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Abstract

Given k ∈ N and a finite group G, it is shown that G is isomorphic to a subgroup
of the group of symmetries of some n-cube in such a way that G acts freely on the
set of k-faces, if and only if, gcd(k, |G|) = 2s for some non-negative integer s. The
proof of this result is existential but does give some ideas on what n could be.

1 Preliminaries

The n-dimensional cube, or simply n-cube, is denoted by Qn and will be represented as
having vertices the points of {1,−1}n ⊂ R

n, and edges joining any two vertices that differ
in exactly one component. A k-face F of the n-cube is a k-subcube whose vertices have
n− k of the coordinates predetermined,

F = {y = (y1, . . . , yn) ∈ Qn; yi1 = ai1 , . . . , yin−k
= ain−k

},

where, of course, each aij = ±1.
It is known that the automorphism group of the cube is Bn = Sn ≀ Z2, the wreath

product of Sn and Z2 (in this article we will use Z2 = {±1}). This group is sometimes
called the hyperoctahedral group, or the group of signed permutations; it is a Coxeter
group of type Bn = Cn, and thus a Weyl group. We denote the elements in Bn by (σ;x),
where σ ∈ Sn and x = (x1, x2, · · · , xn) ∈ (Z2)

n. The multiplication is given by

(σ;x)(τ ;y) = (στ ;xτy)

where xτ = (xτ(1), xτ(2), · · · , xτ(n)), and xτy is the standard component-to-component
multiplication in R

n. The (right) action of Bn on Qn is given by (σ,x)y = yσx.

∗The authors would like to thank the referees for their helpful advice, which greatly improved the
exposition.
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Definition 1. With the same notation as above.

1. Let G be a group acting on a set X. We say that g ∈ G acts freely on X if and only
if g does not fix any points in X.

2. A derangement of the k-faces of Qn is an element of Bn that acts freely on the set
of all k-faces of Qn.

3. A subgroup H of Bn is said to be a derangement of the k-faces of Qn if every
non-identity element in H is a derangement of the k-faces of Qn.

4. A group G will be called a derangement of the k-faces of Qn if it is isomorphic
to subgroup of Bn that is a derangement of the k-faces of Qn. In such a case we
introduce the notation

G ⊢k Bn.

We want to study conditions for a finite group G to be a derangement of the k-faces
of some Qn. The main tool we will use in this article is the Chen-Stanley criterion. In
order to get to it we first need to set some notation.

Definition 2. If σ = (i1, i2, . . . , is) is a cycle in Sn and x ∈ (Z2)
n, then

xσ = xi1xi2 · · ·xis .

Theorem 1. (Chen-Stanley Criterion [2]) A symmetry (π;x) ∈ Bn is a derangement
of the set of k-faces in Qn if, and only if, for every k-element π-invariant subset I ⊂
{1, . . . , n}, xσ = −1 for some cycle σ in π disjoint from I.

Note that, in particular, (π;x) ∈ Bn is a vertex-derangement (i.e. k = 0) if, and only
if, xσ = −1 for some cycle σ in π. This is because there is one zero-element subset (the
empty set), which is pi-invariant (vacuously) and every cycle is disjoint from the empty
set.

In a previous article [3], the first author proved the following results.

Theorem 2. Assume k and n are always non-negative integers, and that the notation is
the same used before

(i) If G is a group of odd order, then G ⊢k Bn for some n if, and only if, gcd(k, |G|) = 1.

(ii) For any m ≥ 2 and k ≥ 0, Zm ⊢k Bn for some n if, and only if, gcd(k,m) = 2s for
some s ≥ 0.

(iii) If G is a finite group and G ⊢k Bn for some n ≥ 1, then gcd(k, |G|) = 2s for some
s ≥ 0.

(iv) If |G| = 2s, then for all k there exists an n such that G ⊢k Bn.

The main theorem in this article (theorem 6) is, essentially, the converse of theorem 2
(iii). We now move on to present concepts and results that will be needed in the proof of
theorem 6.
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2 Sufficiency

We can think of G ⊢k Bn as saying there is a faithful representation of G in the group of
signed permutations, with an extra condition. Also, the hyperoctahedral group contains
a copy of Sn, so any faithful representation of a group G into Sn can be easily ‘extended’
to an injective homomorphism G→ Bn.

Definition 3. With the same notation used in the previous section we define:

1. An element (π;x) ∈ Bn is called sufficient if the following condition is satisfied.

(a) If (π;x) is of odd order, then π has no fixed points.

(b) If (π;x) is of even order, then there is a cycle σ in π for which xσ = −1.

2. A representation of a group G into Bn is a homomorphism ρ : G→ Bn.

3. A representation ρ : G → Bn is called sufficient if ρ(g) is sufficient for every non-
identity element g ∈ G.

Our idea is to consider a sufficient representation of a group G and then ‘multiply’ it
with itself to create a representation forG that satisfies the conditions of the Chen-Stanley
criterion. The way of multiplying representations we will use is defined next.

Definition 4. The outer product × : Bn × Bm → Bn+m is defined by

(π;x)× (θ;y) = (π × θ;x,y)

where π × θ is the permutation given by

π × θ =

(
1 2 · · · n n+ 1 · · · n +m

π(1) π(2) · · · π(n) n+ θ(1) · · · n+ θ(m)

)

The following fundamental construction will allow us to link the concepts of sufficient
representation and derangements of k-faces.

Remark 1 (Fundamental Construction) Let ∆t,∆
(i)
t : Bn → Bnt be given by ∆t(g) =

g × · · · × g
︸ ︷︷ ︸

t times

and ∆
(i)
t (g) = 1× · · · × g × · · · × 1

︸ ︷︷ ︸

t factors

, where the element g appears only in the

i-position. Note that ∆t(g) = ∆
(1)
t (g) · · ·∆

(n)
t (g).

For a cycle σ = (i1, . . . , ir), let σ̃ be the set {i1, . . . , ir}, and for a permutation π
of {1, . . . , n} with cycle decomposition π = σ1 · · ·σℓ, let the cycle set of π be the set
{σ̃1, . . . , σ̃ℓ}.

Now notice that if we write ∆t(g) = (θ,y) and ∆
(i)
t (g) = (θ(i),y(i)), then the cycle set

for θ is equal to the disjoint union S = S1∪ · · · ∪Sn where each Si is the cycle set for θ(i).
It follows that for any fixed natural number k, and g ∈ Bn, there is a sufficiently large
natural number t (t > k will do) so that any k-element subset I ⊂ {1, . . . , nt} is disjoint

from some cycle set Si as derived from ∆
(i)
t (g) above.
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Theorem 3. Suppose gcd(|G|, k) = 2s for some s, and there is a sufficient representation
ρ : G→ Br. Then G ⊢k Bq for some q.

Proof. First, suppose g = (π,x) ∈ Br is an even order element and xσ = −1 for some
cycle σ in π. Then, by the Fundamental Construction above, there is a sufficiently large
outer product ∆t(g) = (θ,y) for which if I ⊂ {1, . . . , rt} (θ-invariant or not) then I is
disjoint from some cycle set Si. By assumption, xσ = −1. The corresponding equivalent
cycle σ′ in θ(i), hence in θ, then satisfies yσ′ = xσ = −1.

Now suppose g = (π,x) is non-trivial and has odd order, π has no fixed points, and
gcd(|g|, k) = 2s for some s. Then, by necessity, gcd(|g|, k) = 1. Let ∆t(g) = (θ,y). It
also follows that θ is an odd order permutation, and so for any t there is no k-element
θ-invariant subset I ⊂ {1, . . . , rt}.

Now, we may assume G < Br and gcd(|G|, k) = 2s for some s. By choosing t to be
sufficiently large for all even order elements, we have a representation ρ : G → Brt that
satisfies the Chen-Stanley condition.

What is now left to be proved is that every group G such that gcd(|G|, k) = 2s, for
some s, admits a sufficient representation in some Bn. We will prove this in the next
section by inducing a representation for G from its 2-Sylow subgroup (recall that the case
|G| odd has already been discussed in theorem 2). The following theorem justifies us
wanting to induce from the 2-Sylow subgroup of G.

Theorem 4 (See [3]). Every finite 2-group has a sufficient representation.

3 Induced Representations

Suppose H is a subgroup of a finite group G of index m and ρ0 : H → Bn is a faithful
representation. There is a representation ρ : G → Bnm, induced up from ρ0 whose
construction we will now describe.

First choose a complete set of coset representatives {g1, . . . , gm} of the subgroup H ,

G = g1H ∪ · · · ∪ gmH.

Pick g ∈ G. For each i = 1, . . . , m, the product ggi is in one of the cosets, and so
ggi = gθ(i)hi for some permutation θ of {1, . . . , m} and hi ∈ H . We can write each
ρ0(hi) = (πi;xi). Then

ρ(g) = (π;x1, . . . ,xm)

where π is the permutation on {1, . . . , nm} that permutes the successive m-blocks via
θ, while the block interiors are permuted via the corresponding πi. Specifically, for j ∈
{1, . . . , nm}, write j = an+ b where 0 ≤ a < m and 0 < b ≤ n, then

π(j) = πθ(a+1)(b) + (θ(a + 1)− 1)n.
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Remark 2 Note that if we restrict the induced representation ρ back to the subgroup H ,
then ρ|H is the direct sum of m copies of ρ0 (see, for example, [5]). Thus, for h ∈ H ,

ρ(h) = ρ0(h)× · · · × ρ0(h) (m times).

It follows immediately that if ρ0 is sufficient, then so is ρ|H .

Lemma 1. If H is a finite 2-group, g ∈ G is an odd order element and ρ(g) = (π;x),
then π has no 1-cycle. That is, ρ(g) is sufficient.

Proof. Suppose π has a 1-cycle. Then θ must fix one block, that is θ has a 1-cycle. So,
ggj = gjh for some j = 1, . . . , m and h ∈ H . Thus, g−1

j ggj ∈ H , that is g cannot be of
odd order.

Theorem 5 (See [3]). Two symmetries (θ;y), (π;x) ∈ Bn are conjugate if, and only if,
(1) θ and π have the same cycle structure and
(2) for some pairing of respectively equal length cycles in the two permutations τ1 ←→
σ1, . . . , τs ←→ σs, we have yτj = xσj

for all j = 1, . . . , s.

Corollary 1. If H is a Sylow 2-subgroup of G, ρ0 is sufficient, and g ∈ G is an element
whose order is a power of 2, then ρ(g) is sufficient.

Proof. Since Sylow subgroups are conjugate, some conjugate of g is an element of H . The
corollary now follows from theorem 5, the assumptions and remark 2.

4 Main Theorem

It is our aim in this section to prove:

Theorem 6 (Main Theorem). Suppose G is a finite group and k is a non-negative integer
with gcd(|G|, k) = 2s for some non-negative integer s, then there is positive integer q for
which G ⊢k Bq.

According to Theorem 3, the Main Theorem will follow from the assumptions if we
can prove the existence of a sufficient representation ρ : G→ Br for some r.

Theorem 7. Every finite group has a sufficient representation.

We begin with a few lemmas.

Lemma 2. In Bm, Suppose α = (σ;x) where σ = (12 . . .m) and αt = (σt;y). Then
yσ = (xσ)

t/ gcd(m,t).

Proof. The permutation σt is a product of (m/ gcd(m, t))-cycles in the form (i, i+t, . . . , i+
(m/ gcd(m, t) − 1)t) for i = 1, . . . , gcd(m, t) where terms are mod m. And, the jth
component of y is yj = xjxj+1 · · ·xj+t−1 (indices computed mod m). Thus,

yσ = (x1 · · ·xi+t−1) · · · (xi+(m/ gcd(m,t)−1)t, . . . xi+mt/ gcd(m,t)−1)

= x1x2 . . . xmt/ gcd(m,t) (indices mod m)

= (xσ)
t/ gcd(m,t).
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Remark 3 It is known that any element α ∈ Bm is a product of disjoint bicycles. A
bicycle is any element (σ;x) ∈ Bm in which σ is a cycle and xj = 1 if σ(j) = j. Two
bicycles are called disjoint if their respective permutation parts are disjoint in the usual
sense. See [3] for more details.

Lemma 3. Suppose α = (π;x) ∈ Bm and xσ = 1 for every cycle σ in π. If αt = (πt;y),
then yψ = 1 for every cycle ψ in πt.

Proof. By factoring α as a product of disjoint bicycles, it is enough to prove the lemma for
π = cycle. And, in fact, we may assume α = (σ;x) ∈ Bm where σ is the cycle (12 . . .m),
as external products will allow us to ‘paste’ these cycles. Lemma 3 now follows from
lemma 2.

We can now prove the Main Theorem.

Proof of Theorem 7. Let H be a Sylow 2-subgroup of G, of index m. By corollary 4,
there is a sufficient representation ρ0 : H → Bn for some n. Let ρ : G → Bnm be the
representation induced up from ρ0. We will prove ρ is sufficient.

Pick g ∈ G, a non-identity element. If the order of g is odd or a power of 2, then ρ(g)
is sufficient by lemma 1 and corollary 1. Now assume the order of g to be 2a(2b+ 1) with
a > 0. Notre that g′ = g2b+1 has order 2a, and so ρ(g′) is sufficient. It follows that if we
write ρ(g′) = (π;x), then xσ = −1 for some cycle σ in π. It follows from lemma 3, that
if ρ(g) = (θ;y), then yψ = −1 for some cycle ψ in θ. That is, ρ(g) is sufficient.

References

[1] M. Baake. Structure and Representations of the Hyperoctahedral Group, J. Math.
Phys. 25, (1984), 3171-3182.

[2] W. Y. C. Chen & R. P. Stanley. Derangements of the n-cube, Discrete Mathematics
115 (1993) 65-75.

[3] L. W. Cusick. Finite Groups of Derangements on the n-Cube, To Appear in Ars
Combinatoria.

[4] N. Metropolis & G-C. Rota. Combinatorial Structure of the Faces of the n-Cube,
SIAM J. Appl. Math Vol. 35, No. 4 (1978), 689-694.

[5] J. P. Serre. Linear Representations of Finite Groups, Springer-Verlag (1977).

the electronic journal of combinatorics 18 (2011), #P196 6


