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Abstract

We compute the Orchard crossing number, which is defined in a similar way to
the rectilinear crossing number, for the complete bipartite graphs Kn,n.

1 Introduction

Let G = (V, E) be a graph. A rectilinear drawing R(G) of G is a mapping of its vertices
into distinct points in the plane in general position (i.e., no three points are collinear),
and a mapping of the edges into straight line segments between the corresponding points.
An intersection of an edge of R(G) with a straight line through a pair of the points of
R(G) is interpreted as an Orchard crossing (see the Orchard relation introduced in [3, 4]).

∗Support for this project was provided by a PSC-CUNY Award, jointly funded by The Professional
Staff Congress and The City University of New York.
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If c(s, t) counts these Orchard crossings for an edge (s, t) ∈ E, then the number c(R(G))
of Orchard crossings of R(G) is:

c(R(G)) =
∑

(s,t)∈E

c(s, t);

note that the sum is taken only over the edges of the graph, whence c(s, t) counts all the
lines generated by pairs of points in R(G).

The Orchard crossing number OCN(G) is the minimum over all rectilinear drawings
R(G):

OCN(G) = min
R(G)

{c(R(G))}.

Note that the maximum Orchard crossing number MOCN(G) is also interesting due to
Proposition 2.7 in [5] which states that MOCN(Kn) and the rectilinear crossing number
cr(Kn) (see [1, 6, 7]) are attained by the same R(Kn). Therefore, the determination of
MOCN(G) might be easier than the determination of cr(G). Furthermore, the concept of
Orchard crossing number can be considered in higher dimensions too (see [3]).

In this paper, we determine the Orchard crossing number for the complete bipartite
graphs Kn,n.

Theorem 1.1

OCN(Kn,n) = 4n

(

n

3

)

This value is attained where all the 2n points are in a convex position and alternate in
color (see Figure 1 for an example for n = 4).

Figure 1: The optimal rectilinear drawing for OCN(K4,4)

The ideas of the proof are quite similar to those of [2], where the maximal value of the
maximum rectilinear crossing number has been computed for some families of graphs, but
still are not straightforward from them. This again shows the tight connection between
the Orchard crossing number and the rectilinear crossing number.

The proof is based on two parts: in the first part, we show that the optimal drawing
of Kn,n, presented in Figure 1 for n = 4, has indeed 4n

(

n

3

)

Orchard crossings, and hence
OCN(Kn,n) ≤ 4n

(

n

3

)

(see Section 2). In the second part, we show that any drawing of
Kn,n has at least 4n

(

n

3

)

Orchard crossings, so OCN(Kn,n) ≥ 4n
(

n

3

)

(see Section 3).
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2 An upper bound for OCN(Kn,n)

In this section, we show the easy part of Theorem 1.1 by proving that the mentioned value
4n
(

n

3

)

is indeed attained by the rectilinear drawing R0(Kn,n), where all the 2n points are
in a convex position and alternate in color (see Figure 1 for an example for n = 4).

Lemma 2.1 OCN(Kn,n) ≤ 4n
(

n

3

)

.

Proof. Each edge corresponds to a diagonal of length 2i+1 (which means that there are
2i vertex points between its endpoints) and contributes 2i(2n− 2i− 2) Orchard crossings
to c(R0(Kn,n)), for all 1 ≤ i ≤ n−1

2
. In general, there are 2n diagonals of length 2i + 1,

except for the case of odd n and i = n−1
2

, where there are only n such diagonals. Thus, it
follows that for even n:

c(R0(Kn,n)) = 2n

n−2

2
∑

i=1

4i(n − i − 1),

and for odd n:

c(R0(Kn,n)) = 2n(n − 1)(n −
n − 1

2
− 1) + 2n

n−3

2
∑

i=1

4i(n − i − 1).

Both sums equal to 4n
(

n

3

)

, so we have c(R0(Kn,n)) = 4n
(

n

3

)

as needed. �

3 A lower bound for OCN(Kn,n)

In this section, we show the difficult part of Theorem 1.1 by proving that for any rectilinear
drawing of Kn,n there are at least 4n

(

n

3

)

Orchard crossings. This will show that 4n
(

n

3

)

is
indeed a lower bound for OCN(Kn,n).

The idea of the proof is counting separately the Orchard crossings induced by pairs of
points with different colors and by pairs of points with the same color (see Sections 3.1
and 3.2 respectively).

Together with the result of the previous section, this will prove Theorem 1.1 (see
Section 3.3).

We start with one notation. A bw-pair is a pair of points consisting of a black point
and a white point.

3.1 Orchard crossings induced by lines generated by pairs of

points with different colors

Let D be a configuration of n white points and n black points. For each k = 1, 2, . . . , n2,
let ℓk be a line determined by a white point and a black point. For each ℓk, let ak be
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the number of bw-pairs with one point in one halfplane determined by ℓk, and the other

point in the other halfplane. Let A =
n2

∑

k=1

ak.

Proposition 3.1 A ≥ 2n
(

n

3

)

.

Proof. For each ℓk, a black (resp. white) endvertex will be of type i if the edge incident
to ℓk divides the graph into two halfplanes, one contains i black (resp. white) vertices,
and the other contains n− i− 1 black (resp. white) vertices. By symmetry, we only have
to consider 0 ≤ i ≤ ⌊n−1

2
⌋ = N . Let yi be the number of endvertices of type i. Thus, we

have: y0 + y1 + · · ·+ yN = 2n2, since we have n2 such edges and each one is counted twice
(for the white and black vertices).

An edge which connects black and white vertices is of type i, j if one halfplane deter-
mined by that edge has i vertices of one color and j vertices of the other color. Let xi,j

be the number of edges of type i, j. By symmetry, we can assume that 0 ≤ i ≤ j ≤ N

(we will justify this assumption later on). Note that xi,j = xj,i.
Thus, yi is related to xi,j by the following equation:

yi = 2xi,i +
i−1
∑

j=0

xj,i +
N
∑

j=i+1

xi,j , (1)

since for being counted in yi, an edge should have i vertices of one color in one of the
halfplanes it determines. The only case which is counted twice is when i = j, where it is
counted for both colors.

For an edge of type i, j, there are i(n − j − 1) + j(n − i − 1) bw-pairs in opposite
halfplanes of that edge. Summing over all edges of a drawing, we obtain:

M =
N
∑

i=0

N
∑

j=i

[i(n − j − 1) + j(n − i − 1)] xi,j

bw-pairs in opposite halfplanes. We look for a drawing which minimizes M .

We now justify our assumption that 0 ≤ i ≤ j ≤ N , where i and j are the num-
ber of vertices of the two colors in the same halfplane of an edge. Assume that for
a given type i, j edge, the i vertices of one color and the j vertices of the other color
are in different halfplanes. This yields ij + (n − j − 1)(n − i − 1) bw-pairs. However,
i(n − j − 1) + j(n − i − 1) ≤ ij + (n − j − 1)(n − i − 1) for 0 ≤ i ≤ j ≤ N . Hence our
assumption reduces the number of bw-pairs.

In order to minimize M , we start by multiplying Equation (1) by i(n − i − 1), and
subtracting it from M for all values of i, yielding:

M −

N
∑

i=1

i(n − i − 1)yi
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=

N
∑

i=0

N
∑

j=i

[i(n − j − 1) + j(n − i − 1)]xi,j

−
N
∑

i=1

i(n − i − 1)

(

2xi,i +
i−1
∑

j=0

xj,i +
N
∑

j=i+1

xi,j

)

=
N
∑

i=0

N
∑

j=i+1

[i(n − j − 1) + j(n − i − 1)] xi,j −
N
∑

i=1

i(n − i − 1)

(

i−1
∑

j=0

xj,i +
N
∑

j=i+1

xi,j

)

=

N
∑

i=0

N
∑

j=i+1

[i(i − j) + j(n − i − 1)]xi,j −

N−1
∑

i=0

N
∑

j=i+1

j(n − j − 1)xi,j

=

N
∑

i=0

N
∑

j=i+1

[i(i − j) + j(j − i)]xi,j =

N−1
∑

i=0

N
∑

j=i+1

(j − i)2xi,j.

Hence, we have:

M =

N
∑

i=1

i(n − i − 1)yi +

N−1
∑

i=0

N
∑

j=i+1

(j − i)2xi,j . (2)

For the next step, we introduce a new notation ps,t. We first motivate it. Note that
every white (resp. black) vertex vi serves as an endvertex for n edges of the graph. For
each of these n edges, let ci,j (1 ≤ j ≤ n) be the number of black (resp. white) points
in the halfplane with a smaller number of black (resp. white) points determined by this
edge. Thus, for each vi, we have a sequence of n numbers (ci,1, . . . , ci,n) representing the
types which vi is for the n edges connected to vi.

For example, for a white point v on the convex hull of an alternating 2n-gon (see
Figure 2 for n = 4, where only some of the edges are drawn), the two edges going to the
adjacent black points (the edges e1, e4) are of type 0. The next two edges (edges e2, e3)
will be of type 1, the next two edges (do not exist in this configuration) will be of type 2,
etc. Note that in this case we will have the same sequence of types for any point on the
convex hull.

e1

v

e2

e

e4

3

Figure 2: An example for computing ps,t

Let ps,t be the number of white (resp. black) vertices having s = min{ci,1, . . . , ci,n},
and the index t is the number of distinct sorted sequences generated by all the vertices.
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For example, for the 2n-gon configuration, we have p0,1 = 2n, since all 2n vertices have 0
as the lowest term in the sequence 0, 0, 1, 1, 2, 2, . . .. Note that there is a unique sequence
for all the vertices. Therefore, p0,t = 0 for t ≥ 2, since there is no vertex whose lowest
type is 0 which has a different sequence. Moreover, ps,t = 0 for s ≥ 1, since there is no
sequence whose lowest term is greater than 0.

Since ps,t counts number of vertices, and in total there are 2n vertices, we have:

N
∑

s=0

∑

t≥1

ps,t = 2n.

Denote by zs,t,i the number of appearances of i in the tth sequence whose lowest term
is s. For example, assume that the first sequence is 0, 1, 2, 1, 0. Then: z0,1,0 = 2 because
0 appears twice in the sequence. Similarly, z0,1,1 = 2 since 1 appears twice and z0,1,2 = 1
since 2 appears once.

It follows that:

yi =
∑

t≥1

i
∑

s=0

zs,t,ips,t. (3)

Additionally, since every vertex has n edges, for fixed s and t we have that

N
∑

i=s

zs,t,i = n. (4)

Since
∑

t≥1

N
∑

s=0

ps,t = 2n, we obtain by Equation (3):

yi = 4n +
∑

t≥1

[

i
∑

s=0

(zs,t,i − 2)ps,t − 2

N
∑

s=i+1

ps,t

]

. (5)

Respectively, for odd n, we have:

yN = 2n +
∑

t≥1

N
∑

s=0

(zs,t,N − 1)ps,t. (6)

We continue for even n. Using Equation (5), we can rewrite the first part of the
expression for M (Equation (2)) as follows:

N
∑

i=1

i(n − i − 1)yi = 4n

N
∑

i=1

i(n − i − 1) +

+
∑

t≥1

N
∑

i=1

i(n − i − 1)

[

i
∑

s=0

(zs,t,i − 2)ps,t − 2
N
∑

s=i+1

ps,t

]

.
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Following a change in the indices of the sums, this can be rewritten as:

4n

N
∑

i=1

i(n − i − 1) +
∑

t≥1

N
∑

s=0

ps,t

[

N
∑

i=s

i(n − i − 1)(zs,t,i − 2) − 2

s−1
∑

i=1

i(n − i − 1)

]

.

This can again be rewritten as:

4n
N
∑

i=1

i(n − i − 1) +
∑

t≥1

N
∑

s=0

ps,t

[

s(n − s − 1)(zs,t,s − 2) +

+
N
∑

i=s+1

i(n − i − 1)(zs,t,i − 2) − 2
s−1
∑

i=1

i(n − i − 1)

]

= 4n
N
∑

i=1

i(n − i − 1) +
∑

t≥1

N
∑

s=0

ps,t

[

s(n − s − 1)
N
∑

i=s

(zs,t,i − 2)+

+
N
∑

i=s+1

[i(n − i − 1) − s(n − s − 1)](zs,t,i − 2) − 2
s−1
∑

i=1

i(n − i − 1)

]

.

Using Equation (4), it follows that this is also equal to:

4n

N
∑

i=1

i(n − i − 1)

+
∑

t≥1

N
∑

s=0

ps,t

[

C(s, n) +
N
∑

i=s+1

[i(n − i − 1) − s(n − s − 1)](zs,t,i − 2)

]

,

where

C(s, n) = s(n − s − 1)(n −
N
∑

i=s

2) − 2
s−1
∑

i=1

i(n − i − 1)

= s(n − s − 1)(n − 2(N − s + 1)) − 2
s−1
∑

i=1

i(n − i − 1).

Now, we show that C(s, n) is non-negative for all 0 ≤ s ≤ N and n. For the proof, we
will use the following observation:

Observation 3.2 Let a, b be such that: 0 < a < b < n
2
. Then:

a(n − a) < b(n − b).

Lemma 3.3 For all 0 ≤ s ≤ N and n, C(s, n) ≥ 0.
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Proof. By the definition of N = ⌊n−1
2
⌋, we have:

s(n − s − 1)(n − 2(N − s + 1)) ≥ s(n − s − 1)(2s − 1).

Moreover, by Observation 3.2,

2

s−1
∑

i=1

i(n − i − 1) ≤ 2

s−1
∑

i=1

(s − 1)(n − s) = 2(s − 1)2(n − s) < s(n − s − 1)(2s − 2).

Therefore,

C(s, n) > s(n − s − 1)(2s − 1) − s(n − s − 1)(2s − 2) = s(n − s − 1) ≥ 0.

�

We now show that zs,t,i − 2 ≥ 0. Since the term zs,t,i − 1 must be carried throughout
this summation, the expression for odd n is also minimized for ps,t = 0 for all s ≥ 1,
provided zs,t,N − 1 ≥ 0.

Lemma 3.4 zs,t,i ≥ 2 for all s, t, i such that i > s and zs,t,N ≥ 1 for odd n.

Proof. Without loss of generality, consider a given black vertex. We start by proving
that there is at least one endvertex of type n−1

2
for odd n, and at least two endvertices

of type n−2
2

for even n. This statement can be proved by induction on n. This statement
is obvious for n = 2 and n = 3, so we start with the inductive step. Also, note that
in traversing the n edges incident to the given vertex in a clockwise or counterclockwise
manner, in moving from edge to edge, the number of white vertices in the clockwise
following halfplane may be changed by at most 1. This fact will be used numerous times
throughout the proof. We illustrate it by an example.

Example 3.5 Given a rectilinear drawing of K4,4 in Figure 3 (where only some of edges
are drawn). If we are traversing clockwise the 4 edges starting from the lowest black point,
we have that the type of the edge e1 is 0, since there is no white point in the left halfplane
defined by this edge. Next, the type of e2 is 1, since there is only one white point in the
left halfplane defined by this edge. The type of e3 is again 1, since there is only one white
point in the right halfplane defined by this edge. Finally, the type of e4 is 0, since there is
no white point in the right halfplane defined by this edge.

Hence, we have that while moving from edge to edge, the number of white vertices in
the clockwise following halfplane may be changed by at most 1. Consequently, the types of
the corresponding edges may be changed by at most 1.

Case I: Passing from odd n to n + 1.
Consider the edge for which this endvertex is of type n−1

2
in the configuration of n white

vertices and n black vertices. When the (n + 1)st pair of vertices is added, this original

endvertex will be the first endvertex of type (n+1)−2
2

. If the (n + 1)st white vertex is
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e
1

e
2

e
4

e
3

Figure 3: An example

added in this edge’s clockwise following halfplane, then an immediately following edge
or edge extension has an endvertex of type (n+1)−2

2
. Thus, either this edge or the edge

corresponding to this extension will have the second endvertex of type n−1
2

.

Case II: Passing from even n to n + 1.
Consider an edge with an endvertex of type n−2

2
which has n

2
white vertices in one of its

halfplanes and n−2
2

in the other. If the (n + 1)st white vertex is added in the halfplane

with n−2
2

vertices, then the considered edge is now of type (n+1)−1
2

. If the (n + 1)st vertex

is added in the halfplane with n
2

white vertices, then there are (n+1)+1
2

white vertices in

this halfplane and (n+1)−3
2

white vertices in the clockwise following halfplane of this edge’s
extension. Since the number of white vertices in the clockwise following halfplane can be
changed by at most 1 when moving from edge to edge (edge ray and edge extension), we

find that traversing the graph from the edge with (n+1)+1
2

white vertices in the clockwise

following halfplane to the extension with (n+1)−3
2

, there must occur an edge or extension

with (n+1)−1
2

white vertices in the clockwise following halfplane. Thus, this edge or the

edge corresponding to the extension has an endvertex of type (n+1)−1
2

. This completes the
proof for the maximal values.

Using this result and the fact that in moving from edge to adjacent edge, the number
of white vertices in the clockwise following halfplane may be changed by at most 1, we
can prove that there are two endvertices of each type from the type s + 1 to the maximal
type N .

We split the proof according to the parity of n.

• For odd n, we have one endvertex of maximal type N = n−1
2

. Traversing the n

edges starting and ending with the edge with an endvertex of type N , from edge to
edge we must go down to an edge or an extension with s vertices in the clockwise
following halfplane, and then back up to an edge with N . Thus, we find there are
at least two edges or extensions with endvertices of each type from s + 1 to N .

• For even n, we have two edges with endvertices of maximal type N = n−2
2

. Travers-
ing the n edges from one of the edges of type N to the other must go down to an
edge or an extension with s edges in the clockwise following halfplane and back up
to an edge with N . Thus again, there are at least two edges or extensions with
endvertices of each type from s + 1 to N .

the electronic journal of combinatorics 18 (2011), #P201 9



Hence, it follows that zs,t,i ≥ 2 for all s, t, i such that i > s, and zs,t,N ≥ 1 for odd n

as needed. �

Additionally, by Observation 3.2,

N
∑

i=s+1

(i(n−i−1)−s(n−s−1)) ≥ 0 for i, s ≤ N = n−1
2

.

Going back to the final expression for Equation (2), we have:

M = 4n

N
∑

i=1

i(n − i − 1) +
∑

t≥1

N
∑

s=0

ps,t

[

C(s, n) +

+

N
∑

i=s+1

(i(n − i − 1) − s(n − s − 1))(zs,t,i − 2)

]

+

N−1
∑

i=0

N
∑

j=i+1

(j − i)2xi,j .

Since C(s, n), zs,t,i − 2 and (j − i)2 are non-negative, we find that this expression is
minimized when ps,t = 0 for s ≥ 1 and xi,j = 0 for i < j. For s = 0, the expression is
minimized when zs,t,i = 2 for all i. Evaluating the sum for these conditions, we have:

M = 4n
N
∑

i=1

i(n − i − 1) = 2n

(

n

3

)

bw-pairs in opposite halfplanes determined by lines connecting two vertices of opposite
colors.

By similar arguments, in the case of odd n, in the drawing for which M is minimized,
we have the following expression:

M = 4n

N−1
∑

i=1

i(n − i − 1) + 2n(N(n − N − 1)) = 2n

(

n

3

)

.

�

3.2 Orchard crossings induced by lines generated by pairs of

points of the same color

In the previous section, we dealt with lines determined by pairs of points of different
colors. In this section, we are going to deal with lines determined by pairs of points of
the same color.

For k = 1, 2, . . . ,
(

n

2

)

, let ℓk be a line determined by two white points (for a pair of
black points, the computations are the same). Note that there is no edge in Kn,n based
on this line, but still this line is counted in the separating lines. Let bk be the number
of bw-pairs with one point in one halfplane determined by ℓk and the other point in the

other halfplane. Let B =
(n

2
)
∑

k=1

bk.
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Proposition 3.6 B ≥ n
(

n

3

)

.

Proof. The proof of this proposition is similar to that of Proposition 3.1, so we will omit
most of the details. Each ℓk is determined by two white vertices. For each ℓk, let an
endvertex be of type i if the line ℓk divides the graph into two halfplanes, one containing
i white vertices, and the other containing n− i− 2 white vertices. By symmetry, we have
to consider only 0 ≤ i ≤ ⌊n−2

2
⌋ = N . Let yi be the number of endvertices of type i. Thus,

we have y0 + y1 + · · ·+ yN = 2
(

n

2

)

.
We call a line a type i, j line if one halfplane determined by that line has i white

vertices and j black vertices. In the other halfplane, there are n − i − 2 white vertices
and n − j black vertices. Let xi,j be the number of type i, j lines. Again, by symmetry,
we can assume that 0 ≤ j ≤ ⌊n

2
⌋ = N + 1, and that i < j. yi is related to xi,j by the

equation: yi = xi,i+1 +
N+1
∑

j=i+2

xi,j.

Now, for a type i, j line, there are i(n−j)+j(n−i−2) bw-pairs of vertices in opposite
halfplanes of that edge. Summing this quantity over all lines of a drawing, we obtain:

M =
N
∑

i=0

N+1
∑

j=i+1

[i(n − j) + j(n − i − 2)]xi,j

bw-pairs in opposite halfplanes. As in the previous proof, we are looking for a drawing
which minimizes M . We start by multiplying the equation for yi by i(n − i − 1) + (i +
1)(n − i − 2), and subtracting it from M for all values of i, yielding:

M =

N
∑

i=0

[i(n− i− 1) + (i + 1)(n− i− 2)]yi +

N
∑

i=0

N+1
∑

j=i+2

[(j − (i + 1))(n− 2(i + 1))]xi,j (7)

Let ps,t be the number of white vertices having white endvertices of type s as the
smallest type (0 ≤ s ≤ N) and the index t is the number of distinct sorted sequences

generated by all the vertices. We have: n =

N
∑

s=0

∑

t≥1

ps,t. Also, denote by zs,t,i the number

of appearances of i in the tth sequence whose lowest term is s. We have that:

yi = 2n +
∑

t≥1

[

i
∑

s=0

(zs,t,i − 2)ps,t − 2

N
∑

s=i+1

ps,t

]

,

and for even n, we have: yN = n +
∑

t≥1

N
∑

s=0

(zs,t,N − 1)ps,t.

Note that if s = 0, the corresponding vertex is on the convex hull generated by the
white points. Hence, we have that z0,t,i = 2, and for even n, we have: z0,t,N = 1. Therefore:

yi = 2n +
∑

t≥1

[

i
∑

s=1

(zs,t,i − 2)ps,t − 2

N
∑

s=i+1

ps,t

]

, (8)
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and for even n, we have: yN = n +
∑

t≥1

N
∑

s=1

(zs,t,N − 1)ps,t.

We proceed for odd n. Similar computations to those we have done in the previous
part yield that the first part of the expression for M (Equation (7)) is:

2n

N
∑

i=0

[n(1 + 2i) − 2(i + 1)2] +
∑

t≥1

N
∑

s=1

ps,t

[

C(s, n) +

+

N
∑

i=s+1

([

n(1 + 2i) − 2(i + 1)2
]

−
[

n(1 + 2s) − 2(s + 1)2
])

(zs,t,i − 2)

]

,

where

C(s, n) =
[

n(1 + 2s) − 2(s + 1)2
]

((n − 1) − 2(N − s + 1))

−2
s−1
∑

i=1

[

n(1 + 2i) − 2(i + 1)2
]

− 2(n − 2).

Hence, we have by Equation (7):

M = 2n

N
∑

i=0

[

n(1 + 2i) − 2(i + 1)2
]

+
∑

t≥1

N
∑

s=1

ps,t

[

C(s, n) +

+

N
∑

i=s+1

([

n(1 + 2i) − 2(i + 1)2
]

−
[

n(1 + 2s) − 2(s + 1)2
])

(zs,t,i − 2)

]

+

N
∑

i=0

N+1
∑

j=i+2

[(j − (i + 1))(n − 2(i + 1))]xi,j

Since C(s, n), zs,t,i − 2 and (j − (i + 1))(n− 2(i + 1)) are non-negative (similar to the
previous case), this expression is minimized when ps,t = 0 for s ≥ 1 and xi,j = 0 for i < j.
Evaluating the sum for these conditions, we have:

M = 2n

N
∑

i=0

[

n(1 + 2i) − 2(i + 1)2
]

= 2n

(

n

3

)

.

Since each line determined by two white points was counted twice, once for each endvertex,
we have n

(

n

3

)

bw-pairs in opposite halfplanes, as claimed.
As in the previous part, if we perform similar computations for even n, we get the

same result. �

3.3 Final step of the proof

Here, we finish proving Theorem 1.1.
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Proof of Theorem 1.1. For a given rectilinear drawing R(Kn,n), any Orchard crossing
is determined by a bw-pair, where one point is in one halfplane of line ℓk and the other
point is in the other halfplane of ℓk, where the type of the line ℓk is one of the following
three types:

(a) a line determined by a bw-pair.

(b) a line determined by two white points.

(c) a line determined by two black points.

Let A, B, C be the numbers of bw-pairs determined by lines of types (a),(b),(c), respec-
tively. Then, c(R(Kn,n)) = A + B + C. By Propositions 3.1 and 3.6, we have A ≥ 2n

(

n

3

)

and B, C ≥ n
(

n

3

)

. Hence:

c(R(Kn,n)) ≥ 2n

(

n

3

)

+ n

(

n

3

)

+ n

(

n

3

)

= 4n

(

n

3

)

On the other hand, by Lemma 2.1, we have a drawing R0(Kn,n) of Kn,n which satisfies
c(R0(Kn,n)) = 4n

(

n

3

)

. So finally we have OCN(Kn,n) = 4n
(

n

3

)

as claimed. �
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