̃ = ∆̃(D) = max{
√

d+(v)d−(v) | v ∈ V (D)}

be the maximum geometric mean of the in-degree and out-degree of the vertices. Observe
that ∆̃ ≤ 1

2
(∆o + ∆i), by the arithmetic-geometric mean inequality (where ∆o and ∆i

are as in Theorem 1.2). We show that when ∆̃ is large (roughly ∆̃ ≥ 1010), then every
digraph D without digons has χ(D) ≤ α∆̃, for some absolute constant α < 1. We do
not make an attempt to optimize α, but show that α = 1− e−13 suffices. To improve the
value of α significantly, a new approach may be required.

It may be true that the following analog of Johansson’s result holds for digon-free
digraphs, as conjectured by McDiarmid and Mohar [8].

Conjecture 1.3. Every digraph D without digons has χ(D) = O( ∆̃
log ∆̃

).

If true, this result would be asymptotically best possible in view of the chromatic
number of random tournaments of order n, whose chromatic number is Ω( n

log n
) and ∆̃ >(

1
2
− o(1)

)
n, as shown by Erdős et al. [5].

We also believe that the following conjecture of Reed generalizes to digraphs without
digons.

Conjecture 1.4 ([14]). Let ∆ be the maximum degree of (an undirected) graph G, and
let ω be the size of the largest clique. Then

χ(G) ≤
⌈

∆ + 1 + ω

2

⌉
.

If we define ω = 1 for digraphs without digons, we can pose the following conjecture
for digraphs.

Conjecture 1.5. Let D be a digraph without digons. Suppose that for every v ∈ V (D),
d+(v) = d−(v) = ∆. Then

χ(D) ≤
⌈

∆

2

⌉
+ 1.

Conjecture 1.5 is trivial for ∆ = 1, and follows from Lemma 3.2 for ∆ = 2, 3. We
believe that the conjecture is also true for a general digon-free digraph with ∆ replaced
by ∆̃.

Basic definitions and notation

We end this section by introducing some terminology that we will be using throughout the
paper. The notation is standard and we refer the reader to [3] for an extensive treatment
of digraphs. All digraphs in this paper are simple, i.e. there are no loops or multiple arcs
in the same direction. We use xy to denote the arc joining vertices x and y, where x is
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the initial vertex and y is the terminal vertex of the arc xy. We denote by A(D) the set
of arcs of the digraph D. For v ∈ V (D) and e ∈ A(D), we denote by D − v and D − e
the subdigraph of D obtained by deleting v and the subdigraph obtained by removing e,
respectively. We let d+

D(v) and d−
D(v) denote the out-degree (the number of arcs whose

initial vertex is v) and the in-degree (the number of arcs whose terminal vertex is v) of
v in D, respectively. The subscript D may be omitted if it is clear from the context. A
vertex v is said to be Eulerian if d+(v) = d−(v). The digraph D is Eulerian if every vertex
in D is Eulerian. A digraph D is ∆-regular if d+(v) = d−(v) = ∆ for all v ∈ V (D). We
say that u is an out-neighbor (in-neighbor) of v if vu (uv) is an arc. We denote by N+(v)
and N−(v) the set of out-neighbors and in-neighbors of v, respectively. The neighborhood
of v, denoted by N(v), is defined as N(v) = N+(v) ∪ N−(v). Every undirected graph
G determines a bidirected digraph D(G) that is obtained from G by replacing each edge
with two oppositely directed edges joining the same pair of vertices. If D is a digraph,
we let G(D) be the underlying undirected graph obtained from D by “forgetting” all
orientations. A digraph D is said to be (weakly) connected if G(D) is connected. The
blocks of a digraph D are the maximal subdigraphs D′ of D whose underlying undirected
graph G(D′) is 2-connected. A cycle in a digraph D is a cycle in G(D) that does not use
parallel edges. A directed cycle in D is a subdigraph forming a directed closed walk in D
whose vertices are all distinct. A directed cycle consisting of exactly two vertices is called
a digon.

The rest of the paper is organized as follows. In Section 2, we improve Brooks’ bound
for digraphs that have sufficiently large degrees. In Section 3, we consider the problem
for arbitrary degrees.

2 Strengthening Brooks’ Theorem for large ∆̃

The main result in this section is the following theorem.

Theorem 2.1. There is an absolute constant ∆1 such that every digon-free digraph D
with ∆̃ = ∆̃(D) ≥ ∆1 has χ(D) ≤ (1− e−13) ∆̃.

The rest of this section is the proof of Theorem 2.1. The proof is a modification of an
argument found in Molloy and Reed [11] for usual coloring of undirected graphs. We first
note the following simple lemma.

Lemma 2.2. Let D be a digraph with maximum out-degree ∆o, and suppose we have a
partial proper coloring of D with at most ∆o + 1− r colors. Suppose that for every vertex
v there are at least r colors that appear on vertices in N+(v) at least twice. Then D is
∆o + 1− r-colorable.

Proof. The proof is easy – since many colors are repeated on the out-neighborhood of v,
there are many colors that are not used on N+(v). Thus, one can greedily “extend” the
partial coloring.

the electronic journal of combinatorics 18 (2011), #P195 4



Proof of Theorem 2.1. We assume that ∆̃ is sufficiently large. We may also assume that
c1∆̃ < d+(v) < c2∆̃ and c1∆̃ < d−(v) < c2∆̃ for each v ∈ V (D), where c1 = 1− 1

3
e−11 and

c2 = 1 + 1
3
e−11. If not, we remove all the vertices v not satisfying the above inequality

and obtain a coloring for the remaining graph with (1− e−13) ∆̃ colors. Now, if a vertex
does not satisfy the above condition either one of d+(v) or d−(v) is at most c1∆̃ or one
of d+(v) or d−(v) is at most 1

c2
∆̃. Note that 1− e−13 > max{c1, 1/c2}. This ensures that

there is a color that either does not appear in the in-neighborhood or does not appear in
the out-neighborhood of v, allowing us to complete the coloring.

The core of the proof is probabilistic. We color the vertices of D randomly with C
colors, C = b∆̃/2c. That is, for each vertex v we assign v a color from {1, 2, ..., C}
uniformly at random. After the random coloring, we uncolor all the vertices that are
in a monochromatic directed path of length at least 2. Clearly, this results in a proper
partial coloring of D since D has no digons. For each vertex v, we are interested in the
number of colors that are assigned to at least two out-neighbors of v and are retained by
at least two of these vertices. For analysis, it is better to define a slightly simpler random
variable. Let v ∈ V (D). For each color i, 1 ≤ i ≤ C, let Oi be the set of out-neighbors of
v that have color i assigned to them in the first phase. Let Xv be the number of colors i
for which |Oi| ≥ 2 and such that all vertices in Oi retain their color after the uncoloring
process.

For every vertex v, we let Av be the event that Xv is less than 1
2
e−11∆̃ + 1. We

will show that with positive probability none of the events Av occur. Then Lemma 2.2
will imply that χ(D) ≤ (c2 − 1

2
e−11)∆̃ ≤ (1 − e−13)∆̃, finishing the proof. We will

use the symmetric version of the Lovász Local Lemma (see for example [2]). Note that
the color assigned initially to a vertex u can affect Xv only if u and v are joined by
a path of length at most 3. Thus, Av is mutually independent of all except at most
(2c2∆̃) + (2c2∆̃)2 + (2c2∆̃)3 + (2c2∆̃)4 + (2c2∆̃)5 + (2c2∆̃)6 ≤ 100∆̃6 other events Aw.
Therefore, by the symmetric version of the Local Lemma, it suffices to show that for each
event Av, 4 · 100∆̃6P[Av] < 1. We will show that P[Av] < ∆̃−7. We do this by proving the
following two lemmas.

Lemma 2.3. E[Xv] ≥ e−11∆̃− 1.

Proof. Let X ′
v be the random variable denoting the number of colors that are assigned

to exactly two out-neighbors of v and are retained by both of these vertices. Clearly,
Xv ≥ X ′

v and therefore it suffices to consider E[X ′
v].

Note that color i will be counted by X ′
v if two vertices u, w ∈ N+(v) are colored i and

no other vertex in S = N(u)∪N+(v)∪N(w) is assigned color i. This will give us a lower

bound on E[X ′
v]. There are C choices for color i and at least

(
c1∆̃
2

)
choices for the set

{u, w}. The probability that no vertex in S other than u and w gets color i is at least

(1 − 1
C
)|S| ≥ (1 − 1

C
)5c2∆̃. Therefore, by linearity of expectation, and using the fact that
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(1− x)n ≥ e−nx−x, where x = θ(1/n) and n is sufficiently large, we can estimate:

E[X ′
v] ≥ C

(
c1∆̃

2

) (
1

C

)2 (
1− 1

C

)5c2∆̃

≥ c1(c1∆̃− 1) exp(−5c2∆̃/C − 1/C)

≥ (c2
1∆̃− c1) exp(−10.001)

≥ ∆̃

e11
− 1,

for ∆̃ sufficiently large.

Lemma 2.4. P
[
|Xv − E[Xv]| > log ∆̃

√
E[Xv]

]
< ∆̃−7.

Proof. Let ATv be the random variable counting the number of colors assigned to at least
two out-neighbors of v, and Delv the random variable that counts the number of colors
assigned to at least two out-neighbors of v but removed from at least one of them. Clearly,
Xv = ATv−Delv and therefore it suffices to show that each of ATv and Delv is sufficiently
concentrated around its mean. We will show that for t = 1

2
log ∆̃

√
E[Xv] the following

estimates hold:

Claim 1: P [|ATv − E[ATv]| > t] < 2e−t2/(8∆̃).

Claim 2: P [|Delv − E[Delv]| > t] < 4e−t2/(100∆̃).

The two above inequalities yield that, for ∆̃ sufficiently large,

P[|Xv − E[Xv]| > log ∆̃
√

E[Xv]] ≤ 2e−
t2

8∆̃ + 4e−
t2

100∆̃

≤ ∆̃− log ∆̃

< ∆̃−7,

as we require. So, it remains to establish both claims.
To prove Claim 1, we use a version of Azuma’s inequality found in [11], called the

Simple Concentration Bound.

Theorem 2.5 (Simple Concentration Bound). Let X be a random variable determined
by n independent trials T1, ..., Tn, and satisfying the property that changing the outcome
of any single trial can affect X by at most c. Then

P[|X − E[X]| > t] ≤ 2e−
t2

2c2n .

Note that ATv depends only on the colors assigned to the out-neighbors of v. Note
that each random choice can affect ATv by at most 1. Therefore, we can take c = 1 in the
Simple Concentration Bound for X = ATv. Since the choice of random color assignments
are made independently over the vertices and since d+(v) ≤ c2∆̃, we immediately have
the first claim.

For Claim 2, we use the following variant of Talagrand’s Inequality (see [11]).
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Theorem 2.6 (Talagrand’s Inequality). Let X be a nonnegative random variable, not
equal to 0, that is determined by n independent trials, T1, . . . , Tn and satisfyies the follow-
ing conditions for some c, r > 0:

1. Changing the outcome of any single trial can affect X by at most c.

2. For any s, if X ≥ s, there are at most rs trials whose exposure certifies that X ≥ s.

Then for any 0 ≤ λ ≤ E[X],

P
[
|X − E[X]| > λ + 60c

√
rE[X]

]
≤ 4e

− λ2

8c2rE[X] .

We apply Talagrand’s inequality to the random variable Delv. Note that we can take
c = 1 since any single random color assignment can affect Delv by at most 1. Now,
suppose that Delv ≥ s. One can certify that Delv ≥ s by exposing, for each of the s
colors i, two random color assignments in N+(v) that certify that at least two vertices
got color i, and exposing at most two other color assignments which show that at least
one vertex colored i lost its color. Therefore, Delv ≥ s can be certified by exposing
4s random choices, and hence we may take r = 4 in Talagrand’s inequality. Note that
t = 1

2
log ∆̃

√
E[Xv] >> 60c

√
rE[Delv] since E[Xv] ≥ ∆̃/e11 − 1 and E[Delv] ≤ c2∆̃. Now,

taking λ in Talagrand’s inequality to be λ = 1
2
t, we obtain that P[|Delv −E[Delv]| > t] ≤

P[|Delv − E[Delv]| > λ + 60c
√

rE[X]]. Therefore, provided that λ ≤ E[Delv], we have
the confirmed Claim 2.

It is sufficient to show that E[Delv] = Ω(∆̃), since λ = O(log ∆̃
√

∆̃). The probability

that exactly two vertices in N+(v) are assigned a particular color x is at least c1∆̃2

2
C−2(1−

1/C)c2∆̃ ≈ 2e−10, a constant. It remains to show that the probability that at least one of
these vertices loses its color is also (at least) a constant. We use Janson’s Inequality (see
[2]). Let u be one of the two vertices colored x. We only compute the probability that u
gets uncolored. We may assume that the other vertex colored x is not a neighbor of u since
this will only increase the probability. We show that with large probability there exists a
monochromatic directed path of length at least 2 starting at u. Let Ω = N+(u)∪N++(u),
where N++(u) is the second out-neighborhood of u. Each vertex in Ω is colored x with
probability 2

∆̃
. Enumerate all the directed paths of length 2 starting at u and let Pi

be the ith path. Clearly, there are at least (c1∆̃)2 such paths Pi. Let Ai be the set of
vertices of Pi, and denote by Bi the event that all vertices in Ai receive the same color.
Then, clearly P[Bi] = 1

(b∆̃/2c)2 ≥ 4
∆̃2 . Then, µ =

∑
P[Bi] ≥ 4

∆̃2 · (c1∆̃)2 = 4c2
1. Now, if

δ =
∑

i,j:Ai∩Aj 6=∅ P[Bi ∩ Bj] in Janson’s Inequality satisfies δ < µ, then applying Janson’s
Inequality, with the sets Ai and events Bi, we obtain that the probability that none of
the events Bi occur is at most e−1, and hence the probability that u does not retain its
color is at least 1 − e−1, as required. Now, assume that δ ≥ µ. The following gives an
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upper bound on δ:

δ =
∑

i,j:Ai∩Aj 6=∅

P[Bi ∩Bj] =
∑

i,j:Ai∩Aj 6=∅

1

(b∆̃/2c)3

≤ (c2∆̃)2 · 2c2∆̃ · 8

(∆̃− 2)3
< 32,

for ∆̃ ≥ 100. Now, we apply Extended Janson’s Inequality (again see [2]). This inequality
now implies that the probability that none of the events Bi occur is at most e−c21/4, a
constant. Therefore, by linearity of expectation E[Delv] = Ω(∆̃).

Clearly, since E[Xv] ≤ c2∆̃, Lemmas 2.3 and 2.4 imply that P[Av] < ∆̃−7. This
completes the proof of Theorem 2.1.

3 Brooks’ Theorem for small ∆̃

The bound in Theorem 2.1 is only useful for large ∆̃. Rough estimates suggest that ∆̃
needs to be at least in the order of 1010. The above approach is unlikely to improve this
bound significantly with a more detailed analysis. In this section, we improve Brooks’
Theorem for all values of ∆̃. We achieve this by using a result on list colorings found in
[6]. List coloring of digraphs is defined analogously to list coloring of undirected graphs.
A precise definition is given below.

Let C be a finite set of colors. Given a digraph D, let L : v 7→ L(v) ⊆ C be a list-
assignment for D, which assigns to each vertex v ∈ V (D) a set of colors. The set L(v) is
called the list (or the set of admissible colors) for v. We say D is L-colorable if there is
an L-coloring of D, i.e., each vertex v is assigned a color from L(v) such that every color
class induces an acyclic subdigraph in D. D is said to be k-choosable if D is L-colorable
for every list-assignment L with |L(v)| ≥ k for each v ∈ V (D). We denote by χl(D) the
smallest integer k for which D is k-choosable.

The result characterizes the structure of non L-colorable digraphs whose list sizes are
one less than given by the directed version of Brooks’ theorem.

Theorem 3.1 ([6]). Let D be a connected digraph, and L an assignment of colors to the
vertices of D such that |L(v)| ≥ d+(v) if d+(v) = d−(v) and |L(v)| ≥ min{d+(v), d−(v)}+1
otherwise. Suppose that D is not L-colorable. Then D is Eulerian, |L(v)| = d+(v) for
each v ∈ V (D), and every block of D is one of the following:

(a) a directed cycle (possibly a digon),

(b) an odd bidirected cycle, or

(c) a bidirected complete digraph.

Now, we can state the next result of this section.
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Lemma 3.2. Let D be a connected digraph without digons, and let ∆̃ = ∆̃(D). If ∆̃ > 1,
then χl(D) ≤ d∆̃e.

Proof. We apply Theorem 3.1 with all lists L(v), v ∈ V (D) having cardinality d∆̃e. It is
clear that the conditions of Theorem 3.1 are satisfied for every Eulerian vertex v. It is
easy to verify that the conditions are also satisfied for non-Eulerian vertices. Now, if D
is not L-colorable, then by Theorem 3.1, D is Eulerian and d+(v) = d∆̃e for every vertex
v. This implies that D is d∆̃e-regular. Now, the conclusion of Theorem 3.1 implies that
D consists of a single block of type (a), (b) or (c). This means that either D is a directed
cycle (and hence ∆̃ = 1), or D contains a digon, a contradiction. This completes the
proof.

We can now prove the main result of this section, which improves Brooks’ bound for
all digraphs without digons.

Theorem 3.3. Let D be a connected digraph without digons, and let ∆̃ = ∆̃(D). If
∆̃ > 1, then χ(D) ≤ α(∆̃ + 1) for some absolute constant α < 1.

Proof. We define α = max
{

∆1

∆1+1
, 1− e−13

}
, where ∆1 is the constant in the statement of

Theorem 2.1. Now, if ∆̃ < ∆1 then by Lemma 3.2, it follows that χ(D) ≤ d∆̃e ≤ α(∆̃+1).
If ∆̃ ≥ ∆1, then by Theorem 2.1 we obtain that χ(D) ≤ (1− e−13) ∆̃ ≤ α(∆̃ + 1), as
required.

An interesting question to consider is the tightness of the bound of Lemma 3.2. It is
easy to see that the bound is tight for d∆̃e = 2 by considering, for example, a directed
cycle with an additional chord or a digraph consisting of two directed triangles sharing a
common vertex. The graph in Figure 1 shows that the bound is also tight for d∆̃e = 3.
It is easy to verify that, up to symmetry, the coloring outlined in the figure is the unique
2-coloring. Now, adding an additional vertex, whose three out-neighbors are the vertices
of the middle triangle and the three in-neighbors are the remaining vertices, we obtain a
3-regular digraph where three colors are required to complete the coloring.

Another example of a digon-free 3-regular digraph on 7 vertices requiring three colors
is the following. Take the Fano Plane and label its points by 1,2,...,7. For every line of
the Fano plane containing points a, b, c, take a directed cycle through a, b, c (with either
orientation). There is a unique directed 3-cycle through any two vertices because every
two points line in exactly one line. This shows that the Fano plane digraphs are not
isomorphic to the digraph from the previous paragraph. Finally, it is easy to verify that
the resulting digraph needs three colors for coloring.

Note that the digraphs in the above examples are 3-regular tournaments on 7 vertices.
It is not hard to check that every tournament on 9 vertices has d∆̃e = 4, and yet is
3-colorable. In general, we pose the following problem.

Question 3.4. What is the smallest integer ∆0 such that every digraph D without digons
with d∆̃(D)e = ∆0 satisfies χ(D) ≤ ∆0 − 1?
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12

2

1

2

Figure 1: Constructing a 3-regular digraph D with χ(D) = 3.

Note that this is a weak version of Conjecture 1.5. By Theorem 2.1, ∆0 exists. How-
ever, we believe that ∆0 is small, possibly equal to 4. The following proposition shows
that the above holds for every d∆̃e ≥ ∆0.

Proposition 3.5. Let ∆0 be defined as in Question 3.4. Then every digon-free digraph
D with d∆̃(D)e ≥ ∆0 satisfies χ(D) ≤ d∆̃(D)e − 1.

Proof. The proof is by induction on d∆̃e. If d∆̃e = ∆0 this holds by the definition of ∆0.
Otherwise, let U be a maximal acyclic subset of D. Then d∆̃(D − U)e ≤ d∆̃(D)e − 1 for
otherwise U is not maximal. Since we can color U by a single color, we can apply the
induction hypothesis to complete the proof.

As a corollary we get:

Corollary 3.6. There exists a positive constant α < 1 such that for every digon-free
digraph D with d∆̃(D)e ≥ ∆0, χ(D) ≤ αd∆̃e.

Proof. Let α = max
{

d∆1e
d∆1e+1

, 1− e−13
}

, where ∆1 is the constant in the statement of

Theorem 2.1. Now, applying Theorem 2.1 or Proposition 3.5 gives the result.
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