
Symmetric distribution of crossings and nestings

in permutations of type B

Adel Hamdi
Department of Mathematics, Faculty of Science of Gabes
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Abstract

This note contains two results on the distribution of crossing numbers and nest-
ing numbers in permutations of type B. More precisely, we prove a Bn-analogue of
the symmetric distribution of crossings and nestings of permutations due to Corteel
[Adv. Appl. Math. 38(2)(2007), 149–163] as well as the symmetric distribution of
k-crossings and k-nestings of permutations due to Burrill et al. [DMTCS proc. AN
(2010), 593–600].

1 Introduction

In the last years, many results on symmetric distributions of some statistics “crossing”
and “nesting” have appeared in several combinatorial structures. At the heart of these
results, on the set of matchings and partitions, there are Chen et al’s theorem on the sym-
metric distribution of k-crossing numbers and k-nestings numbers [3] and Kasraoui and
Zeng’s theorem on the symmetric distribution of crossing numbers and nestings numbers
of two edges [6]. Then, some extensions of type B and C have been given by Rubey and
Stump [9], and Krattenthaler [7] and de Mier [8] on the relation between increasing and
decreasing chains in partitions and linked partitions, and fillings of Ferrers shapes. On
the set of permutations, Corteel [4] has introduced the notion of crossings and nestings of
permutations and proved that for any fixed number of weak exceedances, the distribution
of crossing numbers and nestings numbers of permutations is symmetric. Recently, Burrill
et al [2] have proved a similar result for k-crossings and k-nestings of permutations. The
purpose of this paper is to extend the last two results to their analogue of type B.
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2 Definitions and main results

For a positive integer n, let [n] := {1, 2, . . . , n}. A type B permutation of rank n is an
integer sequence σ := (σ(1), σ(2), . . . , σ(n)) such that {|σ(1)|, ..., |σ(n)|} = [n]. In this
paper, we shall identify σ with a permutation of [−n, n] := {−n, . . . ,−2,−1, 1, . . . , n}
by σ(−i) = −σ(i) for each i ∈ [n]. Let neg(σ) be the number of negative numbers in
{σ(1), . . . , σ(n)}, and Bn the set of type B permutations of rank n.

In the sequel, we use the natural order of integers in Z.
As in [4], it is convenient to represent a permutation σ ∈ Bn by a permutation diagram

G = (V,E), where V = [−n, n] is the vertex set, and E is the set of edges (i, σ(i)) for
i ∈ [−n, n] such that the vertices −n, . . . , −2, −1, 1, 2, . . . , n are arranged from left
to right on a straight line. We draw an arc from i to σ(i) above (resp., under) the line if
i 6 σ(i) (resp., otherwise) such that two arcs cross at most once. A permutation diagram
is given in Fig. 1.

-3-4 -2 -1 1 2 3 4 5-5 6-6 rr r rr r r r rr rr

Fig. 1. The permutation diagram of σ = (4,−6, 3, 5, 1,−2).

We call the set of arcs that are above (resp., under) the line the upper (resp., under)
permutation diagram and denoted Upp(σ) (resp., Und(σ)).

We start with an easy lemma that follows immediately from the definition of the
permutation diagram since there is an easy bijective between upper and under diagrams.

Lemma 2.1 Let σ ∈ Bn. The diagram of σ is completely determined by the Upp(σ).

Note that there are five geometric patterns for two arcs above the line as illustrated
in Fig. 2.

rrr r

(i)

rr r

(ii)

r r rr

(iii)

r r r

(iv)

r r rr

(v)

Fig. 2. Five patterns between two arcs above the line.

These patterns are called: (i) a proper crossing, (ii) a skew crossing, (iii) a proper
nesting, (iv) a skew nesting and (v) an alignment. In another sense, one can recover these
geometric patterns as in the two following definitions.

The first is the notion of crossings of type B given by Corteel et al. in [5] as follows.

Definition 2.2 Let σ ∈ Bn. The number of weak exceedances of σ, denoted by wexB(σ),
is the cardinality of the set {j ∈ [n]; σ(j) ≥ j}. For two integers i and j in [n], two arcs (i,
σ(i)) and (j, σ(j)) form a crossing of σ if they satisfy either the relation i < j 6 σ(i) <
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σ(j) (upper crossing), or −i < j 6 σ(−i) < σ(j) (upper crossing) or σ(i) < σ(j) < i < j

(lower crossing).

Similarly, in the second, we can define the notion of nesting of type B.

Definition 2.3 Let σ ∈ Bn. A pair of arcs (i, σ(i)) and (j, σ(j)), with i and j in [n],
is a nesting of σ if they satisfy either the relation i < j 6 σ(j) < σ(i) (upper nesting),
or −i < j 6 σ(j) < σ(−i) (upper nesting) or σ(j) < σ(i) < i < j (lower nesting). The
number of crossings (resp., nestings) of σ is denoted by croB(σ) (resp., nesB(σ)).

Example 1. Let σ = (4, −6, 3, 5, 1, −2) ∈ B6. Then the nestings in σ are {(−2, σ(−2)),
(1, σ(1))}, {(3, σ(3)), (1, σ(1))}, {(3, σ(3)), (−2, σ(−2))}, {(4, σ(4)), (−2, σ(−2))} and
{(6, σ(6)), (5, σ(5))}. The crossings are {(−6, σ(−6)), (1, σ(1))}, {(1, σ(1)), (4, σ(4))},
{(5, σ(5)), (2, σ(2))} and {(6, σ(6)), (2, σ(2))} (see Fig. 1). Hence nesB(σ) = 5 and
croB(σ) = 4.

The following is our Bn-analogue of Corteel’s result for permutations of type A [4,
Proposition 4], which corresponds to the a = 0 case.

Theorem 2.4 The number of permutations in Bn with k weak exceedances, l minus signs,
i crossings and j nestings is equal to the number of permutations in Bn with k weak
exceedances, l minus signs, i nestings and j crossings. In other words, we have

∑

σ∈Bn

pnesB(σ)qcroB(σ)ywexB(σ)aneg(σ) =
∑

σ∈Bn

pcroB(σ)qnesB(σ)ywexB(σ)aneg(σ). (1)

Now, we extend the definition of k-crossings and k-nestings for permutations of type
A in [2] to permutations of type B.

Definition 2.5 Let σ ∈ Bn. A set {a1, a2, . . . , ak} of k integers in [n] is a k-crossing of
σ if they satisfy either the relation a1 < a2 < . . . < ak ≤ σ(a1) < σ(a2) < . . . < σ(ak)
(upper k-crossing), or −a1 < a2 < . . . < ak ≤ −σ(a1) < σ(a2) < . . . < σ(ak) (upper
k-crossing) or σ(ak) < σ(ak−1) < . . . < σ(a1) < ak < ak−1 < . . . < a1 (lower k-crossing).

Definition 2.6 Let σ ∈ Bn. A set {a1, a2, . . . , ak} of k integers in [n] is a k-nesting of
σ if they satisfy either the relation a1 < a2 < ... < ak ≤ σ(ak) < σ(ak−1) < . . . < σ(a1)
(upper k-nesting), or −a1 < a2 < . . . < ak ≤ −σ(ak) < σ(ak−1) < . . . < σ(a1) (upper
k-nesting) or σ(ak) < σ(ak−1) < . . . < σ(a1) < a1 < a2 < . . . < ak (lower k-nesting).

As in [2], the k-crossing number (resp., k-nesting number) of a permutation σ of type
B, denoted by cro∗B(σ) (resp., nes∗B(σ)) is the size of the largest k such that σ contains a
k-crossing (resp., k-nesting).

Example 2. Let σ = (4, 5, 6, 2, −3, −1) ∈ B6. Then we have cro∗B(σ) = 4 and
nes∗B(σ) = 2 that are illustrated respectively, in Fig. 3, by {5, 1, 2, 3} and {4, 5} or {4,
6} since −5 < 1 < 2 < 3 6 −σ(5) < σ(1) < σ(2) < σ(3), σ(5) < σ(4) < 4 < 5 and
σ(6) < σ(4) < 4 < 6.
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-3-4 -2 -1 1 2 3 4 5-5 6-6 rr r rr r r r rr rr

Fig. 3. The permutation diagram of σ = (4, 5, 6, 2, -3, -1).

We also recall the following definition from [2]. Let σ ∈ Bn. The degree sequence of the
upper permutation diagram Upp(σ) is the sequence (indegreeσ(i), outdegreeσ(i))i∈[−n,n],
where indegreeσ(i) (resp., outdegreeσ(i)) is the left (resp., right) degree of the vertex i,
i.e., the number of arcs joining i to a vertex j with j < i (resp., j > i). If an upper
permutation diagram Upp(σ) has d as its degree sequence (some other sources call this
left-right degree sequence), we say that Upp(σ) is a diagram on d.
But there is a straightforward difference that we do not put a loop (an arc if σ(i) = i)
on the isolated vertex i with negative index in Upp(σ), i.e., we put (0,0) as a degree. By
Lemma 2.1, we limit ourselves to study the upper permutation diagram of type B. The
vertices with degree (0,1) (resp., (1,0), (1,1)) are called openers (resp., closers, closer-
opener or transient). For instance, if we let σ = (4, 5, 6, 2, -3, -1), then the degree
sequence of the upper permutation diagram of σ is

d := d(σ) = (0, 1)(0, 1)(0, 1)(0, 0)(1, 0)(0, 0)(1, 1)(0, 1)(1, 1)(1, 0)(1, 0)(1, 0).

Let Bd
n be the set of the permutations in Bn that has the degree sequence d.

The following is our Bn-analogue of Burrill et al’s result for permutations of type A
[2, Theorem 1], which corresponds to the z = 0 case.

Theorem 2.7 Let NCBd
n
(i, j,m) be the number of permutations in Bn with i-crossings,

j-nestings, m minus signs and degree sequence specified by d. Then

NCBd
n
(i, j,m) = NCBd

n
(j, i,m). (2)

In other words, we have

∑

σ∈Bd
n

xnes∗
B

(σ)ycro∗
B

(σ)zneg(σ) =
∑

σ∈Bd
n

pcro∗
B

(σ)qnes∗
B

(σ)zneg(σ). (3)

Now, we sketch the opener, closer and transient vertices of the upper (resp., under)
permutation diagram with degree (0,1), (1,0) and (1,1) (resp., (1,0), (0,1), (1,1)) respec-
tively. Then a vertex is said to be:

r

r(resp., )(i) an opener if it is illustrated by r

r(resp., )(ii) a closer if it is illustrated by
r

r(resp., ).(iii) a transient if it is illustrated by

We shall prove Theorem 2.4 in Section 3 by constructing an explicit involution on
Bn that interchanges the number of crossings and number of nestings. In fact, it is an
extension of the involution defined in [6]. To prove the Theorem 2.7 in Section 4, we shall
adapt the map defined by de Mier in [8] to Bn.
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3 Proof of Theorem 2.4

First, for each σ ∈ Bn, the number of crossings of σ is equal, in Upp(σ), to the number of
proper crossings plus the number of transient vertices i with i in [n]. Similar, the number
of nestings of σ is equal, in Upp(σ), to the number of proper nestings plus the number of
arcs (i, k) with i and k in [−n, n] such that there exist two fixed vertices j and −j satisfy
i < |j| < k. For instance, in the left diagram of Fig. 4, we can count the 4 crossings and
the 5 nestings of σ given in Fig. 1.

Now, we introduce some notations. For a positive integer n, let Λn be the set of the
subsets of [n] and Bn the set of Upp(σ) for each σ ∈ Bn. Let also F and T be two
maps defined by: for each σ ∈ Bn, F (σ) := {j ∈ [n]; σ(j) = j} and T (σ) := {j ∈
[n]; j is an upper transient vertex of σ}. We notice that, in [9], Rubey and
Stump have studied the symmetry distribution of the number of crossings and number of
nestings in a kind of set partitions of type B. Then, we study a similar result in Bn where
we count the transient vertex (resp., an arc covers a fixed vertex) as a crossing (resp.,
nesting) and our arrangement of the set [−n, n] is different to theirs.

Proof of Theorem 2.4. There are two steps.
First step. Let σ ∈ Bn. We define a map ψ by: let (Upp(σ), F (σ), T (σ)) ∈ Bn × Λ2

n.
Then ψ transforms each element i of F (σ) to an arc (i, i′) (see (a)) and each element j of
T (σ) to a proper crossing (see (b)), which in the two cases, we have i < i′ (resp., j < j′)
and no vertex between i and i′ (resp., j and j′). We adapt from [2] the following graphs

jr −→
ψ

j j′r r

(b)

r −→
ψ

i i i′
rr

(a)
For instance, the permutation diagram of σ in Example 1 has a fixed vertex indexed

by 3 and a transient vertex indexed by 4, see the left diagram of Fig. 4. Then, its inverse
ψ−1 reduces each two vertices i and i′ introduced by ψ into a one vertex i.

-3-4 -2 -1 1 2 3 4 5-5 6-6 rr r rr r r r rr rr -3-4 -2 -1 1 2
33’ 44’

5-5 6-6 rr r rr r r r r r rr rr
-

ψ

Fig. 4. The left diagram is the upper permutation diagram of σ = (4, -6, 3, 5, 1, -2)
and the right is its image by ψ.

Second step. We give an outline of the involution ϕ of [6]. Let π be a partition of
type A and G be its partition diagram defined as the upper permutation diagram. For
each two vertices k and j of G, we adapt that j is a vacant vertex for the kth position if
j < k and its corresponding closer vertex l satisfies l > k. Then for each arc (i, j) of G,
let δ(i, j) (resp., γ(i, j)) be the number of vacant vertex k such that k < i (resp., k > i)
for the jth position. The algorithm describing the involution ϕ is to construct a partition
diagram G′ from G, vertex by vertex and from left to right in the following paragraph.

For each vertex k of G from 1 to the rank of π, if k is a fixed (resp., opener) vertex
then we conserve its form; fixed (resp., opener) vertex, at the position k in G′ and if k is a
closer (resp., transient) vertex, we also conserve its form; closer (resp., transient) vertex,
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at the same position in G′, but we exchange the arc (s, k) where s is the corresponding
opener of k in G into an arc (t, k) in G′ with t is the γ(s, k)th vacant vertex, from left to
right, for the position k. So, ϕ is a proper crossings and nestings interchanging map.

-3-4 -2 -1 1 2
33’ 44’

5-5 6-6 rr r rr r r r r r rr rr

-

ϕ

Fig. 5. The left diagram is the diagram of ψ(σ)
and the right is its image by ϕ.

-3-4 -2 -1 1 2
33’ 44’

5-5 6-6 rr r rr r r r r r rr rr

It remains to prove that the number of the minus signs is unchanged. Since, for each
σ ∈ Bn, the number of minus signs is equal to the number of arcs, in the upper permu-
tation diagram Upp(σ), joining a vertex with negative index and a vertex with positive
index. But the number is unchanged since the map ϕ preserve the number of openers
(resp., closers) vertices Upp(σ).

Finally, for instance, by the map ψ−1 ◦ ϕ ◦ ψ and Lemma 2. 1, we illustrate, in the
following figure, the corresponding permutation σ′ = (2, -5, 4, 6, 1, -3) of the permutation
σ = (4, −6, 3, 5, 1, −2) in Example 1.

-3-4 -2 -1 1 2 3 4 5-5 6-6 rr r rr r r r rr rr

Fig. 6. The permutation diagram of σ’ = (2, -5, 4, 6, 1, -3). 2

4 Proof of Theorem 2.7

Our proof is based on an extension of de Mier’s bijection in [8, Section 4] to Bn. First, we
adapt the basic tool in [8] with a slight modification, that is the construction of a bijection
between link partitions of type A and fillings of Young diagrams into a bijection, denoted
by ξ, between upper permutation diagrams and fillings of Young diagrams on Bn. For
each σ in Bn, let i1, ..., ic be the closers vertices of Upp(σ) and j1, ..., jo the openers ones.
Let p(i), for each closer vertex i, be the number of vertices j with j < i that are openers
such that for each transient we associate a closer before an opener. We consider a Young
diagram T of shape (p(ic), ..., p(i1)), and if there is an arc going from the opener js to
the closer ir, we fill the cell in column s and row c − r + 1 with 1. For instance, in the
following figure, we illustrate the upper permutation diagram of σ of Example 2 and its
corresponding filling of Young diagram.
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-3-4 -2 -1 1 2 3 4 5-5 6-6 qq q qq q q q qq qq

Fig. 7. The upper permutation diagram of σ = (4, 5, 6, 2, -3, -1) and

its corresponding filling of Young diagram.

-

ξ
1

1

1
1

1
1

Thus, we see that the k−nesting (one can also say k+1-nonnesting) (resp., k−crossing) in
the upper permutation diagram corresponds to an identity matrix Ik (resp., anti-identity
matrix Jk called also the anti-diagonal of Ik) in a largest rectangle in the corresponding
Young diagram.

We apply the following result due to de Mier [8, Theorem 3.5].

Lemma 4.1 [de Mier] For all diagrams T with prescribed row and column sums, the
number of fillings T that avoid Ik equals the number of fillings of T that avoid Jk.

So, we give an outline of the involution Ψ of [8], in a quite straightforward way, that
interchanges Ik and Jk. First, if there are many anti-identities or identities matrices of
rank k, we choose the one more to the right and the topmost. Second, we can divide the
map Ψ into two maps. The first is ϕ. For each σ ∈ Bn, we see the largest k such that
the filling of Young diagram corresponding to Upp(σ) contains a largest rectangle which
contains an anti-identity matrix Jk. Thus, the 1’s of Jk, from left and bottom to right
and top, correspond to (l1, c1), (l2, c2), . . . , (lk, ck) cells in the diagram, i.e., (li, ci) is the
intersection cell of the lith line and cith column, for each 1 6 i 6 k. Thus ϕ changes
the places of the 1’s of Jk in the diagram to new places define by: (l2, c1), (l3, c2), . . . ,
(lk, ck−1) and (l1, ck), and we obtain in the first time the following matrix

ϕ(Jk) =

(

Jk−1 0
0 1

)

where Jk−1 is the anti-identity matrix of rank k − 1.
So on, we apply ϕ to Jk−1, Jk−2, . . . , until we get Ik.

The second is φ (the inverse of ϕ). Let k be the largest integer such that the Young
diagram contains a matrix Ik. The 1’s of Ik have (a1, b1), (a2, b2), . . . , (ak, bk) as the cells
in the diagram from top to bottom and left to right with (ai, bi) is the intersection cell
between the aith line and the bi column. So, the image of Ik by φ is (a2, b1), (a1, b2),
(a3, b3), . . . , (ak, bk), i.e.,

φ(Ik) =





0 1 0
1 0 0
0 0 Ik−2




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where Ik−2 is the identity matrix of rank k−2. The image of φ(Ik) by φ is (a3, b1), (a2, b2),
(a1, b3), (a4, b4), . . . , (ak, bk). So on, we apply φ to φi(Ik), for i from 0 to k − 1, until we
get Jk.

Then, by the two processes, ϕ changes Jk into Ik and φ changes Ik into Jk.
It remains to prove that the number of minus signs is unchanged by the above trans-

formations ξ and Ψ. But we know that the number of minus signs is preserved as it can
be computed from the degree sequence which is fixed by the maps .

For instance, the following diagram is the permutation diagram of ϑ(Upp(σ)) of
the permutation σ in Example 2. It is easy to see that cro∗(ϑ(Upp(σ))) = 2 and
nes∗(ϑ(Upp(σ))) = 4.

-3-4 -2 -1 1 2 3 4 5-5 6-6 qq q qq q q q qq qq

Fig. 8. The upper permutation diagram of σ = (4, 5, 6, 2, -3, -1) and
and its corresponding ϑ(Upp(σ)). 2

-

ϑ
-3-4 -2 -1 1 2 3 4 5-5 6-6 qq q qq q q q qq qq

5 Concluding remarks

5.1 Extending to type D permutations

Aside from the enumerative, is the symmetric distribution of crossings and nestings (resp.,
k-crossings and k-nestings) preserved in set permutations of classical type D? The type D
permutations, denoted by Dn and called the even-signed permutation group, is the sub-
group of Bn consisting of all the signed permutations having an even number of negative
entries in their window notation, more precisely

Dn:= {σ ∈ Bn | neg(σ) ≡ 0(mod2)}.

It is well known (see, e.g., [1, S8.2]) that Dn is a Coxeter group with respect to the
generating set S:= {s0, s1, . . ., sn−1} where

s0:= (−2,−1, 3, . . . , n) and si:= (1, 2, . . . , i− 1, i, i+ 2, . . . , n)

for i = 1, . . . , n− 1.
As the number of minus signs, in each σ ∈ Bn, is unchanged by the two involutions in

the two proofs of our theorems 2.4 and 2.7. Then, we have the property of the symmetric
distribution of crossings and nestings (resp., k-crossings and k-nestings) over Dn, i.e.,

Theorem 5.1 The number of permutations in Dn with k weak exceedances, l minus
signs, i crossings and j nestings (resp., i-crossings, j-nestings, m minus signs and de-
gree sequence specified by d) is equal to the number of permutations in Dn with k weak
exceedances, l minus signs, i nestings and j crossings (resp., j-crossings, i-nestings, m
minus signs and degree sequence specified by d).
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In other words,
∑

σ∈Dn

pnesD(σ)qcroD(σ)ywexD(σ)aneg(σ) =
∑

σ∈Dn

pcroD(σ)qnesD(σ)ywexD(σ)aneg(σ). (4)

and
∑

σ∈Dd
n

pnes∗
D

(σ)qcro∗
D

(σ)aneg(σ) =
∑

σ∈Dd
n

pcro∗
D

(σ)qnes∗
D

(σ)aneg(σ). (5)

where, for each σ ∈ D, crosD(σ) (resp., nesD(σ), wexD(σ)) is the number of crossings
(resp., nestings, weak exceedances) in σ and cro∗D(σ) (resp., nes∗D(σ)) is the size of the
largest k such that σ contains a k-crossing (resp., k-nesting).

5.2 Open question

It would be interesting to find a direct permutation description of our involution, i.e., a
description avoiding the passage through tableaux or fillings of Ferrers diagrams.
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