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Abstract

In this study we show the existence of subplanes of order 3 in Hughes planes of
order q2, where q is a prime power and q ≡ 5 (mod 6). We further show that there
exist finite partial linear spaces which cannot embed in any Hughes plane.

1 Introduction

L. Puccio and M. J. de Resmini [5] showed that subplanes of order 3 exist in the Hughes
plane of order 25. (We refer always to the ordinary Hughes planes; equivalently, all our
nearfields are regular.) Computations of the second author [2] show that among the
known projective planes of order 25 (including 99 planes up to isomorphism/duality),
exactly four have subplanes of order 3. These four planes are the ordinary Hughes plane
and three closely related planes. Recently, Caliskan and Magliveras [1] showed that there
are exactly 2 orbits on subplanes of order 3 in the Hughes plane of order 121. In this study
we show that every Hughes plane of order q2, where q is a prime power and q ≡ 5 (mod 6),
has subplanes of order 3.

We begin with the construction of the Hughes plane H(q2) of order q2, q an odd prime
power, as given by Rosati [6] and Zappa [9]. Throughout this paper, K denotes a finite
field of order q2, and F its subfield of order q, where q is an odd prime power. For any
θ ∈ K with θ /∈ F, we have K = F[θ] and {1, θ} is a basis for K over F. We will always
choose θ such that θ2 = d ∈ F, where d is a nonsquare in F. We now define the regular
nearfield N of order q2, where N has the same elements as K and the same addition.
However, multiplication in N is defined as follows: a ◦ b = ab if a is a square in K, and
a ◦ b = abq otherwise. Let V = {(x, y, z) | x, y, z ∈ N} be the 3-dimensional left vector
space over N . Define the set of points (set of lines) of H(q2) to be the set of all equivalence
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classes of elements of V r {(0, 0, 0)}, under the equivalence (x, y, z) ∼ (k ◦ x, k ◦ y, k ◦ z)
([a, b, c] ∼ [k ◦ a, k ◦ b, k ◦ c]) for k ∈ N∗. It is occasionally convenient to ‘normalize’ the
vector representatives (x, y, z) for points (using left-multiplication by elements of N∗) so
that their first nonzero coordinate is 1; coordinates for lines may be similarly normalized.

We may take {1, θ} as a basis for N as a vector space over F. The incidence relation for
H(q2) is defined as follows : Point (x, y, z) is incident with line [a, b, c], where a = a1+a2θ,
b = b1 + b2θ, and c = c1 + c2θ, if and only if xa1 + yb1 + zc1 + (xa2 + yb2 + zc2) ◦ θ = 0.
It is well known that different choices of θ give isomorphic planes of order q2.

In order to implement nearfield multiplication in N , the following is useful for readily
identifying squares in K.

Lemma 1.1 Consider a quadratic extension K = F[θ] ⊃ F where F is a field of odd
order q, and θ2 = d ∈ F. A typical element x = a + bθ (where a, b ∈ F) is a square in K,
iff its norm xq+1 = a2 − db2 is a square in F.

Proof: We may assume x 6= 0. The element x ∈ K is a square in K iff x(q2
−1)/2 = 1 iff

(xq+1)(q−1)/2 = 1, iff the element xq+1 ∈ F is a square in F. Note that xq+1 = xqx =
(a − bθ)(a + bθ) = a2 − db2. �

It has long been recognized by M. J. de Resmini and others that Hughes planes have
subplanes of order 2; for completeness we include a proof of this fact in Section 2. On the
other hand, this is not totally surprising since for a quadrilateral to generate a subplane
of order 2 only requires a single algebraic condition to hold. In order for a quadrilateral
to generate a subplane of order 3, several inequivalent conditions must hold. We show
the existence of subplanes of order 3 in the Hughes plane H(q2) in Section 3 in case q ≡ 5
(mod 12), and in Section 4 in case q ≡ 11 (mod 12).

2 Subplanes of order 2

We require the following technical lemma.

Lemma 2.1 Let F be a finite field of odd order q, and let d ∈ F be a nonsquare.

(a) If q ≡ 1 (mod 4) then there exists a nonzero element b ∈ F such that b4 + db2 + d2

is a nonsquare in F.

(b) If q ≡ 3 (mod 4) then there exist (q + 1)/2 nonzero values of b ∈ F such that b2 + 1
is a nonsquare in F.

Proof: (a) The equation x2+dxz+d2z2 = dy2 defines a nondegenerate conic in the classical
projective plane coordinatized by F, with homogeneous coordinates (x, y, z). Since d is a
nonsquare in F, all q + 1 points of this conic must have xz 6= 0 and so all points of the
conic have the form (x, y, 1) with x 6= 0. No more than two such points share the same
x-coordinate, so the points (x, y, 1) of the conic have at least (q + 1)/2 distinct nonzero
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x-coordinates. Since F contains only (q−1)/2 nonsquares, the conic must contain a point
of the form (b2, y, 1) with b 6= 0.

(b) The equation x2 +y2 +z2 = 0 defines a nondegenerate conic in the classical projective
plane coordinatized by F. Since −1 is a nonsquare in F, all q + 1 points of the conic have
the form (x, 1, z) in homogeneous coordinates with xz 6= 0. No more than two such points
(x, 1,±z) share the same x-coordinate, yielding (q + 1)/2 values of x for which x2 + 1
equals a nonsquare −z2. �

Theorem 2.2 Every Hughes plane has a subplane of order 2.

Proof: Let d be a nonsquare in F, so that K = F[θ] where θ ∈ K satisfies θ2 = d. We
consider two cases.

Suppose first that q ≡ 1 mod 4. In this case −1 is a square in F, and θ is a nonsquare
in K since its norm θqθ = (−θ)θ = −d is a nonsquare in F. Choose b ∈ F such that
b4 +db2 +d2 is a nonsquare in F as in Lemma 2.1(a). Write c = (b/d)+ (1/b) ∈ F, so that
1 ± cθ is a nonsquare in K by Lemma 1.1. The seven points p0, p1, . . . , p6 of the Hughes
plane with coordinates

(1, 0, 0), (0, 1, 0), (1,−d/b, θ), (1, θ, b), (1/b,−(b/d)θ, 1), (1, b + θ, 0), (1, b, θ)

and the seven lines ℓ0, ℓ1, . . . , ℓ6 with coordinates

[0, θ,−b], [0, 0, 1], [θ, 0,−1], [0,−b, θ], [−b, 0, 1], [−b − θ, 1, 1 + cθ], [−b − θ, 1, 1]

satisfy pi ∈ ℓj iff j − i ∈ {0, 1, 3} mod 7. This gives a subplane of order 2 in the Hughes
plane of order q2.

Now suppose that q ≡ 3 mod 4. In this case we may take d = −1, a nonsquare in F,
and θ is a square in K since its norm θq+1 = −d = 1 is a square in F. By Lemma 2.1(b),
there exists b ∈ F such that b2 +1 is a nonsquare in F. By Lemma 1.1, the elements 1±bθ
and b ± θ are nonsquares in K. The seven points of the Hughes plane

(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, θ, 0), (0, 1, 1 − bθ), (1, θ, b + θ), (1, 0, b + θ)

and the seven lines

[0, 0, 1], [1, 0, 0], [1, θ, 0], [−b − θ,−1 + bθ, 1], [0,−1 + bθ, 1], [−b − θ, 0, 1], [0, 1, 0]

give a subplane of order 2, where as before we have pi ∈ ℓj iff j − i ∈ {0, 1, 3} mod 7. �

3 Case: q ≡ 5 (mod 12)

Let q ≡ 5 (mod 12). We may take d = −3, a nonsquare in F, and K = F[θ] where
θ2 = −3. There is an element i ∈ F satisfying i2 = −1, since q ≡ 1 (mod 4). Also
ω = (−1 + iθ)/2 ∈ K is a primitive cube root of unity, and the other is ω2 = (−1− iθ)/2.
Furthermore, ζ = iω = (−i + iθ)/2 ∈ K is a primitive 12-th root of unity. We compute
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that ζ2 = (1 + θ)/2, ζ4 = ω = (−1 + θ)/2, and ζ5 = iω2 = (−i − iθ)/2. Moreover,
ζ + ζ7 = ζ2 + ζ8 = ζ4 + ζ10 = ζ5 + ζ11 = 0, since ζ6 = −1. Hence, ζ7 = (i − iθ)/2,
ζ8 = (−1 − θ)/2, ζ10 = (1 − θ)/2, and ζ11 = (i + iθ)/2. The following Lemma follows
easily from Lemma 1.1.

Lemma 3.1 1 ± θ are squares and θ, 3 ± θ not squares in K.

We now define α, a set of 13 points, and β, a set of 13 lines, as follows :

p1 (0, 0, 1) ℓ1 [0, 0, 1]
p2 (0, 1, 0) ℓ2 [0, 1, 0]
p3 (0, 1, ζ) ℓ3 [0, 1, ζ5]
p4 (0, 1, ζ7) ℓ4 [0, 1, ζ11]
p5 (1, 0, 0) ℓ5 [1, 0, 0]

α : p6 (1, 0, ζ2) β : ℓ6 [1, 0, ζ4]
p7 (1, 0, ζ8) ℓ7 [1, 0, ζ10]
p8 (1, ζ, 0) ℓ8 [1, ζ5, 0]
p9 (1, ζ, ζ2) ℓ9 [1, ζ5, ζ4]

p10 (1, ζ, ζ8) ℓ10 [1, ζ5, ζ10]
p11 (1, ζ7, 0) ℓ11 [1, ζ11, 0]
p12 (1, ζ7, ζ2) ℓ12 [1, ζ11, ζ4]
p13 (1, ζ7, ζ8) ℓ13 [1, ζ11, ζ10]

Theorem 3.2 Let q be a prime power, q ≡ 5 (mod 12). Then α is the set of points, and
β the set of lines, of a subplane of order 3 in the Hughes plane H(q2). This subplane is
invariant under the polarity (x, y, z) ↔ [xq, yq, zq] of H(q2).

Proof: It is known that all elements of F are squares in K. We use the Lemma 3.1 and
the incidence relation described by Rosati [6] to determine whether pi and ℓj are incident
for each pair of a point pi, 1 ≤ i ≤ 13, in α and a line ℓj, 1 ≤ j ≤ 13, in β. This gives
rise to the following incidence matrix M :

M =













































0 1 0 0 1 0 0 1 0 0 1 0 0
1 0 0 0 1 1 1 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 1 0 1 0
0 0 0 1 1 0 0 0 1 0 0 0 1

1 1 1 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 1 0 0 1 0
0 1 0 0 0 0 1 0 0 1 0 0 1

1 0 0 0 0 0 0 1 1 1 0 0 0
0 0 1 0 0 1 0 1 0 0 0 0 1

0 0 0 1 0 0 1 1 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 1 1 1

0 0 0 1 0 1 0 0 0 1 1 0 0
0 0 1 0 0 0 1 0 1 0 1 0 0












































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An easy computation shows that MMT = J13 + 3I13, where J13 denotes the 13 × 13
matrix in which every entry is a “1” and I13 the 13 × 13 identity matrix.

By Rosati [7], the map (x, y, z) ↔ [xq, yq, zq] is a polarity of H(q2). One easily checks
that this map interchanges α and β. This completes the proof of Theorem 3.2. �

4 Case: q ≡ 11 (mod 12)

Let us now assume that q ≡ 11 (mod 12), so that both −1 and −3 are nonsquares in F,
and in particular 3 is a square in F.

Lemma 4.1 There exists c ∈ F such that c2 − c + 1 is a nonsquare in F.

Proof: By the Chevalley-Warning Theorem [8, p.5], there exist a, b, c ∈ F, not all zero,
such that c2− bc+ b2 +a2 = 0. Clearly b 6= 0, so (c/b)2− (c/b)+1 = −(a/b)2, a nonsquare
in F. �

Fixing c ∈ F as in Lemma 4.1, we readily obtain the following from the Lemma 1.1.

Lemma 4.2 The elements θ, 1± θ and 3± θ are squares in K. The elements c− 2± cθ,
c + 1 ± (c − 1)θ and 2c − 1 ± θ are nonsquares in K.

We shall use Lemma 4.2 along with the fact that c /∈ {0, 1}. Now we define α′, a set
of 13 points, and β ′, a set of 13 lines, as follows :

p1 (1, ω, ω2) ℓ1 [1, ω, ω2]
p2 (1, 0,−ω) ℓ2 [0,−ω, 1]
p3 (−ω, 1, 0) ℓ3 [1, 0,−ω]
p4 (0,−ω, 1) ℓ4 [−ω, 1, 0]
p5 (1/(c − 1), ω, ω2) ℓ5 [ω2, c/(1 − c), ω]

α′ : p6 (−c, ω, ω2) β ′ : ℓ6 [ω2, c − 1, ω]
p7 ((1 − c)/c, ω, ω2) ℓ7 [ω2,−1/c, ω]
p8 (ω2, (1 − c)/c, ω) ℓ8 [ω, ω2, c/(1 − c)]
p9 (ω2, 1/(c − 1), ω) ℓ9 [ω, ω2, c − 1]

p10 (ω2,−c, ω) ℓ10 [ω, ω2,−1/c]
p11 (ω, ω2, 1/(c − 1)) ℓ11 [c − 1, ω, ω2]
p12 (ω, ω2,−c) ℓ12 [−1/c, ω, ω2]
p13 (ω, ω2, (1 − c)/c) ℓ13 [c/(1 − c), ω, ω2]

Theorem 4.3 Let q be a prime power, q ≡ 11 (mod 12). Then α′ is the set of points,
and β ′ the set of lines, of a subplane of order 3 in the Hughes plane H(q2).
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Proof: By Lemma 4.1 and 4.2, our computation gives rise to the following incidence
matrix M ′, where M ′M ′T = J13 + 3I13. This proves Theorem 4.3. �

M ′ =













































1 1 1 1 0 0 0 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 1 1 1 0 0 0
1 0 0 0 0 0 0 0 0 0 1 1 1

0 1 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 0 1 0 0 1 0 0 1 0
0 1 0 0 0 0 1 0 0 1 0 0 1

0 0 1 0 1 0 0 0 0 1 0 1 0
0 0 1 0 0 1 0 1 0 0 0 0 1

0 0 1 0 0 0 1 0 1 0 1 0 0
0 0 0 1 1 0 0 0 1 0 0 0 1

0 0 0 1 0 1 0 0 0 1 1 0 0
0 0 0 1 0 0 1 1 0 0 0 1 0













































5 Further Substructures of Hughes Planes

No subplanes of order 3 have ever been found in Hughes planes of order q2 for q ≡
1 (mod 6); and computational evidence for small values of q suggests that subplanes of
order 3 do not occur in this case. It is also an open problem whether there exists a Hughes
plane with a subplane of order 4. However, the following argument, first used in [3], shows
that there exist finite partial linear spaces which cannot embed in any Hughes plane.

First, some terminology: Let L be a finite partial linear space (a point-line incidence
structure, in which every line has at least two points, and any two distinct points lie on
at most one line of L). As before, we denote by H(q2) a Hughes plane of order q2. We say
that f : L → H(q2) is an embedding if f injectively maps points of L to points of H(q2),
and f injectively maps lines of L to lines of H(q2), such that f(P ) lies on f(ℓ) (in H(q2))
if and only if the point P lies on the line ℓ (in L). (Replacing “if and only if” by “if” in
the latter definition, does not change the essential difficulty of the embedding problem, or
the validity of Theorem 5.1 below; see [3, Lemma 1].) In this language, our main result
(above) is that the projective plane of order 3 embeds in H(q2) whenever q ≡ 5 (mod 6).

Theorem 5.1 There exists a finite partial linear space which does not embed in any
Hughes plane.

Proof: Let L0 be a finite partial linear space which does not embed in any Desarguesian
plane of odd order. (We may take L0 to be a projective plane of order 2, or a configuration
violating Desargues’ Theorem.) Let Γ0 be the incidence graph of L0, i.e. the graph whose
vertices correspond to points and lines of L0; and whose edges correspond to incident
point-line pairs of L0. Thus Γ0 is a bipartite graph with no 4-cycle. By [4, Theorem 6.3]
(see also [3, Lemma 2]), there exists a bipartite graph Γ having no 4-cycle, such that for
every 2-coloring of the edges of Γ, there exists a subgraph isomorphic to Γ0, all of whose
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edges have the same color. We may regard Γ as the point-line incidence graph of a partial
linear space L.

Suppose that q is an odd prime power and that f : L → H(q2) is an embedding. For
each point Pi and line ℓj of L, denote f(Pi) = (xi, yi, zi) and f(ℓj) = [aj , bj, cj]. Here we
require the nonzero vectors (xi, yi, zi) and [aj , bj, cj ] in N3 to be ‘normalized’ to have first
nonzero coordinate equal to 1, as described in the Introduction. Now write

(aj, bj , cj) = (aj1 + aj2θ, bj1 + bj2θ, cj1 + cj2θ), (ajk, bjk, cjk) ∈ F
3

for all j, k, where {1, θ} is a fixed basis for K over F.
Assuming Pi ∈ ℓj , we color the incident point-line pair (Pi, ℓj) red or blue according

as aj2xi + bj2yi + cj2zi ∈ K is a square or a nonsquare.
Case 1: Γ has a subgraph isomorphic to Γ0, all of whose edges are red. In this case the
map

Pi 7→ (xi, yi, zi), ℓj 7→ (aj, bj , cj)

restricts to an embedding of Γ0 in a Desarguesian plane of order q2, since

ajxi + bjyi + cjzi = (aj1xi + bj1yi + cj1zi) + (aj2xi + bj2yi + cj2zi) ◦ θ = 0

for every red incident point-line pair Pi ∈ ℓj . (The fact that vertices of Γ0 are mapped
injectively to points and lines of the Desarguesian plane, follows from the fact that the
vectors (xi, yi, zi) have first nonzero coordinate 1 and so represent distinct 1-dimensional
subspaces of K

3; similarly for the vectors [aj , bj, cj].) This contradicts the choice of Γ0.
Case 2: Γ has a subgraph isomorphic to Γ0, all of whose edges are blue. In this case the
map

Pi 7→ (xi, yi, zi), ℓj 7→ (aq
j , b

q
j , c

q
j)

restricts to an embedding of Γ0 in a Desarguesian plane of order q2, since

aq
jxi + bq

jyi + cq
jzi = (aj1xi + bj1yi + cj1zi) + (aj2xi + bj2yi + cj2zi) ◦ θ = 0

for every blue incident point-line pair Pi ∈ ℓj . (As in Case 1, injectivity of the embedding
of Γ0 in the Desarguesian plane of order q2, follows from the fact that the vectors (xi, yi, zi)
and [aj , bj, cj] in N3 are normalized.) Again, this contradicts the choice of Γ0. �

The proof of Theorem 5.1 reveals a straightforward strategy for trying to embed a
given finite partial linear space L (such as a finite projective plane) in a Hughes plane
H(q2): Choose an appropriate 2-coloring of the incident point-line pairs of L (i.e. the
edges of its incidence graph Γ), such that both of the resulting monochromatic subgraphs
of Γ correspond to partial linear spaces embeddable in a Desarguesian plane of order q2.
Unfortunately there are exponentially many 2-colorings of the edges of Γ to consider; and
even for a projective plane of order 4, with 105 incident point-line pairs, this seems a
daunting task. On the other hand, it is easy to 2-color these 105 incident point-line pairs
without rendering any monochromatic subplane of order 2; so the argument of Theorem
5.1 seems ineffective in ruling out subplanes of order 4 in Hughes planes.
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