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Abstract

Robertson has conjectured that the only 3-connected, internally 4-con-
nected graph of girth 5 in which every odd cycle of length greater than 5 has a
chord is the Petersen graph. We prove this conjecture in the special case where
the graphs involved are also cubic. Moreover, this proof does not require the
internal-4-connectivity assumption. An example is then presented to show that
the assumption of internal 4-connectivity cannot be dropped as an hypothesis
in the original conjecture.

We then summarize our results aimed toward the solution of the conjec-
ture in its original form. In particular, let G be any 3-connected internally-4-
connected graph of girth 5 in which every odd cycle of length greater than 5
has a chord. If C is any girth cycle in G then N(C)\V (C) cannot be edgeless,
and if N(C)\V (C) contains a path of length at least 2, then the conjecture
is true. Consequently, if the conjecture is false and H is a counterexample,
then for any girth cycle C in H, N(C)\V (C) induces a nontrivial matching M
together with an independent set of vertices. Moreover, M can be partitioned
into (at most) two disjoint non-empty sets where we can precisely describe how
these sets are attached to cycle C.
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† work supported by NSA Grant H98230-09-01-0041
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1. Introduction and Terminology.

This paper is motivated by the following conjecture due to Robertson:

Conjecture 1.1: The only 3-connected, internally 4-connected, girth 5 graph in which
every odd cycle of length greater than 5 has a chord is the Petersen graph.

Since its discovery at the end of the nineteenth century, the Petersen graph has
been cited as an example, and even more often as a counterexample, in nearly every
branch of graph theory. These occurrences could fill a book and in fact have; see [HoSh].
We will not attempt to give a complete list of the appearances of this remarkable graph
in print, but let us mention a few of the more recent applications. Henceforth, we shall
denote the Petersen graph by P10.

Let us now adopt the following additional notation. If u and v are distinct vertices
in P10, the graph formed by removing vertex v will be denoted P10\v and, if u and v
are adjacent, the subgraph obtained by removing edge uv will be denoted by P10\uv.
Other notation and terminology will be introduced as needed.

It is a well-known fact that every Cayley graph is vertex-transitive, but the converse
is false, the smallest counterexample being P10. (Cf. [A].) In their studies of vertex-
transitive graphs [LS, Sc], the authors present four interesting classes of non-Cayley
graphs and digraphs (generalized Petersen, Kneser, metacirculant and quasi-Cayley)
and all four classes contain P10.

The Petersen graph has long played an important role in various graph traversa-
bility problems. It is known to be the smallest hypohamiltonian graph [GHR]. It is
also one of precisely five known connected vertex-transitive graphs which fail to have
a Hamilton cycle. It does, however, possess a Hamilton path. Lovász [L1] asked if
every connected vertex-transitive graph contains a Hamilton path. This question has
attracted considerable attention, but remains unsolved to date. (Cf. [KM1, KM2].)

One of the earliest alternative statements of the 4-color conjecture was due to Tait
[Ta]: Every cubic planar graph with no cut-edge is 3-edge-colorable. The Petersen graph
P10 is the smallest nonplanar cubic graph that is not 3-edge colorable. Some eleven years
before the 4-color problem was settled [AH1, AH2], Tutte [Tu1, Tu2] formulated the
following stronger conjecture about cubic graphs:

Conjecture 1.2: Every cubic cut-edge free graph containing no P10-minor is 3-edge-
colorable.

A cubic graph with no cut-edge which is not 3-edge-colorable is called a snark. Not
surprisingly, in view of the preceding conjecture of Tutte, much effort has been devoted
to the study of snarks and many snark families have been discovered. (Cf. [Wa, WW,
CMRS].) However, to date, all contain a Petersen minor. A proof has been announced
by Robertson, Sanders, Seymour and Thomas [Th, TT], but has not yet appeared.

Note that there is a relationship between the question of Lovász and 3-edge-
colorings in that for cubic graphs, the existence of a Hamilton cycle guarantees an
edge coloring in three colors. Actually, there are only two known examples of connected
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cubic vertex-transitive graphs which are not 3-edge-colorable of which P10 is one and
the other is the cubic graph derived from P10 by replacing each vertex by a triangle.
(Cf. [Po].) (The latter graph is known as the inflation or the truncation of P10.)

Note also that a 3-edge-coloring of graph G is equivalent to being able to express
the all-1’s vector of length |E(G)| as the sum of the incidence vectors of three per-
fect matchings. Seymour [Se1] was able to prove a relaxation of Tutte’s conjecture by
showing that every cubic bridgeless graph with no P10-minor has the property that
the edge-incidence vector of all-1’s can be expressed as an integral combination of the
perfect matchings of G. Lovász [L2] later derived a complete characterization, in which
the Petersen graph plays a crucial role, of the lattice of perfect matchings of any graph.

In connection with covering the edges of a graph by perfect matchings, we should
also mention the important - and unsolved - conjecture of Berge and Fulkerson [F; see
also Se1, Zhan].

Conjecture 1.3: Every cubic cut-edge free graph G contains six perfect matchings
such that each edge of G is contained in exactly two of the matchings.

The Petersen graph, in fact, has exactly six perfect matchings with this property.
Drawing on his studies of face-colorings, Tutte also formulated a related conjecture

for general (i.e., not necessarily cubic) graphs in terms of integer flows.

Conjecture 1.4: Every cut-edge free graph containing no subdivision of P10 admits a
nowhere-zero 4-flow.

This conjecture too has generated much interest. For cubic graphs, Conjecture 1.2 and
Conjecture 1.4 are equivalent since in this case a 3-edge-coloring is equivalent to a 4-flow.

The 5-flow analogue for cubic graphs, however, has been proved by Kochol [Ko].

Theorem 1.5: If G is a cubic cut-edge free graph with no Petersen minor, G has a
nowhere-zero 5-flow.

Another partial result toward the original conjecture is due to Thomas and Thom-
son [TT]:

Theorem 1.6: Every cut-edge free graph without a P10\e-minor has a nowhere-zero
4-flow.

This result generalizes a previous result of Kilakos and Shepherd [KS] who had
derived the same conclusion with the additional hypothesis that the graphs be cubic.

The original (not necessarily cubic) 4-flow conjecture remains unsolved.
Yet another widely studied problem is the cycle double conjecture. A set of cycles

in a graph G is a cycle double cover if every edge of G appears in exactly two of the
cycles in the set. The following was conjectured by Szekeres [Sz] and, independently, by
Seymour [Se2]. It remains open.

Conjecture 1.7: Every connected cut-edge free graph contains a cycle double cover.
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The following variation involving P10 was proved by Alspach, Goddyn and Zhang [AGZ].

Theorem 1.8: Every connected cut-edge free graph with no P10-minor has a cycle
double cover.

For much more on the interrelationships of edge-colorings, flows and cycle covers,
the interested reader is referred to [Zhan, Ja].

An embedding of a graph G in 3-space is said to be flat if every cycle of the graph
bounds a disk disjoint from the rest of the graph. Sachs [Sa] conjectured that a graph
G has a flat embedding in 3-space if and only if it contains as a minor none of seven
specific graphs related to P10. His conjecture was proved by Robertson, Seymour and
Thomas [RST3].

Theorem 1.9: A graph G has a flat embedding if and only if it has no minor isomorphic
to one of the seven graphs of the ‘Petersen family’ obtained from P10 by Y-∆ and ∆-Y
transformations. (the complete graph K6 is one of these seven graphs.)

A smallest graph with girth g and regular of degree d is called a (d, g)-cage. The
unique (3, 5)-cage is P10. This observation was proved by Tutte [Tu3] under a more
stringent definition of “cage”.

Any smallest graph which is regular of degree d and has diameter k (if it exists) is
called a Moore graph of type (d, k). For k = 2, Moore graphs exist only for d = 2, 3, 7
and possibly 57. The unique Moore graph of type (3, 2) is P10. (Cf. [HoSi].)

A graph G is said to be distance-transitive if for every two pairs of vertices {v, w}
and {x, y} such that d(u, v) = d(x, y) (where d denotes distance), there is an automor-
phism σ of G such that σ(v) = x and σ(w) = y. There are only twelve finite cubic
distance-transitive graphs and P10 is the only one with diameter 2 and girth 5. (Cf.
[BS].)

Distance-transitive graphs form a proper subclass of another important graph class
called distance-regular graphs. (Cf. [BCN].) These graphs are closely related to the
association schemes of algebraic combinatorics.

A closed 2-cell surface embedding of a graph G is called strong (or circular). The
following conjecture is folklore which appeared in literature as early as in 1970s (Cf. [H,
LR]).

Conjecture 1.10: Every 2-connected graph has a strong embedding in some surface.

(Note that, for cubic graphs, this conjecture is equivalent to the cycle-double-cover
conjecture.) (Cf. [Zhan, Corollary 7.1.2].)

Ivanov and Shpectorov [I, IS] have investigated certain so-called Petersen geometries as-
sociated with the sporadic simple groups. The smallest of these geometries is associated
with P10.
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The following conjecture of Dirac was proved by Mader.

Theorem 1.11 [M1]: Every graph G with at least 3|V (G)| − 5 edges (and at least 3
vertices) contains a subdivision of K5.

One of the main tools used in proving this is another of Mader’s own theorems.

Theorem 1.12 [M2]: If G has girth at least 5, at least 6 vertices and at least 2|V (G)|−5
edges, then G either contains a subdivision of K5\e or G ∼= P10.

Our plan of attack is to proceed as follows. In Section 2, we present several lemmas
of a technical nature. In Section 3, we prove the conjecture for cubic graphs without
using the internal-4-connectivity assumption. We then close the section by presenting
infinitely many examples of a graphs which are 3-connected of girth 5 and in which every
odd cycle of length greater than 5 has a chord, but which are not the Petersen graph.
These examples led us to invoke the additional assumption of internal-4-connectivity.

Let H be a subgraph of a graph G. Denote by N ′(H) the set of neighbors of vertices
in H which are not themselves in H. We also use N ′(H) to denote the subgraph induced
by N ′(H) (this will not cause any confusion in this paper). Let G be a 3-connected
internally-4-connected graph G having girth 5 in which every odd cycle of length greater
than 5 has a chord. Let C be a 5-cycle in G. We then proceed to focus our attention
on the structure of the subgraph induced by N ′(C).

In Section 4, we show that N ′(C) cannot be edgeless. In Section 5, we show that
if N ′(C) contains a path of length at least 3, then G ∼= P10. In Section 6 we undertake
the lengthier task of showing that if N ′(C) contains a path of length 2, then G ∼= P10.
In summary then, we will reduce the conjecture to the case when N ′(C) is the disjoint
union of a nonempty matching and a possibly empty edgeless subgraph. Moreover, the
matching must be attached to the 5-cycle C only in certain restricted ways. We will
summarize these details in Section 7.
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2. Some technical lemmas.

Suppose H is a subgraph of a graph G and x ∈ V (G). Denote N(x) = {v ∈ V (G) :
vx ∈ E(G)}, N(H) = {v ∈ V (G) : uv ∈ E(G) for some u ∈ V (H)} and N ′(H) =
N(H)\V (H). Define N ′(H, x) = N(x)\V (H). Note that in general N(x) does not
contain x and so N ′(x) = N(x) when x is not in V (H). If V (H) = {x1, x2, ..., xt}, we
will write N ′

i for N ′(xi)\V (H) = N(H, xi), where 1 ≤ i ≤ t, ignoring the dependency on
H. Since all graphs G in this paper are assumed to have girth 5, N(x) is an independent
set, for all x ∈ V (G), and hence any N ′(x) in this paper will be independent as well.

Let G be a graph and H a proper subgraph of G. If e = xy is an edge of G not
belonging to H ∪ V (N ′(H)), but joining two vertices x and y of N ′(H), we call e an
edge-bridge of H∪V (N ′(H)). Let D be a component of G\(V (H)∪V (N ′(H))). If there
exists a vertex w ∈ N ′(H) which is adjacent to some vertex of D, we will say that w is
a vertex of attachment for D in N ′(H). If D is a component of G\(V (H) ∪ V (N ′(H)))
and B consists of D, together with all of its vertices of attachment in H, we call B a
non-edge-bridge of H. Furthermore, any vertex of bridge B which is not a vertex of
attachment will be called an interior vertex of B. Clearly, any path from an interior
vertex of B to a vertex in H passes through a vertex of attachment of B.

We now further classify the non-edge-bridges of H ∪ N ′(H) as follows. If such a
non-edge-bridge has all of its vertices of attachment in the same N ′(x), we will call it
a monobridge and if x = xi we will often denote it by Bi. Now suppose that N ′(xi) ∩
N ′(xj) = ∅, for all xi 6= xj ∈ V (H). Then if xi 6= xj ∈ V (H), a bibridge Bi,j of
H∪N ′(H) is a bridge which is not a monobridge, but has all of it vertices of attachment
in the two sets N ′

i and N ′

j .
Two distinct vertices x and y in a subgraph H will be called a co-bridge pair in

H if there exists a non-edge bridge B of H ∪ N ′(H) such that B has an attachment in
N ′(x) and an attachment in N ′(y). If two vertices of H are not a co-bridge pair, they
will be called a non-co-bridge pair in H.

Two distinct non-adjacent vertices x and y in a subgraph H will be called well-
connected in H if x and y are non-adjacent and there exist two induced paths in H
joining x and y one of which is of odd length at least 3 and the other of even length at
least 2.

Lemma 2.1: Let G be a 3-connected graph of girth five in which every odd cycle of
length greater than 5 contains a chord. Let H be a subgraph of G and x, y, two vertices
of H such that

(1) x and y are well-connected in H,

(2) N ′(x) ∩ N ′(y) = ∅ and

(3) there exists no edge-bridge having one endvertex in N ′(x) and the other in N ′(y).

Then x and y are a non-co-bridge pair in H.

Proof: Suppose, to the contrary, that B is a non-edge bridge of H ∪N ′(H) with vertex
u a vertex of attachment of B in N ′(x) and v a vertex of attachment of B in N ′(y). Let
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Puv be a shortest path in B joining u and v. Since B is a non-edge bridge, Puv contains
at least two edges. Let Qxy and Q′

xy be induced paths in H joining x and y and having
opposite parity. Then let P = Puv ∪ Qxy ∪ {ux, vy} and P ′ = Puv ∪ Q′

xy ∪ {ux, vy}.
Then both P and P ′ are chordless and one of them is an odd cycle of length at least 7,
a contradiction.

Lemma 2.2: Suppose G is 3-connected and has girth 5. Let C be any cycle in G of
length 5. Then the subgraph induced by N ′(C) has maximum degree 2.

Proof: This is an easy consequence of the girth 5 assumption.

Lemma 2.3: Suppose G is 3-connected, has girth 5 and all odd cycles of length greater
than 5 have a chord. Then G contains no cycle of length 7.

Proof: Suppose C is a 7-cycle in G. Then C must have a chord which then lies in a
cycle of length at most 4, a contradiction.

We will also need the next three results on traversability in P10, P10\v and P10\uv.
At this point we remind the reader that the Petersen graph is both vertex- and edge-
transitive. In the proof of the following two lemmas and henceforth we shall make use
of these symmetry properties.

Lemma 2.4: Let P10 denote the Petersen graph and let x and y be any two non-adjacent
vertices in P10. Then there exist

(i) a unique induced path of length 2 joining x and y;
(ii) exactly two internally disjoint induced paths of length 3 joining x and y; and
(iii) exactly two internally disjoint induced paths of length 4 joining x and y.
(iv) Moreover if z is adjacent to both x and y, then these induced paths of length

3 and 4 do not pass through z.

Proof: This is easily checked.

Lemma 2.5: (i) Let P10\v be the Petersen graph with one vertex v removed. Then for
every pair of non-adjacent vertices x and y, there exist induced paths of length 3 and 4
joining them.

(ii) Let P10\uv denote the Petersen graph with a single edge uv removed. Then
for every pair of non-adjacent vertices x and y, there exists an induced path of length
4 and either an induced path of length 3 or one of length 5.

(iii) Moreover, in both (i) and (ii) if z is a vertex adjacent to both x and y, these
paths do not pass through z.

Proof: The existence of induced paths of length 3 and 4 is a direct consequence of
Lemma 2.4 since in P10 there are two internally disjoint paths of each type.

If z is incident to both x and y, then any induced path joining x and y and passing
through z has length exactly 2. Therefore any induced path joining x and y of length
3 or 4 does not pass through z.
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Corollary 2.6: In any of the three graphs P10, P10\v and P10\uv, if xi and xj are any
pair of distinct non-adjacent vertices, then they are well-connected.

3. The cubic case.

In this section we prove the conjecture for graphs which are 3-connected and cubic, have
girth 5 and in which every odd cycle of length greater than 5 has a chord. Note that
we do not assume internal-4-connectivity in this section.

We begin by treating the case in which for some girth cycle C, N ′(C) contains a
path of length at least 3. Then by eliminating in sequence five cases corresponding to
five possible subgraphs, we arrive at our final result. Although the approach in these five
cases is much the same, nevertheless each of the final four makes use of its predecessor
in the sequence.

Lemma 3.1: Suppose G is a cubic 3-connected graph of girth 5 in which every odd
cycle of length greater than 5 has a chord. Let C be a 5-cycle in G. Then if N ′(C)
contains a path of length at least 3, G ∼= P10.

Proof: Let C = x1x2x3x4x5x1 be a 5-cycle in G. Then, since G is cubic and has girth
5, N ′(C) must contain exactly five vertices.

Suppose first that N ′(C) contains a cycle y1y2y3y4y5y1. Then without loss of
generality, we may suppose that y1 ∼ x1, y2 ∼ x3, y3 ∼ x5, y4 ∼ x2 and y5 ∼ x4. But
then G ∼= P10.

Suppose next that N ′(C) contains a path of length 4 which we denote by y1y2y3y4y5.
Again, without loss of generality, we may suppose that yi ∼ xi, for i = 1, . . . , 5. But
now if y1 6∼ y5, {y1, y5} is a 2-cut in G, a contradiction. Hence y1 ∼ y5 and again
G ∼= P10.

Finally, suppose N ′(C) contains a 3-path which we will denote by y1y2y3y4. As
before, we may suppose that y1 ∼ x1, y2 ∼ x3, y3 ∼ x5 and y4 ∼ x2. Since G is cubic,
there must then exist a fifth vertex y5 ∈ N ′(C) such that y5 ∼ x4. Now also since G is
cubic, there must exist a vertex z ∈ V (G), z 6= x1, . . . , x5, y1, . . . , y5. By 3-connectivity
and Menger’s theorem, there must be three paths in G joining z to vertices y1, y4 and
y5 respectively. In other words, there must exist a bridge (containing vertex z) with
vertices of attachment y1, y4 and y5 in C ∪N ′(C). Hence, in particular, vertices x1 and
x4 are a co-bridge pair. But by Lemma 2.1, these two vertices are a non-co-bridge pair
and we have a contradiction.

Next suppose N ′(C) contains a path of length 2. Elimination of this case will be
the culmination of the next two lemmas.

Lemma 3.2: Let G be a cubic 3-connected graph of girth 5 such that all odd cycles of
length greater than 5 have a chord. Then if G contains a subgraph isomorphic to graph
J1 shown in Figure 3.1, G ∼= P10.
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Figure 3.1

Proof: Suppose G 6∼= P10, but G does contain as a subgraph the graph J1. We adopt
the vertex labeling of Figure 3.1.

Claim 1: The subgraph J1 must be induced.

It is easy to check that adding any edge different from x1x7 and x4x10 results in
the formation of a cycle of size less than five, contradicting the girth hypothesis.

So then let us assume x1 is adjacent to x7. Then if C = x2x3x8x9x11x2, N ′(C)
contains the induced path x10x1x7x12x4 of length 4, contradicting Lemma 3.1. By
symmetry, if we add the edge x4x10, a similar contradiction is reached. This proves
Claim 1.

Claim 2: For 1 ≤ i < j ≤ 12, N ′

i ∩ N ′

j = ∅.

It is routine to check that any possible non-empty intersection of two different N ′

is
produces either a cycle of length less than 5, thus contradicting the girth hypothesis, or
else a 7-cycle, thus contradicting Lemma 2.3. This proves Claim 2.

Claim 3: For (i, j) ∈ {(1, 4), (1, 7), (4, 10), (7, 10)}, there is no edge joining N ′

i and N ′

j .

This is immediate by Lemma 2.3.

For i = 1, 4, 7, 10, let yi denote the (unique) neighbor of xi which does not lie in
J1.

Then since G is cubic and 3-connected, there must be a bridge B in G−V (J1) with
at least three vertices of attachment from the set {y1, y4, y7, y10}. It then follows that
either {x1, x7} or {x4, x10} is a co-bridge pair. But these pairs are both well-connected
and hence by Lemma 2.1, neither is a co-bridge pair, a contradiction.

Lemma 3.3: Let G be a cubic 3-connected graph of girth 5 such that all odd cycles of
length greater than 5 have a chord. Suppose C is a girth cycle in G such that N ′(C)
contains a path of length 2. (That is, G contains a subgraph isomorphic to graph J2

shown in Figure 3.2.) Then G ∼= P10.
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Figure 3.2

Proof: Suppose G 6∼= P10, but G does contain a subgraph isomorphic to J2. We adopt
the vertex labeling shown in Figure 3.2.

Claim 1: J2 is an induced subgraph.

This is immediate via the girth 5 hypothesis.

Claim 2: For 1 ≤ i < j ≤ 8, N ′

i ∩ N ′

j = ∅. For all pairs {i, j} 6= {1, 5} and {3, 7},
this follows from the girth 5 hypothesis and observing that N ′

2 = N ′

4 = N ′

6 = N ′

8 = ∅.
Suppose, then, that there exists a vertex y ∈ N ′

1∩N ′

5. Then if we let C = x1x2x6x7x8x1

we find that N ′(C) contains a path yx5x4x3 of length 3, contradicting Lemma 3.1.
So N ′

1 ∩ N ′

5 = ∅ and by symmetry, N ′

3 ∩ N ′

7 = ∅ as well. This proves Claim 2.

For i = 1, 3, 5, 7, let yi be the neighbor of xi not in J2.

Claim 3: For {i, j} ∈ {{1, 3}, {1, 5}, {1, 7}, {3, 5}, {3, 7}, {5, 7}}, there is no edge joining
yi and yj .

By symmetry, we need only check the pairs {1, 3} and {1, 5}. If there is an edge
joining y1 and y3, there is then a subgraph isomorphic to J1 and we are done by Lemma
3.2. If, on the other hand, y1 ∼ y5, we have a 7-cycle in G, contradicting Lemma 2.3.
This proves Claim 3.

It is easily checked that {x1, x5} and {x3, x7} are each well-connected and hence by
Claim 3 and Lemma 2.1 each is a non-co-bridge pair. On the other hand, since G is cubic
and 3-connected, there is a bridge B of the subgraph spanned by V (J2)∪{y1, y3, y5, y7}
which must have attachments at at least three of the vertices {y1, y3, y5, y7}. But it
then follows that either {x1, x5} or {x3, x7} is a co-bridge pair, a contradiction.

The next two results culminate in the elimination of the case in which there is a
matching of size 2 in N ′(C).

Lemma 3.4: Suppose G is a cubic 3-connected graph of girth 5 in which every odd
cycle of length greater than 5 has a chord. Suppose G contains the graph L1 shown in
Figure 3.3 as a subgraph. Then G ∼= P10.
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Figure 3.3

Proof: Suppose G 6∼= P10, but suppose G does contain the graph L1 as a subgraph. We
assume the vertices of this subgraph L1 are labeled as in Figure 3.3.

Claim 1: L1 is an induced subgraph.

By the girth hypothesis, if vertices xi and xj are joined by a path of length at most
3, then they are not adjacent. Therefore, by symmetry we need check only the pairs
{x1, x5} and {x3, x7}. However, if x1 ∼ x5, L1 ∪x1x5

∼= P10\e. But this graph contains
a girth cycle C such that N ′(C) contains a path of length 3 and so by Lemma 3.1,
G ∼= P10, a contradiction. So x1 6∼ x5. By symmetry, x3 6∼ x7 as well and Claim 1 is
proved.

Since G is cubic, N ′

2 = N ′

4 = N ′

6 = N ′

8 = N ′

9 = N ′

10 = ∅ and each of N ′

1, N
′

3, N
′

5 and
N ′

7 consists of a single vertex. Let N ′

i = {yi} for i = 1, 3, 5, 7 and let L′

1 = {y1, y3, y5, y7}.

Claim 2: y1, y3, y5 and y7 are all distinct.

By symmetry, we need only check that y1 6= y3 and y1 6= y5. The first of these
assertions follows immediately via the girth hypothesis. If y1 = y5, on the other hand,
it follows that y1x1x2x9x10x4x5y5(= y1) is a chordless 7-cycle, contrary to hypothesis.
Thus Claim 2 is true.

Claim 3: L′

1 is independent.

Indeed, if there were an edge joining any two vertices of L′

1, one can find a chordless
7-cycle containing it, which is a contradiction.

Since G is cubic, G− (L1 ∪L′

1) 6= ∅. Therefore, there must exist a non-edge bridge
B with attachments on at least three of y1, y3, y5 and y7. But then B must have either
both y1 and y5 as vertices of attachment or both y3 and y7 as vertices of attachment.
By symmetry, without loss of generality, let us assume that y1 and y5 are vertices of
attachment for B. Hence x1 and x5 are a co-bridge pair.
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On the other hand, the induced paths x1x2x3x4x5 and x1x2x9x10x4x5 serve to
show that x1 and x5 are well-connected, and since there does not exist an edge joining
y1 and y5, it follows from Lemma 2.1 that {x1, x5} is a non-co-bridge pair. Hence we
have a contradiction and Lemma 3.4 is proved.

Lemma 3.5: Suppose G is a cubic 3-connected graph of girth 5 in which every odd
cycle of length greater than 5 has a chord. Suppose G contains the graph L2 shown in
Figure 3.4 as a subgraph. Then G ∼= P10.

Figure 3.4

Proof: Suppose G 6∼= P10, but suppose G does contain the graph L2 as a subgraph. We
assume the vertices of this subgraph L2 are as labeled in Figure 3.4.

Claim 1: L2 is an induced subgraph of G.

As before, we need only check pairs of vertices {xi, xj} which lie at distance at least
4. Hence we need only check the pair {x3, x8}. If x3 and x8 are joined by an edge, then
the resulting graph is isomorphic to P10\v. But this graph contains a girth cycle C such
that N ′(C) contains a path of length 3 and so by Lemma 3.1, G ∼= P10, a contradiction.
Hence x3 6∼ x8 and Claim 1 is true.

Since G is cubic, N ′

2 = N ′

5 = N ′

6 = N ′

9 = ∅ and each of N ′

1, N
′

3, N
′

4, N
′

7 and N ′

8 con-
sists of a single vertex. Let N ′

i = {yi} for i = 1, 3, 4, 7, 8 and let L′

2 = {y1, y3, y4, y7, y8}.

Claim 2: y1, y3, y4, y7 and y8 are all distinct.

By the girth hypothesis, we need only check that yi 6= yj when xi and xj are at dis-
tance at least 3. By symmetry, then, we need only check the five pairs {y1, y4}, {y3, y7},
{y3, y8}, {y4, y7} and {y4, y8}.

Suppose y1 = y4. Then consider the 5-cycle C = x1x2x6x5x9x1 and note that
N ′(C) contains the path y1(= y4)x4x3 and by the girth hypothesis, this is an induced
path of length 2. But then by Lemma 3.3, G ∼= P10, a contradiction. Hence y1 6= y4.

If y3 = y7, y3x3x4x5x9x8x7y7(= y3) is a chordless 7-cycle, a contradiction. If
y3 = y8, y3x3x4x5x6x7x8y8(= y3) is a chordless 7-cycle, a contradiction. Suppose next
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that y4 = y8. Then the 10-vertex subgraph L2 ∪ {x4y4, y4x7} is isomorphic to L1 and
hence by Lemma 3.4, G ∼= P10, a contradiction.

Finally, if y4 = y8, y4x4x3x2x1x9x8y8(= y4) is a chordless 7-cycle, a contradiction.
Thus Claim 2 is true.

Claim 3: For i, j ∈ {1, 3, 4, 7, 8}, there is no edge joining yi and yj , that is, L′

2 is
independent.

By the girth 5 hypothesis and symmetry, we need only check the pairs {i, j} =
{1, 3}, {1, 4}, {3, 7}, {3, 8}, {4, 7}. But if there is an edge joining y1 and y3, using induced
path x1x9x5x4x3 we obtain a chordless 7-cycle, a contradiction. Similarly, for the pair
{1, 4} using induced path x1x2x6x5x4, for {3, 7}, using induced path x3x4x5x6x7, for
{3, 8}, using induced path x3x4x5x9x8, and for {4, 7}, using induced path x4x3x2x6x7,
we obtain a chordless 7-cycle, a contradiction in each case. This proves Claim 3.

Since G is cubic, G− (L2 ∪L′

2) 6= ∅. Therefore, there must exist a non-edge bridge
B with attachments on at least three of y1, y3, y4, y7 and y8.

First assume that there is attachment at vertex y1. Vertices x1 and x3 are well-
connected using induced paths x1x2x3 and x1x9x5x6x2x3 and since x1 6∼ x3, {x1, x3}
is a non-co-bridge pair by Lemma 2.1. Hence B has no attachment at vertex y3.

Similarly, paths x1x2x3x4 and x1x2x6x5x4 serve to show that x1 and x4 are well-
connected and hence {x1, x4} is a non-co-bridge pair as well. Hence there is no attach-
ment for B at y4. By symmetry, there is no attachment for B at y7 or y8 either. Thus
there is no attachment at y1.

So B must have attachments at at least three of the four vertices y3, y4, y7 and y8.
By symmetry, it is enough to consider the possibilities of attachments at y3, y4 and y7

or at y3, y4 and y8. But in the former case, induced paths x3x2x6x7 and x3x4x5x6x7

serve to show that x3 and x7 are well-connected and since they are not adjacent, by
Lemma 2.1 {x3, x7} is a non-co-bridge pair. Similarly, in the latter case, induced paths
x3x4x5x6x7x8 and x3x2x1x9x8 suffice to show that x3 and x8 are also well-connected
and hence {x3, x8} is a non-co-bridge pair as well. Thus we have a contradiction and
the proof of Lemma 3.5 is complete.

Finally, we treat the case when there is a single edge in N ′(C).

Lemma 3.6: Suppose G is a cubic 3-connected graph of girth 5 in which every odd
cycle of length greater than 5 has a chord. Suppose G contains the graph L3 shown in
Figure 3.5 as a subgraph. Then G ∼= P10.

the electronic journal of combinatorics 18 2011, #P20 13



Figure 3.5

Proof: Suppose G 6∼= P10, but suppose G does contain the graph L3 as a subgraph.

Claim 1: L3 is induced.

This follows immediately from the girth hypothesis, since the diameter of L3 is only
3.

Since G is cubic, N ′

2 = N ′

5 = ∅ and each of N ′

1, N
′

3, N
′

4, N
′

6 and N ′

7 consists of a
single vertex. Let N ′

i = {yi}, for i = 1, 3, 4, 6, 7 and let L′

3 = {y1, y3, y4, y6, y7}.

Claim 2: y1, y3, y4, y6 and y7 are all distinct.

By the girth hypothesis, we need only check pairs at distance at least 3 and hence
we need only check {x1, x4}.

Suppose y1 = y4. Then consider the 5-cycle C = x1x8x4x5x6x1 and note that
N ′(C) contains the 2-path x3x2x7 and moreover, this 2-path is induced by the girth
hypothesis. Hence by Lemma 3.3, G ∼= P10, a contradiction. Hence y1 6= y4 and Claim
2 is proved.

Claim 3: For i, j ∈ {1, 3, 4, 6, 7}, there is no edge joining yi and yj , that is, L′

3 is
independent.

By symmetry, we need only check the pairs {i, j} = {1, 3}, {1, 4} and {1, 7}. But if
there is an edge joining y1 and y3, using induced path x1x6x5x4x3 we obtain a chordless
7-cycle, a contradiction. Similarly, for the pair {1, 4}, using induced path x1x2x7x5x4

we obtain a chordless 7-cycle as well.
Suppose, then, that y1 ∼ y7 and consider L3 ∪ {x1y1, y1y7, y7x7}. The 5-cycle

C = x1x2x7x5x6x1 has the property that N ′(C) contains the independent edges y1y7

and x3x4. But then by Lemma 3.5, G ∼= P10, a contradiction, and Claim 3 is proved.

Claim 4: The pairs {xi, xj}, for {i, j} = {1, 4}, {1, 7}, {3, 6}, {3, 7}, {4, 7} and {6, 7}
are well-connected.

By symmetry, it suffices to treat only the two pairs {1, 4} and {1, 7}. But induced
paths x1x2x3x4 and x1x2x7x5x4 show that {x1, x4} is well-connected, while for {x1, x7},
paths x1x2x7 and x1x6x5x7 guarantee well-connectedness.
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Claim 5: Each of {x1, x4}, {x1, x7}, {x3, x6}, {x3x7}, {x4, x7} and {x6, x7} is a non-co-
bridge pair.

These are all pairs of non-adjacent vertices and hence by Lemma 2.1, the Claim
follows.

Since G is cubic, there must be a bridge B in V (G) − (L3 ∪ L′

3). Since G is
3-connected, bridge B must then have three vertices of attachment among the set
{y1, y3, y4, y6, y7}. Vertex y7 cannot be one of the three, since {xi, x7} is a non-co-
bridge pair, for i = 1, 3, 4 and 6, by Claim 5. It then follows that either {y1, y4} or
{y3, y6} are attachment sets for B. But these pairs are non-co-bridge pairs by Claim 5
and we have a contradiction. The Lemma follows.

We are now prepared for our main result for cubic graphs.

Theorem 3.7: Suppose G is a cubic 3-connected graph of girth 5 in which every odd
cycle of length greater than 5 has a chord. Then G ∼= P10.

Proof: Let C be a 5-cycle in G. By Lemmas 3.1, 3.3, 3.5 and 3.6, we may assume
that N ′(C) is independent. So once again, since G is cubic, there must be a bridge in
G− (V (C)∪N ′(C)) with vertices of attachments in at least three of N ′

1, . . . , N
′

5. Hence
there must be two non-adjacent xi’s which are a co-bridge pair. But this contradicts
Lemma 2.1 and the Theorem is proved.

The original conjecture of Robertson did not include the assumption that the graphs
are internally-4-connected. However, without this assumption, the conclusion does not
follow as is shown by the following counterexample.

Let G1 be the bipartite graph on twenty-six vertices and G2, the graph on twelve
vertices shown in Figure 3.6.

Figure 3.6
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Join a copy of G1 to one central copy of G2 by joining A to x1, B to x2 and C to
x3 via a matching, a second copy of G1 to G2 by joining A to x3, B to x4 and C to x5

via a matching, a third copy of G1 to G2 by joining A to x6, B to x7 and C to x8 via a
matching, and a fourth copy of G1 to G2 by joining A to x8, B to x9 and C to x10 via
a matching. The resulting graph on 116 vertices is 3-connected, has girth 5 and every
odd cycle of length greater than 5 has a chord. Clearly, it is not internally 4-connected.

Note that we may obtain infinitely many more counterexamples by attaching ad-
ditional copies of the graph G1 to each other along their common path A · · ·B · · ·C
shown in Figure 3.6.

4. N ′(C) is not independent.

Beginning in this section we turn our attention to the original conjecture in which we
drop the assumption that G is cubic, but add the assumption that G is internally-4-
connected. In these next three sections, we will follow, as far as we can, the general
approach of Section 3 in that we will begin with a 5-cycle C and analyze the structure
of the subgraph induced by N ′(C). In doing so, we will see that a number of claims
follow just as they did in the cubic case. But not all.

Lemma 4.1: Let G be a 3-connected internally 4-connected graph of girth 5 in which
every odd cycle of length greater than 5 has a chord. Then if C is a 5-cycle in G, N ′(C)
is not an independent set.

Proof. By way of contradiction, let us suppose that C = x1x2x3x4x5x1 is a 5-cycle in
G such that N ′(C) is independent. Note that by the girth 5 hypothesis, N ′

i ∩N ′

j = ∅, for
1 ≤ i < j ≤ 5. Note also that since N ′(C) is independent, there exist no edge-bridges
of C ∪ N ′(C).

For any vertex pair {xi, xi+2} in V (C), (where i is read modulo 5), consider the
set V (C)−{xi, xi+2} which separates the vertices xi and xi+2 on C. Since xi and xi+2

are well-connected in C, by Lemma 2.1 they form a non-co-bridge pair. Similarly, any
non-adjacent pair of vertices xi and xj on C are a non-co-bridge pair. In fact, then, all
non-edge bridges are either monobridges or bibridges with one attachment in some N ′

i

and another in N ′

i+1, for some i, ( mod 5).

Since G is internally 4-connected, there must be a third xi-xi+2 (induced) path
Pi,i+2 containing none of the vertices V (C)−{xi, xi+2}. Such a path must visit N ′

i and
N ′

i+2. More particularly, this path can be assumed to visit, in turn, a sequence of sets of
the form {xi}, N

′

i , Bi,i+1, N
′

i+1, Bi+1,i+2, N
′

i+2, {xi+2}, or else, going around cycle C in
the opposite direction, a sequence of sets of the form {xi}, Bi,i+4, N

′

i+4, Bi+4,i+3, N
′

i+3,
Bi+3,i+2, N

′

i+2, {xi+2}. In the first instance above, the path is called a short overpath
and in the second, a long overpath. Note that both long and short overpaths may use
monobridges.

(In Figure 4.1, P1,3 denotes a short {x1, x3} overpath and in Figure 4.2, Q3,1 is a
long {x3, x1} overpath.)
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Figure 4.1. A short overpath.

Figure 4.2. A long overpath.

Note that, if there is a short overpath of even length, or a long overpath of odd
length, it can be taken together with a subpath of C of suitable parity to form a
chordless odd cycle of length greater than 5, contrary to hypothesis. So we have the
next observation.

(1) Every short overpath is of odd length and every long overpath is of even length.

We may also assume the following.

(2) Any pair of type {xi, xi+2}( mod 5) cannot be joined by both a short and a long
overpath.

To see this, suppose, to the contrary, that some pair is joined by both a short
overpath P and a long overpath Q. Then P ∪ Q would contain an odd cycle of length
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greater than 5 (in fact, at least 9), containing no chords, contradicting an hypothesis of
this lemma.

Henceforth, therefore, we shall say the pair {xi, xi+2} is short (respectively, long)
if it is joined by a short (respectively, long) overpath.

We also claim the following is true.

(3) There cannot exist simultaneously a short {xi, xi+2} overpath and a short {xi+2,
xi+4} overpath.

To see this, suppose that both short overpaths exist. Since by (1), both are of odd
length, together with the single edge xi+4xi, their union contains a chordless odd cycle
of length greater than 5, again a contradiction.

The next is an obvious observation.

(4) Any long {xi, xi+3} overpath gives rise to both a short {xi, xi+2} overpath and a
short {xi+1, xi+3} overpath via a suitable selection of an edge joining xi+1 and N ′

i+1

and an edge joining xi+2 and N ′

i+2.

(5) For some choice of i, there must exist a short {xi, xi+2} overpath.

For suppose, to the contrary, that, for all i = 1, . . . , 5, no short {xi, xi+2} overpath
exists. Fix i. Then by internal-4-connectivity, a long {xi+2, xi} overpath P must exist.
But then we are done by (4).

Without loss of generality, then, let us suppose that {x1, x3} is short. Then by
(3) {x3, x5} cannot be short and hence must be long. Again by (3) and symmetry,
{x4, x1} cannot be short, and hence must be long as well. Thus by (4), {x2, x5} must
be short. Hence by (3), {x2, x4} is long. By (4), then, {x1, x4} is short and we have a
contradiction. This proves the lemma.
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5. Forbidden induced paths of length at least 3.

Again let us suppose that G is a graph which is 3-connected, has girth 5 and that G has
the further property that every odd cycle of length greater than 5 has a chord. This
entire section is devoted to showing that if C is a 5-cycle in G and N ′(C) contains an
induced path of length at least 3, then G ∼= P10. Note that we do not use the internal-4-
connected assumption in this section. Hence Lemma 3.1 for cubic graphs is a corollary
of Lemma 5.4. However, we have chosen to include the direct proof of Lemma 3.1 given
in Section 3 to give the reader more appreciation as to how much the cubic assumption
simplifies matters.

Lemma 5.1: Suppose G is 3-connected, has girth 5 and all odd cycles of length greater
than 5 have a chord. Let C1 = x1x2x3x4x5x1 be a cycle of length 5 in G and let
C2 = y1y2 · · ·y5 · · · be any cycle in N ′(C1). Then |C2| = 5, G[C1 ∪ C2] ∼= P10 and
N ′(C1)\V (C2) is independent.

Proof: Let C1 = x1x2x3x4x5x1 and let C2 = y1y2 · · · yky1. Suppose k > 5. Without
loss of generality, assume that x1 ∼ y1. Then by symmetry, we may assume that
y2 ∼ x3. But then it follows that y3 ∼ x5, y4 ∼ x2 and y5 ∼ x4. If y6 is adjacent
to any of x2, . . . , x5, the girth 5 hypothesis is contradicted. But then y6 ∼ x1. So
x1y1y2x3x4y5y6x1 is a 7-cycle in G, a contradiction of Lemma 2.3. Therefore C2 is a
5-cycle. Thus G[C1 ∪ C2] ∼= P10 as claimed.

Now by way of contradiction, let us suppose that N ′(C1)\V (C2) contains an edge
y6y7. By the symmetry of the Petersen graph, we may then suppose, without loss of
generality, that y6x5 ∈ E(G). Then since the girth of G is 5, y7 6∼ x5, y7 6∼ x4 and
y7 6∼ x1. If y7 ∼ x2, then x2y4y5x4x5y6y7x2 is a 7-cycle, contradicting Lemma 2.3. So
y7 6∼ x2. Similarly, if y7 ∼ x3, then we get a 7-cycle y7y6x5y3y4x2x3y7, a contradiction,
so y7 6∼ x3. Thus y7 is adjacent to no vertex of cycle C1, a contradiction.

Lemma 5.2: Let G be a 3-connected graph of girth 5 such that all odd cycles of length
greater than 5 have a chord. Let C1 be a 5-cycle in G. If N ′(C1) contains a cycle C2,
then G ∼= P10.

Proof: Denote G[C1 ∪ C2] by H. By Lemma 5.1, C2 is a 5-cycle and H is isomorphic
to P10. So let us adopt the notation that C1 = x1x2x3x4x5x1, C2 = x6x8x10x7x9x6 and
each vertex xi ∈ V (C1) is adjacent to the vertex xi+5 ∈ V (C2) where the subscripts are
read modulo 5.

Suppose G 6= H.

Claim 1: For 1 ≤ i < j ≤ 10, N ′

i ∩ N ′

j = ∅.

This follows by Lemma 2.4(i) and the girth hypothesis.

Claim 2: Let B be a bridge of H ∪ N ′(H). Then B cannot be an edge-bridge.

This follows by Lemma 2.4(iii) and Lemma 2.3.
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Claim 3: For any non-edge-bridge B, either B is a monobridge Bi or there exist
i, j ∈ [1, 10] such that B ∩ N ′(H) ⊆ N ′

i ∪ N ′

j where the corresponding xi and xj are
two adjacent vertices in H. (That is to say, B = Bi,j is a bibridge where xi and xj are
adjacent.)

To prove Claim 3, first note that by Lemma 2.4(ii) and (iii) as well as Claim 2,
every pair of non-adjacent vertices in H are well-connected and hence form a non-co-
bridge pair. Any three vertices of P10 must be such that at most two pair of them are
adjacent. Therefore, no non-edge-bridge can have attachments in more than two N ′

i ’s,
and if it has attachments in two N ′

i ’s, say in N ′

i and in N ′

j , then xi and xj are adjacent.
This proves Claim 3.

Since G is 3-connected, not all bridges of H are monobridges. In fact, if a mono-
bridge is joined only to N ′

i , then there must be a bibridge Bi,j for some j 6= i, since xi

is not a cutvertex in G. So let Bi,j be a bibridge of H. Thus by Claim 3, xi ∼ xj .
Since Bi,j is not an edge-bridge, there must exist an interior vertex v of Bi,j. By

Menger’s theorem, there exist three internally disjoint paths from v to three distinct
vertices of H. Since Bi,j is a bibridge, all attachments of Bi,j in H ∪ N ′(H) are
contained in N ′

i ∪ N ′

j . Therefore, at least one of these three paths has to pass through
a bridge different from Bi,j which is either a Bi,k bibridge or a Bj,k bibridge, for some
k 6= i, j. Without loss of generality, suppose one of the three paths passes through a
Bj,k bibridge. Hence, there must exist a path P in G\V (H) joining v to some vertex
wk in N ′

k, k 6= i, j. Let wi be a neighbor of v in N ′

i . P + vwi is then a path joining wi

to wk in G\V (H). Now choose any shortest path Pi,k joining a vertex wi of N ′

i to a
vertex wk ∈ N ′

k. By Claim 3, xi is adjacent to xj and xj is adjacent to xk. Therefore,
by the girth hypothesis, xi is not adjacent to xk. (Note that Pi,k may pass through
monobridges of type Bj. See Figure 5.1.)

Figure 5.1

So by Lemma 2.5(i) and (iii), with H\xj = P10\xj , there must exist an induced
path P1 of length 3 and an induced path P2 of length 4 joining xi and xk in H, each
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avoiding vertex xj . Let Q3 = Pi,k ∪wixi ∪wkxk ∪P1 and Q4 = Pi,k ∪wixi ∪wkxk ∪P2.
Then Q3 and Q4 are chordless cycles since vertices in G\(H ∪N ′(H)) are not adjacent
to vertices in H, N ′(H) is independent, N ′

a ∩ N ′

b = ∅, for 1 ≤ a < b ≤ 10, and Pi,k is
chordless. But one of Q3 and Q4 is odd with length at least 9, a contradiction.

Therefore no such vertex v exists; i.e., Bi,j = ∅. Hence, since G is 3-connected, no
N ′

i ’s exist either and it follows that G = H ∼= P10.

Lemma 5.3: Let G be a 3-connected graph of girth five such that all odd cycles of
length greater than 5 have a chord. Let C1 be a 5-cycle in G. Then if N ′(C1) contains
an induced path P of length at least 4, G ∼= P10.

Proof: Let C = x1x2x3x4x5x1. By Lemma 5.2, we may assume N ′(C) contains no
cycle. By hypothesis, on the other hand, N ′(C) contains an induced path P of length
at least 4. Let H = G[C ∪ P ]. Then it is easy to see that H is isomorphic to P10\uv
for some pair of adjacent vertices u and v.

Without loss of generality, we may assume that H is labeled as in Figure 5.2.

Figure 5.2

Claim 1: N ′

i ∩ N ′

j = ∅, for 1 ≤ i < j ≤ 10.

If the corresponding vertices xi and xj are at distance at most two in H, then
N ′

i ∩N ′

j = ∅ by the girth hypothesis. There are five pairs of vertices at distance at least
3, namely {x7, x10}, {x2, x10}, {x9, x10}, {x5, x7} and {x7, x8}. (See Figure 5.2.) Due to
symmetry, we need only show that N ′

2 ∩ N ′

10, N
′

7 ∩ N ′

10 and N ′

9 ∩ N ′

10 are empty.
First, let us assume that N ′

2∩N ′

10 6= ∅. Choose w ∈ N ′

2∩N ′

10. Then w is adjacent to
both x2 and x10. But then wx2x7x9x6x8x10w is a 7-cycle, a contradiction. Similarly, if
N ′

7∩N ′

10 6= ∅ and w ∈ N ′

7∩N ′

10, then wx7x2x1x6x8x10w is a 7-cycle and if N ′

9∩N ′

10 6= ∅
and w ∈ N ′

9 ∩ N ′

10, then wx9x7x2x3x8x10w is a 7-cycle, a contradiction in each case.
Thus Claim 1 is proved.

Claim 2: There exists no edge-bridge.

This follows from Lemma 2.5(ii) and Lemma 2.3.
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Claim 3: The only possible bridges are either monobridges or bibridges Bi,j where
xi ∼ xj .

This is proved just as was Claim 3 of Lemma 5.2, except here we use Lemma 2.5(ii),
instead of Lemma 2.4(ii) and (iii). So Claim 3 follows.

As noted in the proof of Lemma 5.2, not all bridges of H are monobridges, so let
Bi,j be a bibridge. Hence by Claim 3, vertices xi and xj are adjacent. By Claim 2, Bi,j

is not an edge-bridge, so there must exist an interior vertex v in Bi,j. Again arguing
as in the proof of Lemma 5.2, there must exist a path P in G\V (H) joining v to a
vertex wk in some N ′

k, k 6= i, j and passing through a bibridge Bi,k or a bibridge Bj,k.
Say, without loss of generality, P passes through a bibridge of type Bj,k. If wi ∈ N ′

i ,
P + vwi is a path joining wi and wk in G\V (H). By Claim 3, xi ∼ xj and xj ∼ xk.
But then by our girth hypothesis, xi 6∼ xk. Therefore {xi, xk} is a well-connected pair
and by Lemma 2.5(iii) there exist induced paths of length 3 and 4 joining xi and xk,
both avoiding xj .

Now arguing just as in the proof of Lemma 5.2, again we conclude that Bi,j = ∅
and the lemma follows.

Lemma 5.4: Let G be a 3-connected graph of girth 5 such that all odd cycles of length
greater than 5 have a chord. Let C be a 5-cycle in G. Then if N ′(C) contains an
induced path P of length 3, G ∼= P10.

Proof: Let C = x1x2x3x4x5x1 be a 5-cycle in G. By Lemma 5.3, N ′(C) contains no
induced path of length 4. Suppose, on the other hand, that N ′(C) does contain an
induced path P of length 3.

Suppose G 6∼= P10.
Let H = G[C∪P ]. Then it is easy to see that H = G[C∪P ] is isomorphic to P10\v

for some vertex v.
Let us suppose that H is labeled as shown in Figure 5.3.

Figure 5.3

Claim 1: N ′

i ∩ N ′

j = ∅, for 1 ≤ i < j ≤ 9.

It is easy to check that every pair of vertices are at distance either 1 or 2 when one
of the pair has degree 3. This implies that N ′

i ∩N ′

j = ∅ if one of i and j is not 5, 7 or 8.
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Suppose that, say, N ′

5 ∩N ′

7 6= ∅ and we choose w ∈ N ′

5 ∩N ′

7. Then w is adjacent to
both x5 and x7 and H ∪ w is a graph containing 5-cycle C1 = x1x5x4x9x6x1 together
with a path PC1

= wx7x2x3x8 in N ′(C1). But PC1
has length 4 and so by Lemma 5.3,

G ∼= P10, a contradiction. So N ′

5 ∩ N ′

7 = ∅.
By symmetry, the same argument may be used to show that if G 6∼= P10, then

N ′

5 ∩ N ′

8 6= ∅ and N ′

7 ∩ N ′

8 6= ∅.
Note that H∪w can viewed as follows. Add a vertex w = x10 and join it to vertices

x5, x7 and x8 in Figure 5.3 and then delete either edge x5x10, x7x10 or x8x10. But these
three graphs are each isomorphic to P10\e, where e is any edge of P10, since P10 is
edge-transitive.

Therefore Claim 1 is true.

Claim 2: There exists no edge-bridge.

This follows from the existence of a path of length 4 as pointed out in Lemmas
2.5(i) and 2.3.

Claim 3: The only possible bridges are either monobridges or bibridges Bi,j where
xi ∼ xj .

This is proved using Lemma 2.5(i) just as in the proof of Claim 3 of Lemma 5.3.

As noted in the proof of Lemma 5.2, not all bridges of H are monobridges, so let
Bi,j be a bibridge. Hence by Claim 3, vertices xi and xj are adjacent. By Claim 2, Bi,j

is not an edge-bridge, so there must exist an interior vertex v in Bi,j. Again arguing
as in the proof of Lemma 5.2, there must exist a path P in G\V (H) joining v to a
vertex wk in some N ′

k, k 6= i, j and passing through a bibridge Bi,k or a bibridge Bj,k.
Say, without loss of generality, P passes through a bibridge of type Bj,k. If wi ∈ N ′

i ,
P + vwi is a path joining wi and wk in G\V (H). By Claim 3, xi ∼ xj and xj ∼ xk.
But then by our girth hypothesis, xi 6∼ xk and therefore xi and xk are well-connected
and by Lemma 2.5(iii) there exist induced paths of length 3 and 4 joining xi and xk,
both avoiding vertex xj .

Now arguing just as in the proof of Lemma 5.2, again we conclude that Bi,j = ∅
and the lemma follows.
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6. Forbidden induced paths of length 2.

In this section, we will show the following. Suppose G is 3-connected, internally 4-
connected, has girth 5 and every odd cycle of length greater than 5 has a chord. Then
if C is a 5-cycle in G such that N ′(C) contains an induced path of length 2, G ∼= P10.

So let us suppose that C is a 5-cycle in G and N ′(C) does contain such an induced
2-path x3x4x5. Then by symmetry and the girth 5 hypothesis as well as 3-connectivity,
we may assume that G contains the subgraph J2 shown in Figure 3.2. (Note that J2

must be induced by the girth 5 hypothesis.)
Our goal, then, is to show that if G contains J2 as a subgraph, then G ∼= P10. Let us

point out again that we have not yet invoked the hypothesis of internal-4-connectivity.

Lemma 6.1: Suppose G is 3-connected with girth 5 and every odd cycle of length
greater than 5 has a chord. Suppose also that G contains a subgraph isomorphic to
J2. Let the vertices of this J2 be labeled as in Figure 3.2. Then if there exists an edge
joining N ′

i and N ′

j , {i, j} = {1, 3}, {1, 7}, {3, 5}, or {5, 7}.

Proof: Suppose that there is an edge joining u ∈ N ′

1 to a vertex v ∈ N ′

i . Then i 6= 1,
since N ′

1 is independent by the girth 5 hypothesis. For the same reason i 6= 2, 8. Suppose
v ∈ N ′

4. Then uvx4x5x6x2x1u is a 7-cycle, a contradiction of Lemma 2.3. Hence v /∈ N ′

4

and, by symmetry, v /∈ N ′

6. Similarly, v /∈ N ′

5, since if it were, uvx5x4x3x2x1u would be
a 7-cycle. So {1, j} = {1, 3} or {1, 7}.

Now consider possible edges joining N ′

2 to N ′

i , i 6= 2. Since no edge joins N ′

1 and
N ′

4, by symmetry, no edge joins N ′

2 and N ′

5. Suppose there is an edge joining u ∈ N ′

2

and v ∈ N ′

4. Then uvx4x8x7x6x2u is a 7-cycle, a contradiction. Hence by the girth 5
hypothesis and symmetry, there is no edge joining N ′

2 to N ′

i , where i 6= 2. By symmetry,
then, the proof of the Lemma is complete.

The preceding Lemma shows that the only possible “ears” attached to the subgraph
J2 belong to one of four classes, namely {i, j} = {1, 3}, {1, 7}, {3, 5} or {5, 7}. We now
proceed as follows:

(1) In Lemma 6.2, we show that J2 cannot have ears from three (or more) of these four
classes. That is to say, G cannot contain configuration J3 shown in Figure 6.1 as a
subgraph.

(2) Using (1), we show that J2 cannot possess ears from exactly two of the four classes.
Here there are, up to isomorphism, two separate cases to treat. (See configuration J4

in Figure 6.2 and configuration J5 in Figure 6.3.) That G cannot contain J4 or J5 as
subgraphs is shown in Lemmas 6.3 and 6.4 respectively.

Note that in the proof of Lemma 6.4, we will use the assumption of internal-4-
connectivity for the first time.

(3) Using (2), we show in Lemma 6.5 that if G contains J1 shown in Figure 3.1 as a
subgraph, then G ∼= P10.
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(4) And finally, using (3), we show by means of Lemma 6.6 that if G contains the graph
J2 shown in Figure 3.2 as a subgraph, then G ∼= P10.

We have then shown that if N ′(C) contains an induced path of length exactly 2,
then G ∼= P10.

Lemma 6.2: Let G be a 3-connected graph of girth 5 such that all odd cycles of length
greater than 5 have a chord. Then G does not contain as a subgraph the graph J3

shown in Figure 6.1.

Proof: Suppose, by way of contradiction, that G does contain J3 as a subgraph.

Cycle C = x1x2 · · ·x11x1 has length 11 and hence contains a chord. Since the
girth of G is five and by Lemma 2.3 there are no 7-cycles, the only possible chords of
C are of the form xixi+4 or xixi+7 (modulo 11). Therefore, C can only have eleven
possible chords: x1x5, x2x6, x3x7, x4x8, x5x9, x6x10, x7x11, x1x8, x2x9, x3x10 and x4x11.
However, if x1x5 ∈ E(G), then x1x5x6x14x9x10x11x1 is a 7-cycle, if x1x8 ∈ E(G),
then x1x8x7x6x13x3x2x1 is a 7-cycle, if x2x6 ∈ E(G), then x2x6x13x3x2 is a 4-cycle, if
x2x9 ∈ E(G), then x2x9x14x6x5x4x3x2 is a 7-cycle, if x3x7 ∈ E(G), then x3x7x6x13x3

is a 4-cycle, if x3x10 ∈ E(G), then x3x10x13x3 is a 3-cycle, if x4x8 ∈ E(G), then
x4x8x9x10x11x12x3x4 is a 7-cycle, if x4x11 ∈ E(G), then x4x11x12x3x4 is a 4-cycle, if
x5x9 ∈ E(G), then x5x9x14x6x5 is a 4-cycle, if x6x10 ∈ E(G), then x6x10x13x6 is a
3-cycle, and if x7x11 ∈ E(G), then x7x11x12x3x4x5x6x7 is a 7-cycle, so each of these
possibilities also leads to a contradiction of either Lemma 2.3 or the girth hypothesis.

Figure 6.1

Lemma 6.3: Let G be a 3-connected graph of girth 5 such that all odd cycles of length
greater than 5 have a chord. Then G does not contain a subgraph isomorphic to the
graph J4 shown in Figure 6.2.
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Figure 6.2

Proof: Claim 1: If J4 is a subgraph of G, then it is an induced subgraph.

By the girth 5 assumption and symmetry, we need only check the pairs {x1, x5},
{x3, x8} and {x4, x8} for adjacency. But if x1 and x5 are adjacent, x1x5x6x7x8x9x10x1 is
a 7-cycle, contradicting Lemma 2.3. Similarly, if x3 and x8 are adjacent, x3x8x9x12x6x5

x4x3 is a 7-cycle, a contradicton, and if x4 and x8 are adjacent, x4x8x9x12x6x11x3x4 is
a 7-cycle, a contradiction. This proves Claim 1.

Claim 2: Let xi and xj be two nonadjacent vertices of J4 and suppose that xi ∈
{x1, x2, x10}. Then:
(i) there exists an induced even path of length at least 4 joining xi and xj and
(ii) there exists an induced odd path of length at least 3 joining xi and xj with two
exceptions: {i, j} = {2, 4}, {8, 10}.
(iii) If xi 6∼ xj and {xi, xj} 6= {x2, x4}, {x8, x10}, then {xi, xj} is a non-co-bridge pair.

Proof: This is easily checked.

Claim 3: For 1 ≤ i < j ≤ 12, N ′

i ∩ N ′

j = ∅.

Proof: Choose v ∈ N ′

i , i = 1, . . . , 12. By the girth hypothesis, v is not incident to any
xj with d(xi, xj) ≤ 2. Since by Lemma 2.3 there is no 7-cycle in G, v is not adjacent
to xj if J4 contains a path of length 5 joining xi and xj . By symmetry, we need only
check xi = x1, x2, x3, x4, x5, x6, x11 versus xj when j > i. This is easily done.

Claim 4: There is no edge-bridge joining N ′

i to N ′

j , for 1 ≤ i < j ≤ 12.

Proof: Suppose, to the contrary, that N ′(J4) is dependent and hence there is an edge
uv joining the two vertices u, v ∈ N ′(J4) such that u is adjacent to xi and v is adjacent
to xj . Clearly, xi and xj are not adjacent by the girth hypothesis. By Claim 2, graph
J4 contains an induced even path Pij of length at least 4 joining xi and xj . Then
Q = Pij ∪ {uv, uxi, vxj} is an odd cycle of length at least 7. But then Q must contain
a chord. However, by Claim 3, neither u nor v can be an endvertex of this chord. But
then Puv is not induced, a contradiction. Therefore Claim 4 is true.
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Let H = G[J4∪N ′(J4)]. We now consider the possible bridges of H. Let Bi denote
the collection of all bridges B of H such that B ∩N ′

i 6= ∅; that is, Bi is the collection of
bridges of H having attachments in N ′

i .
Since x1 has degree two in J4, N ′

1 6= ∅. By Claims 3 and 4, each vertex in N ′

1 has
degree one in H and hence B1 6= ∅.

Claim 5: Suppose B ∈ B1. Then one of the following three cases must hold:

(i) B has all attachments contained in N ′

1; that is, B = B1 is a monobridge of H;

(ii) B has all attachments contained in N ′

1 ∪N ′

2; that is, B is a bibridge of type B1,2; or

(iii) B has all attachments contained in N ′

1 ∪N ′

10; that is B is a bibridge of type B1,10.

Proof of Claim 5: By Claims 2, 3 and 4, x1 and xi are non-co-bridge pairs, for i 6= 1, 2
and 10. Therefore, Claim 5 is true.

Claim 6: Suppose B ∈ B2. Then one of the following must occur:

(i) B has all attachments in N ′

2; that is, B = B2 is a monobridge of H;

(ii) B has all attachments in N ′

2 ∪N ′

1, N ′

2 ∪N ′

3, N ′

2 ∪N ′

4 or in N ′

2 ∪N ′

12; that is, B is a
bibridge of type B2,1, type B2,3, type B2,4 or type B2,12 respectively; or

(iii) B has all attachments in N ′

2∪N ′

3 ∪N ′

4, and each of N ′

2, N
′

3 and N ′

4 contains at least
one such attachment.

Proof of Claim 6: If j 6= 4 and x2 and xj are not adjacent, then by Claim 2(iii),
{x2, xj} is a non-co-bridge pair. Therefore, all attachments of B are contained in N ′

1 ∪
N ′

2 ∪ N ′

3 ∪ N ′

4 ∪ N ′

12. Also by Claim 2(iii), {x1, x3}, {x1, x4}, {x1, x12}, {x3, x12} and
{x4, x12} are non-co-bridge pairs, so B contains attachments in both N ′

2 and N ′

1 alone,
in both N ′

2 and N ′

3 alone, in both N ′

2 and N ′

4 alone, in both N ′

2 and N ′

12 alone, or in
each of N ′

2, N ′

3 and N ′

4. Thus Claim 6 is true.

We now proceed to complete the proof of the lemma.
Since {x2, x10} is a 2-vertex cut in J4 and G is 3-connected, there must exist paths

from x1 which pass through some vertices in N ′

1, then (by Claim 5) through some bridge
of type B1,2 ( or type B1,10), and then, perhaps, through some other bridges in B2 (or
B10) to vertices in N ′

j , for each j ∈ S = {3, 4, 5, 6, 7, 8, 9, 11, 12}. Let Q be a shortest
of these paths joining x1 to some xk ∈ S. By the minimality of the length of Q, Q
contains only one vertex in N ′

1 and hence Q does not pass through both a bibridge of
type B1,2 and one of type B1,10. By symmetry, we may assume Q passes through a
bridge of type B1,2. Then by Claim 6, Q must pass some bridge of type B2,3 to reach
x3, one of type B2,4 to reach x4, one of type B2,12 to reach x12, or some bridge B having
all attachments in N ′

2 ∪ N ′

3 ∪ N ′

4 to reach either x3 or x4.
First we suppose that Q passes through a bridge of type B2,3 to reach x3. Since

x1 and x3 are connected by the odd path P1 = x1x10x11x3 in J5 and the even path
P2 = x1x10x9x8x7x6x5x4x3, both of which avoid x2, both Q ∪ P1 and Q ∪ P2 are
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chordless cycles of opposite parity and each has length greater than 5. So once more
we get a chordless odd cycle of length greater than 5, a contradiction. (Note that since
both P1 and P2 avoid x2, this prevents possible chords joining x2 and a vertex in N ′

2.)
Now we suppose that Q passes through a bridge of type B2,12 to reach x12.

Using the same argument with the odd path P1 = x1x10x9x12 and the even path
P2 = x1x10x11x6x12, both of which avoid x2, we obtain a chordless odd cycle of length
greater than 5, a contradiction.

For the case of a bridge of type B2,4, we use the same argument with the induced
odd path P1 = x1x10x9x8x7x6x5x4 and the induced even path P2 = x1x10x9x12x6x5x4,
both of which avoid x2, to obtain a chordless odd cycle of length greater than 5, a
contradiction.

The last case occurs when Q passes through a bridge B having all attachments
in N ′

2 ∪ N ′

3 ∪ N ′

4 and, moreover, has attachments in each of the three. Since Q is a
shortest path, Q contains only one vertex w in N ′

3 ∪ N ′

4. If w ∈ N ′

3, then x3 ∈ V (Q)
and Q ∩ N ′

4 = ∅ and if w ∈ N ′

4, x4 ∈ V (Q) and Q ∩ N ′

3 = ∅.
Suppose x3 ∈ V (Q). Then Q[x1, x3]∪x1x10x11x3 and Q[x1, x3]∪x1x10x9x8x7x6x5

x4x3 are of opposite parity. Moreover, both avoid vertex x2 and hence are chordless.
So x1 and x3 lie on a chordless odd cycle of length greater than 5. Suppose, then, that
x4 ∈ V (Q). Then Q[x1, x4]∪x1x10x9x12x6x5x4 and Q[x1, x4]∪x1x10x9x8x7x6x5x4 are
of opposite parity, both fail to contain both x2 and x3 and hence are chordless. Hence
x1 and x4 must lie on a chordless odd cycle of length greater than 5. This completes
the proof of Lemma 6.3.

In Lemma 6.4, we assume internal-4-connectivity for the first time in eliminating
the subgraph J5. In fact, we point out that the counterexamples presented at the end
of Section 3 are constructed by beginning with a subgraph isomorphic to J5.

Lemma 6.4: Let G be a 3-connected internally-4-connected graph of girth 5 such that
all odd cycles of length greater than 5 have a chord. Then G contains no subgraph
isomorphic to graph J5 shown in Figure 6.3.

Figure 6.3

Proof: Suppose G does contain J5 as a subgraph.
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Claim 1: J5 is an induced subgraph.

Proof of Claim 1: If x1 and x5 are adjacent, then x1x5x6x7x8x9x10x1 is a 7-cycle,
if x1 and x6 are adjacent, then x1x6x7x8x9x11x2x1 is a 7-cycle and if x1 and x7 are
adjacent, then x1x2x3x4x5x6x7x1 is a 7-cycle. But by Lemma 2.3 there are no 7-cycles.

Any other possible chord in J5 would violate the girth 5 hypothesis.

Claim 2: For 1 ≤ i < j ≤ 12, N ′

i ∩ N ′

j = ∅.

By the girth 5 hypothesis, N ′

1 ∩N ′

2 = N ′

1∩N ′

3 = N ′

1∩N ′

9 = N ′

1∩N ′

10 = N ′

1∩N ′

11 =
N ′

2∩N ′

3 = N ′

2∩N ′

4 = N ′

2∩N ′

8 = N ′

2∩N ′

9 = N ′

2∩N ′

10 = N ′

2∩N ′

11 = N ′

2∩N ′

12 = N ′

3∩N ′

4 =
N ′

3 ∩ N ′

5 = N ′

3 ∩ N ′

7 = N ′

3 ∩ N ′

8 = N ′

3 ∩ N ′

9 = N ′

3 ∩ N ′

11 = N ′

3 ∩ N ′

12 = N ′

11 ∩ N ′

12 = ∅.
The following pairs of vertices {xi, xj} are joined by the indicated paths of length

5. Hence N ′

i ∩ N ′

j = ∅ for these pairs since G has no 7-cycle.
{x1, x4}: x1x10x9x8x3x4; {x1, x5}: x1x2x11x12x4x5; {x1, x6}: x1x2x3x4x5x6;

{x1, x7}: x1x2x3x4x12x7; {x1, x8}: x1x2x11x12x7x8; {x1, x12}: x1x2x3x8x7x12;
{x2, x5}: x2x3x8x7x6x5; {x2, x6}: x2x11x9x8x7x6; {x2, x7}: x2x1x10x9x8x7; {x3, x6}:
x3x2x11x12x7x6.

All remaining pairs are symmetric to one of those listed above and hence Claim 2
follows.

Claim 3: If {i, j} /∈ {{1, 11}, {5, 12}, {6, 12}, {10, 11}, {2, 9}, {4, 7}}, then there is no
edge joining N ′

i and N ′

j .

If {i, j} = {1, 2}, {1, 10}, {2, 3}, {2, 11}, {3, 4}, {3, 8}, {11, 12}, then no edge joins
N ′

i and N ′

j by the girth five hypothesis.
For the following pairs {xi, xj}, we list either an induced 4-path, an induced 6-path

or an induced 8-path joining xi and xj . If there is an edge joining N ′

i and N ′

j in these
cases, we get either a 7-cycle, which contradicts Lemma 2.3, a chordless 9-cycle or a
chordless 11-cycle which contradicts the girth hypothesis of the present Lemma.

{x1, x3}: x1x10x9x8x3; {x1, x4}: x1x2x11x12x4; {x1, x5}: x1x2x3x4x5; {x1, x6}:
x1x2x11x9x8x7x6; {x1, x7}: x1x2x3x8x7; {x1, x8}: x1x2x11x9x8; {x1, x9}: x1x2x3x8x9;
{x1, x12}: x1x2x3x4x12; {x2, x4}: x2x1x10x9x8x7x6x5x4; {x2, x5}: x2x11x12x4x5;
{x2, x6}: x2x11x12x7x6; {x2, x7}: x2x3x4x12x7; {x2, x8}: x2x1x10x9x8; {x2x10}:
x2x3x8x9x10; {x2, x12}: x2x3x8x7x12; {x3, x5}: x3x8x7x6x5; {x3, x6}: x3x4x12x7x6;
{x3, x7}: x3x2x11x12x7; {x3, x11}: x3x8x7x12x11.

All other pairs are symmetric to one of those listed above. This proves Claim 3.

Let S1 = {1, 2, 9, 10} and S2 = {4, 5, 6, 7, 12}; that is, the vertex partition in J5

induced by the 3-cut {x3, x8, x11}.

Claim 4: The following pairs of vertices are well-connected in J3 and, except for
{x1, x10} and {x10, x11}, each is a non-co-bridge pair.
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(i) all {xi, xj} where i ∈ S1 and j ∈ S2, and

(ii) {x3, x6}, {x3, x7}, {x3, x9}, {x3, x10}, {x3, x11}, {x3, x12}, {x1, x8}, {x2, x8}, {x4, x8},
{x5, x8}, {x8, x11}, {x8, x12}, {x1, x11}, {x4, x11}, {x5, x11}, {x6, x11}, {x7, x11},
{x10, x11}.

The reader may easily check that each of the pairs in (1) and (2) are well-connected.
By Claim 3, except for {x1, x10} and {x10, x11}, there do not exist edges between

N ′

i and N ′

j , for the pairs {xi, xj} listed in (i) and (ii). Hence the Claim follows.

For each i = 1, . . . , 12, define

Bi = {B|B is a non − edge bridge of J3 ∪N ′(J3) such that B has attachments in N ′

i}.

Since {x3, x8, x11} is a 3-vertex cut in J3, and since G is internally 4-connected,
there must exist paths from each vertex in S1 to each vertex in S2 which do not pass
through any of x3, x8 or x11. By Claim 3, there are no edges joining N ′

i to N ′

j , for
all i, j, i ∈ S1, j ∈ S2. By Claim 4(i), for each i ∈ S1 and each j ∈ S2, {xi, xj} is a
non-co-bridge pair and hence any such path joining S1 and S2 must pass through some
vertices in N ′

3 ∪ N ′

8 ∪ N ′

11 and through some non-edge bridges in B3 ∪ B8 ∪ B11.
Now let Q be a shortest such path from {xi|i ∈ S1} to {xj |j ∈ S2}, which does

not pass through x3, x8 or x11. By minimality of the length of Q, Q intersects only
one N ′

i , i ∈ S1, and that in only one vertex and Q intersects only one N ′

j , j ∈ S2,
and that in only one vertex. Since {x3, x11} and {x8, x11} are non-co-bridge pairs,
B3 ∩B11 = B8 ∩B11 = ∅. But Q must meet N ′

3 ∪N ′

8 ∪N ′

11. Therefore, Q can only meet
N ′

11 or N ′

3 ∪ N ′

8, but not both. So we have two cases.

Case 1. Suppose Q leaves S1 via one of x1 or x10, say without loss of generality by
symmetry, via vertex x1. Since {1, 8} is a non-co-bridge pair, Q must use either a
bibridge of type B1,3 or of type B1,11, but not both, by the minimality of the length of
Q.

Case 1.1. Suppose Q uses a bibridge of type B1,3. If Q then traverses a bridge of type
B3,8, the induced paths x1x2x11x9x8 and x1x10x9x8 (both of which avoid vertex x3)
guarantee the existence of a chordless odd cycle of length greater than 5, a contradiction.

On the other hand, if Q traverses a bridge of type B3,4 after traversing B1,3, the
induced paths x1x10x9x8x7x12x4 and x1x10x9x11x12x4 (both of which avoid vertex x3)
guarantee a chordless odd cycle of length greater than 5, again a contradiction.

This completes the proof in Case 1.1, since the remaining possible pairs of type
{x3, xj}, namely those for which j = 5, 6, 7, 12 are all non-co-bridge pairs.

Case 1.2. Suppose, on the other hand, that Q uses a bibridge of type B1,11. Then,
since {x4, x11}, {x5, x11}, {x6, x11} and {x7, x11} are non-co-bridge pairs, Q must next
traverse a bibridge of type B11,12. The induced paths x1x2x3x4x12 and x1x10x9x8x7x12
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(both of which avoid vertex x11) then guarantee a chordless odd cycle of length greater
than 5, a contradiction.

Case 2. Suppose now that Q leaves S1 via one of x2 or x9, say without loss of generality
by symmetry, via x2. Since {x2, x8} is a non-co-bridge pair, Q must traverse a bibridge
of type B2,3 or one of type B2,11 (but not both).

Case 2.1. Suppose first that Q uses a bibridge of type B2,3.
Suppose Q next traverses a bridge of type B3,j. Since {x3, xj}, for j = 6, 7, 12 is a

non-co-bridge pair, there are just three cases to treat.
If j = 4, induced paths x2x11x12x4 and x2x1x10x9x8x7x6x5x4 (both of which avoid

vertex x3) guarantee a chordless odd cycle of length greater than 5. If j = 5, induced
paths x2x11x12x4x5 and x2x11x12x7x6x5 (both of which avoid x3) imply a chordless
odd cycle of length greater than 5. Finally, if j = 8, induced paths x2x11x9x8 and
x2x1x10x9x8 (both of which avoid x3) guarantee a chordless odd cycle of length greater
than 5. In all three instances we obtain a contradiction.

Case 2.2. Suppose Q next traverses a bibridge of type B2,11.
Since {x4, x11}, {x5, x11}, {x6, x11} and {x7, x11} are all non-co-bridge pairs, Q

must next traverse a bibridge of type B11,12. But in this instance induced paths
x2x3x4x12 and x2x3x8x7x12 (both of which avoid x11) imply the existence of a chordless
odd cycle of length greater than 5, a contradiction.

Lemma 6.5: Let G be a 3-connected internally-4-connected graph of girth 5 such that
all odd cycles of length greater than 5 have a chord. Then if G contains a subgraph
isomorphic to graph J1 shown in Figure 3.1, G ∼= P10.

Proof: Suppose G does contain a subgraph isomorphic to J1. Let us assume the vertex
labelling shown in Figure 3.1.

Suppose G 6∼= P10.

Claim 1: The subgraph J1 must be induced.

It is easy to check that adding any edge different from x1x7 and x4x10 results in
the formation of a cycle of size less than five, contradicting the girth hypothesis.

So then let us assume x1 is adjacent to x7. Then if C = x2x3x8x9x11x2, N ′(C)
contains the induced path x10x1x7x12x4 of length 4, contradicting Lemma 5.3. By
symmetry, if we add the edge x4x10, a similar contradiction is reached. This proves
Claim 1.

Claim 2: For 1 ≤ i < j ≤ 12, N ′

i ∩ N ′

j = ∅.

It is routine to check that any possible non-empty intersection of two different N ′

i ’s
produces either a cycle of length less than 5, thus contradicting the girth hypothesis, or
else a 7-cycle, thus contradicting Lemma 2.3. This proves Claim 2.
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Claim 3: For all pairs {i, j}, 1 ≤ i < j ≤ 12, except {1, 11}, {10, 11}, and {2, 9}, there
is no edge joining N ′

i and N ′

j .

For all pairs {i, j} in the pair set under consideration, except {2, 4}, {4, 7}, and
{2, 9}, if there is an edge joining N ′

i and N ′

j , there results either a cycle of length less
than 5 (contradicting the girth hypothesis) or a 7-cycle (contradicting Lemma 2.3).
On the other hand, if there is an edge joining N ′

2 and N ′

4, this results in a subgraph
isomorphic to J4 and hence by Lemma 6.3, G ∼= P10, a contradiction, while if there is
an edge joining N ′

4 and N ′

7, we get a subgraph isomorphic to J5 contradicting Lemma
6.4. This proves Claim 3.

Let S1 = {1, 2, 9, 10} and S2 = {4, 7, 12}; i.e., the partition in J1 induced by the
3-cut {x3, x8, x11}.

Claim 4: The following pairs of vertices are well-connected in J5 and hence, except for
{x1, x11} and {x10, x11}, each is a non-co-bridge-pair.

(i) all {i, j} where i ∈ S1 and j ∈ S2, and
(ii) {1, 8}, {1, 11}, {2, 8}, {3, 7}, {3, 9}, {3, 10}, {3, 11}, {3, 12}, {4, 8}, {4, 11}, {7, 11},
{8, 11}, {8, 12}, {10, 11}.

Again, this is easily checked.
For each i = 1, 2, 3, 4, 7, 8, 9, 10, 11, 12, define Bi as in the proof of Claim 4 of Lemma

6.4.
Since {x3, x8, x11} is a 3-vertex cut in J5, and since G is internally 4-connected,

there must exist paths from each vertex in S1 to each vertex in S2 which do not pass
through any of x3, x8 or x11. By Claim 3, there are no edges joining N ′

i to N ′

j , for
all i, j, i ∈ S1, j ∈ S2. By Claim 4(i), for each i ∈ S1 and each j ∈ S2, {xi, xj} is a
non-co-bridge pair and hence any such path joining S1 and S2 must pass through some
vertices in N ′

3 ∪ N ′

8 ∪ N ′

11 and through some non-edge bridges in B3 ∪ B8 ∪ B11.
Now let Q be a shortest such path from {xi|i ∈ S1} to {xj |j ∈ S2}, which does

not pass through x3, x8 or x11. By minimality of the length of Q, Q intersects only
one N ′

i , i ∈ S1, and that in only one vertex and Q intersects only one N ′

j , j ∈ S2,
and that in only one vertex. Since {x3, x11} and {x8, x11} are non-co-bridge pairs,
B3 ∩B11 = B8 ∩B11 = ∅. But Q must meet N ′

3 ∪N ′

8 ∪N ′

11. Therefore, Q can only meet
N ′

11 or N ′

3 ∪ N ′

8, but not both. So we have two cases.

Case 1: Suppose Q leaves S1 via one of x2 or x9, say without loss of generality by
symmetry, via x2. Since {x2, x8} is a non-co-bridge pair, Q must use a bibridge of type
B2,3 or B2,11 (but not both).

Case 1.1. Suppose Q traverses a bibridge of type B2,3. Then Q must next traverse a
bibridge of type B3,j, where j 6= 7, 11, 12, since {x3, x7}, {x3, x11} and {x3x12} are non-
co-bridge pairs. There are then only two possibilities. If B3,j = B3,4, the induced paths
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x2x11x12x4 and x2x11x9x8x7x12x4 (both of which avoid vertex x3) imply the existence
of a chordless odd cycle of length greater than 5, a contradiction.

If on the other hand, B3,j = B3,8, the induced paths x2x11x9x8 and x2x1x10x9x8

(both of which avoid x3) imply the existence of a chordless odd cycle of length greater
than 5, again a contradiction.

Case 1.2. Suppose then that Q traverses a bibridge of type B2,11. If then Q traverses
a bibridge of type B11,j, since {x11, xj} is a non-co-bridge pair for j = 3, 4, 7, 8, the
only possibility is that Q traverses a bibridge of type B11,12. However, in this case
the induced paths x2x3x4x12 and x2x3x8x7x12 (both of which avoid x11) imply the
existence of a chordless odd cycle of length greater than 5, a contradiction.

Case 2. So suppose Q leaves S1 one of x1 or x10, say without loss of generality by
symmetry, via x1. Since {x1, x8} is a non-co-bridge pair, Q must next traverse a bibridge
of type B1,3 or one of type B1,11 (but not both).

Case 2.1. Suppose Q traverses a bibridge of type B1,3. There are then only two
possibilities for the next bibridge encountered by Q. If this bibridge is of type B3,4,
the induced paths x1x2x11x12x4 and x1x10x9x11x12x4 (both of which avoid vertex x3)
together imply the existence of a chordless odd cycle of length greater than 5, a contra-
diction.

On the other hand, if this bibridge is of type B3,8, the induced paths x1x2x11x9x8

and x1x10x9x8 (both of which avoid x3) then guarantee the existence of a chordless odd
cycle of length greater than 5, a contradiction.

Case 2.2. So Q must traverse a bibridge of type B1,11. But then since {x11, xj} is
a non-co-bridge pair for j = 3, 4, 7, 8, Q must pass through a bibridge of type B11,12.
But in this instance, the induced paths x1x2x3x4x12 and x1x2x3x8x7x12 (both of which
avoid x11) guarantee a chordless odd cycle of length greater than 5, a contradiction.

Lemma 6.6: Let G be a 3-connected internally-4-connected graph of girth 5 such that
all odd cycles of length greater than 5 have a chord. Then if G contains a subgraph
isomorphic to graph J2, G ∼= P10.

Proof: Suppose G does contain J2 as a subgraph. We will assume the labeling shown
in Figure 3.2.

Suppose G 6∼= P10.

Claim 1: The subgraph J2 is induced.

This is immediate by the girth five hypothesis.

Claim 2: For all 1 ≤ i < j ≤ 8, N ′

i ∩ N ′

j = ∅.

For all pairs {i, j} /∈ {{1, 5}, {3, 7}}, the result follows by the girth five hypothesis.
Suppose N ′

1 ∩ N ′

5 6= ∅ and u ∈ N ′

1 ∩ N ′

5. Let C = x1x2x6x7x8x1. Then N ′(C) contains
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the induced path x3x4x5u of length 3, thus contradicting Lemma 5.4. Thus N ′

1∩N ′

5 = ∅
and, by symmetry, N ′

3 ∩ N ′

7 = ∅. The Claim follows.

Claim 3: There exists no N ′

i − N ′

j edge, for all i 6= j.

If {i, j} = {1, 3}, we get the configuration J1 as an induced subgraph, contradicting
Lemma 6.5. If {i, j} = {1, 4}, then together with the path x1x2x6x5x4 we get a 7-cycle,
contradicting Lemma 2.3. Similarly, if {i, j} = {1, 5}, using path x1x2x3x4x5 we get a
7-cycle, and if {i, j} = {2, 4}, using path x2x6x7x8x4, we get a 7-cycle in violation of
Lemma 2.3. The Claim follows for all other pairs {i, j} by the girth five hypothesis and
symmetry.

Claim 4: All non-adjacent pairs of vertices are well-connected and hence, by Claim 3
and Lemma 2.1, are non-co-bridge-pairs.

This is easily checked.

Claim 5: For all i, i = 1, . . . , 8, no bridge in Bi has an attachment in three distinct
N ′

j ’s, j 6= i.

Suppose to the contrary, that B ∈ Bi has attachments in Nj , Nk and Nℓ, where
i, j, k and ℓ are distinct. Since there are no triangles in J2, some two of xj , xk and xℓ

must be non-adjacent. But then these two vertices form a co-bridge-pair, contradicting
Claim 4 and proving Claim 5.

Now consider the set {x2, x8} as a vertex cut in J2. By the 3-connectivity of G,
there exists a path joining x1 to one of the vertices in {x3, x4, x5, x6, x7} which does not
pass through x2 or x8. Let Q be such a path of minimum length.

Since x1 and xi, for i = 3, 4, 5, 6, 7, are non-co-bridge pairs, Q must pass through
bridges in B2 ∪B8. Since {x2, x8} is a non-co-bridge pair, P must pass through exactly
one bibridge of type B1,2 or exactly one bibridge of type B1,8, but not both. Say without
loss of generality by symmetry, Q traverses a bibridge of type B1,2. Then Q must pass
through a bibridge of type B2,j, j 6= 1. But by Claim 4, the only possible bridges of
this type are of types B2,3 and B2,6. In the former case, induced paths x1x8x4x3 and
x1x8x7x6x5x4x3 both avoid vertex x2 and hence guarantee the existence of a chordless
odd cycle of length greater than 5, while in the latter case, induced paths x1x8x7x6 and
x1x8x4x5x6 both avoid x2 and therefore imply the existence of a chordless odd cycle
of length greater than 5. Thus in each instance we arrive at a contradiction and the
Lemma is proved.

Thus as explained at the beginning of this section, we have proved the following
result.

Lemma 6.7: Suppose G is 3-connected, internally 4-connected, has girth 5 and every
odd cycle of length greater than 5 has a chord. Let C be a 5-cycle in G. Then if N ′(C)
contains an induced path of length 2, G ∼= P10.
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7. Final Remarks.

Thus we have reduced the general conjecture to the case in which for every 5-cycle C
in G, N ′(C) consists of a matching together with an independent set. We can say a
bit more, however. Let C = x1x2x3x4x5x1 and suppose M is a matching in N ′(C).
Suppose without loss of generality that a matching edge y1y2 ∈ G[N ′(C)] is such that
y1 ∼ x1 and y2 ∼ x3. Then if there were a second edge of M with attachments at
x3 and x5, we would have a 7-cycle, contradicting Lemma 2.3. Hence by the girth 5
hypothesis and symmetry we may assume that M can be partitioned M = M1 ∪ M2

where all edges in M1 attach to C only at x1 and x3, while those in M2 attach only at
x2 and x4 or else M2 = ∅.
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