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Abstract

A graph G is called (H; k)-vertex stable if G contains a subgraph isomorphic to
H ever after removing any k of its vertices; stab(H; k) denotes the minimum size
among the sizes of all (H; k)-vertex stable graphs. In this paper we deal with (Cn; k)-
vertex stable graphs with minimum size. For each n we prove that stab(Cn; 1) is
one of only two possible values and we give the exact value for infinitely many n’s.
Furthermore we establish an upper and lower bound for stab(Cn; k) for k ≥ 2.

1 Introduction

We deal with simple graphs without loops and multiple edges. We use the standard
notation of graph theory, cf. [1].

Consider the following problem. Suppose that we have a net with a sensor placed in
each vertex of the net. We assume that the sensors are cheap, however, the connections
between them are costly. Furthermore, we require that for certain reasons a given con-
figuration of sensors and connections between them must be assured. In fact, we require
more. Some sensors may get damaged, hence, we want that even if some of them are
spoiled, the special configuration of sensors and connections is still assured in the net.
Clearly, we want to assure this configuration with minimal cost.

More formally, let H be any graph and k a non-negative integer. A graph G is called
(H ; k)-vertex stable if G contains a subgraph isomorphic to H ever after removing any k
of its vertices. Then stab(H ; k) denotes minimum size among the sizes of all (H ; k)-vertex
stable graphs.

Note that if H does not have isolated vertices then after adding to or removing from
a (H ; k)-vertex stable graph any number of isolated vertices we still have a (H ; k)-vertex
stable graph with the same size. Therefore, in the sequel we assume that no graph in
question has isolated vertices.
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The notion of (H ; k)-vertex stable graphs was introduced in [2]. So far the exact value
of stab(H ; k) is known in the following cases: stab(K1,m; k) = m(k + 1), stab(Ci; k) =
i(k + 1), i = 3, 4, stab(K4; k) = 5(k + 1), see [2], and stab(K5; k) = 7(k + 1) for k ≥ 5
[5], stab(Kn; k) =

(

n+k

2

)

for n ≥ 2k − 2 [6]. Furthermore, stab(Km,n; 1) = mn + m + n if
n ≥ m+2, m ≥ 2, see [4], and stab(Kn,n+1; 1) = (n+1)2 for n ≥ 2, stab(Kn,n; 1) = n2+2n
for n ≥ 2, see [3]. Moreover, in all the above examples vertex stable graph with minimum
size are characterized.

In this paper we deal with (Cn; k) vertex stable graphs with minimum size. For each
n ≥ 5 we prove that stab(Cn; 1) is one of only two possible values. Furthermore, for
infinitely many n’s we determine the exact value stab(Cn; 1). Namely, for S := {l2 +
1, l2 + 2, l2 + l + 1 − x, l2 + l + 2, l2 + 2l + 1 − y, (l + 1)2 : l ≥ 2, x ∈ Sx, y ∈ Sy} (for the
definitions of sets Sx and Sy see (5), page 6, and (6), page 6, respectively) we have the
following

Theorem 1 If n ∈ S then

stab(Cn; 1) = n +
⌈

2
√

n − 1
⌉

.

Otherwise,

n +
⌈

2
√

n − 1
⌉

≤ stab(Cn; 1) ≤ n +
⌈

2
√

n − 1
⌉

+ 1.

We give also an upper and lower bound for stab(Cn; k) for k ≥ 2 and sufficiently large n.

2 (Cn; 1) stability of graphs

Recall the following observation.

Proposition 2 ([2]) Let δH be a minimal degree of a graph H. Then in any (H ; k)-vertex
stable graph G with minimum size, degG v ≥ δH for each vertex v ∈ G.

Theorem 3 Let n ≥ 5 be an integer. Then

stab(Cn; 1) ≥







n + 2l if n = l2 + 1
n + 2l + 1 if n ∈ [l2 + 2, l2 + l + 1]
n + 2l + 2 if n ∈ [l2 + l + 2, l2 + 2l + 1].

Proof. Let G be a (Cn; 1) stable graph with minimum size. Let x1, ..., xm ∈ V (G) be
the vertices of degree greater than or equal to 3 in G. We call xi’s branch vertices. By
Proposition 2 all other vertices of G have degree 2. Hence, every branch vertex is joined
with some branch vertices (possibly also with itself) by subdivided edges. Note that since
G is minimal, every component of G contains a cycle of length n. Otherwise, a component
would be redundant, which is a contradiction to the minimality of G. A cycle C contained
in G that has exactly one vertex with degree greater than or equal to 3 in G (all remaining
vertices of C have degree 2 in G) is called a subdivided loop. Note, that every subdivided
loop which may appear in G has length n, too. Indeed, otherwise the vertices of degree 2
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in G that belong to a subdivided loop would be redundant, which again is a contradiction
to the minimality of G. Thus, G is connected and does not have any subdivided loop,
because otherwise ||G|| ≥ 2n which is greater then the lower bound from the theorem
(in particular, by removing the vertex of degree ≥ 3 in G from a subdivided loop, we
obtain at least two components: a path Pn−1 and a component that contains a cycle Cn).
Furthermore, m ≥ 3 because otherwise by removing a branch vertex (or an arbitrary
vertex if m = 0) from G we obtain an acyclic graph.

Let A(xi) ⊂ V (G) denote the set of all vertices of degree 2 which are on the subdivided
edges adjacent to xi. Note, that

m
∑

i=1

|A(xi)| = 2(v − m). (1)

Let M = maxi |A(xi)| = |A(xj)| for some j ∈ {1, ..., m}. Thus,

m · M ≥
m

∑

i=1

|A(xi)| , whence, by(1),

M ≥ 2
v − m

m
. (2)

Note that since G is (Cn; 1) stable, G−xj contains a cycle of length n. This cycle cannot
contain any vertex from A(xj). Thus, v − |A(xj)| − 1 = v − M − 1 ≥ n. Hence,

v ≥ (n − 1)
m

m − 2
. (3)

Furthermore,

2e ≥ 3m + 2(v − m) hence

e ≥ m/2 + v ≥ m/2 + (n − 1)
m

m − 2
. (4)

Let f(x) := x/2 + (n − 1) x
x−2

, x > 2. By simple computations, one can see that f has

minimum in x0 = 2
√

n − 1 + 2. Hence, e ≥ f(x0) = n + 2
√

n − 1. Let l be an integer
such that l ≤

√
n − 1 < l + 1. Thus, n − 1 = l2 + α, where α ∈ {0, ..., 2l}. Therefore, if

n = l2 + 1, then e ≥ n + 2l.
Let n = l2 + 1 + α, α ∈ [1, 2l]. Note that f is decreasing for x ≤ x0 and increasing for

x ≥ x0. Hence

e ≥ min {f (⌊x0⌋) , f (⌈x0⌉)} .

Clearly ⌊x0⌋ = 2+
⌊

2
√

l2 + α
⌋

< 2l+4 and ⌈x0⌉ = 2+
⌈

2
√

l2 + α
⌉

> 2l+2. Therefore,
since ⌈x0⌉ − ⌊x0⌋ = 1, {⌈x0⌉, ⌊x0⌋} ⊂ {2l + 2, 2l + 3, 2l + 4}. It is easy to check that
f(2l + 2) = n + 2l + α

l
, f(2l + 4) = n + 2l + 1 + α−l

l+1
. Furthermore, if we take m = 2l + 3

then one of vertices {x1, ..., xm} has degree at least 4 because each graph has an even
number of vertices of odd degree. Hence e ≥ f(2l + 3) + 1/2 = n + 2l + 1 + 2α−l

2l+1
. 2
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Figure 1:

Theorem 4 Let n ≥ 3 be an integer. Then

stab(Cn; 1) ≤
{

n + 2l + 2 if n ∈ [l2 + 1, l2 + l]
n + 2l + 3 if n ∈ [l2 + l + 1, l2 + 2l + 1].

Proof. Let us consider a cycle Cn+p with the vertex set V = {0, ..., n + p − 1} and the
edge set E = {(i, i + 1); i = 0, ..., n + p − 1} for some 0 < p, with the numbers taken
mod(n + p). Let Gp be a graph created from Cn+p by adding edges (jp, (j + 1)p + 1) for

0 ≤ j ≤
⌈

n
p

⌉

, see Fig.1.

Note that Gp is (Cn; 1) stable. Suppose that we remove one vertex i from the cycle
Cn+p for i = 0, ..., n + p. By the symmetry of the graph we can assume that we remove
one of the vertices from the set S = {p+1, ..., 2p}. Then there is a cycle C which contains
all of vertices in Cn+p except p vertices in S with the vertex set VC = {p, 2p + 1, 2p +
2, ..., 0, 1, ..., p − 1}.
Moreover ||Gp|| = n+p+

⌈

n
p

⌉

+1. Let n = l2 +1+α where α ∈ [0, 2l]. For α ∈ [0, 2l−1],

by taking p = l we obtain that

||Gl|| = n + l + 1 +

⌈

l2 + 1 + α

l

⌉

= n + 2l + 1 +

⌈

α + 1

l

⌉

.

For α = 2l, by taking p = l + 1 we obtain that

||Gl+1|| = n + 2l + 3

which completes the proof. 2

Theorems 3 and 4 imply the following corollary:

Corollary 5 For l ≥ 2

stab(Cn; 1) ∈















{n + 2l, n + 2l + 1, n + 2l + 2} if n = l2 + 1
{n + 2l + 1, n + 2l + 2} if n ∈ [l2 + 2, l2 + l]
{n + 2l + 1, n + 2l + 2, n + 2l + 3} if n = l2 + l + 1
{n + 2l + 2, n + 2l + 3} if n ∈ [l2 + l + 2, l2 + 2l + 1].
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Our next aim is to determine the exact value of stab(Cn; 1) for certain n’s. Unfortu-
nately, we were not able to do this for all n’s.

The main ideas of the constructions are as follows.
Construction A. Let us consider a cycle C2s, where s > 2 is even, with the vertex set
V = {0, ..., 2s− 1} and the edge set E = {(i, i + 1); i = 0, ..., 2s− 1}, where the numbers
are taken mod(2s). Let G(s,r) be a graph obtained from C2s in the following way. We join
every two vertices x, y ∈ V such that |x − y| = s by adding s diagonals to C2s. Next, we
add r vertices on each diagonal this way that vertices i, i + s ∈ V are joined by a path
with order r + 2 which is edge-disjoint with a cycle C2s (see Fig.2). Let us denote such
diagonals by Di for i = 0, ..., s− 1. Then G(s,r) has order s(r + 2) and size s(r + 3). Note
that G(s,r) is (C(r+1)(s−1)+s; 1) stable. Indeed, suppose that we remove one vertex, say u,
from G(s,r). By the symmetry of the graph we can assume that u = 0 or u is one of the
vertices in D0. Then the sequence (1, D1, s+1, s, s−1, Ds−1, 2s−1, 2s−2, Ds−2, s−2, s−
3, Ds−3, 2s − 3, 2s − 4, Ds−4, ..., s + 2, D2, 2) represents the required cycle in G(s,r) − u.
Construction B. Let us consider two copies of a cycle Cs, where s > 2 is odd and label
consecutive vertices in one of these copies by 0 up to s − 1 and by 0′ up to (s − 1)′ in
the other. So, (i, i + 1) and (i′, (i + 1)′) is an edge, with the numbers taken mod(2s).
Let H(s,r) be a graph obtained from these two copies of Cs in a following way. We join
every vertex i and i′ by an edge for i = 0, ..., s − 1. Then, we add r vertices on each
of s edges of type (ii′) this way that vertices i, i′ are joined by a path with order r + 2
which is edge-disjoint with the two cycles Cs (see Fig.2). Let us denote a path vertex-
disjoint with two copies of Cs which is between i and i′ by D′

i for i = 0, ..., s − 1. Then
H(s,r) has order s(r + 2) and size s(r + 3). Note that H(s,r) is (C(r+1)(s−1)+s; 1) stable.
Indeed, suppose that we remove one vertex, say u′, from H(s,r). By the symmetry of
the graph we can assume that v = 0 or v is one of the vertices in D0. Then the se-
quence

(

0′, 1′, D′
1, 1, 2, D

′
2, 2

′, 3′, D′
3, ..., s − 1, D′

s−1, (s − 1)′
)

represents the required cycle
in H(s,r) − v.
Construction C. Let G′

(s,r) be a graph obtained from G(s,r) by adding one vertex be-
tween vertices with labels 0 and 1 and one vertex between vertices with labels s and s+1.
Analogously, let H ′

(s,r) denote a graph obtained from H(s,r) by adding one vertex between

vertices 0 and 1 and 0′ and 1′ in cycles Cs. Then G′
(s,r) and H ′

(s,r) are (C(r+1)(s−1)+s+1; 1)
stable. The required cycles are analogous to the ones from Construction A and Construc-
tion B.

• Let n = l2 + 1. Then, for s = l + 1, r = l − 2, Gs,r is a (Cn; 1) stable graph with
minimum size for l > 1 odd and Hs,r is a (Cn; 1) stable graph with minimum size for l
even.

• Let n = l2 + 2. Then, for s = l + 1, r = l − 2, G′
s,r is a (Cn; 1) stable graph with

minimum size for l > 1 odd and H ′
s,r is a (Cn; 1) stable graph with minimum size for l

even.
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Figure 2:

• Let n = l2 + l + 1 − x, where

x ∈ Sx :=

{

0, 2, 2 + 4, ...,

q0
∑

i=0

2i : q0 = max{q : q(1 + q) < l}
}

. (5)

Observe that then there exists an odd integer c such that c2 = 1 + 4x. Then, for s =
l + 3−

√
1+4x

2
, r = l + −3+

√
1+4x

2
or s = l + 3+

√
1+4x

2
, r = l + −3−

√
1+4x

2
, Gs,r is a (Cn; 1) stable

graph with minimum size for s even and Hs,r is a (Cn; 1) stable graph with minimum size
for s > 1 odd.

• Let n = l2 + l + 2. Then, for s = l + 1, r = l − 1 or s = l + 2, r = l − 2, G′
s,r is a

(Cn; 1) stable graph with minimum size for s even and H ′
s,r is a (Cn; 1) stable graph with

minimum size for s > 1 odd.
• Let n = l2 + 2l + 1 − y, where

y ∈ Sy :=

{

0, 3, 3 + 5, ...,

q0
∑

i=0

(2i + 1) : q0 = max{q : q(q + 2) < l}
}

(6)

Observe that then there exists an integer d such that d2 = 1 + y. Then, for s =
l + 2 − √

1 + y, r = l − 1 +
√

1 + y or s = l + 2 +
√

1 + y, r = l − 1 − √
1 + y, Gs,r

is a (Cn; 1) stable graph with minimum size for s even and Hs,r is a (Cn; 1) stable graph
with minimum size for s > 1 odd.

Combining the above constructions with Corollary 5 we obtain Theorem 1.

3 Extremal graphs

In this section we present some information about (Cn; 1), n ≥ 5, stable graphs with mini-
mum size. Let G̃ denote a (multi,pseudo)graph arising from G by replacing all subdivided
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edges of G by edges and subdivided loops by loops.

Proposition 6 Let n = l2 +1, l ≥ 3. Let G be a (Cn; 1) stable graph with minimum size.

Then the following statements hold.

1. |G| = l2 + l, ||G|| = l2 + 2l + 1; furthermore, G has 2l + 2 vertices of degree 3 and

l2 − l − 2 vertices of degree 2.

2. G̃ is a simple graph.

3. For each vertex v ∈ G̃ the graph G̃ − v is hamiltonian.

4. For each vertex v ∈ G̃ there exists an edge ev incident to v such that ev is involved in

some hamiltonian cycle in every graph G̃−x where x raises among all non-neighbors

of v in G̃; moreover, if ev is unique for v then in G it is subdivided by l−2 vertices.

Proof. Note that from the proof of Theorem 3 it follows that in order to achieve the
minimal size the inequalities (2), (3) and (4) must be equalities now. Thus, |G| = l2 + l,
m = 2l + 2, |A(xi)| = l− 2 and degG(xi) = 3 for every i = 1, ..., m. Moreover, for every i,
|G − {xi} − A(xi)| = n. Hence, a cycle Cn contains all vertices of G−{xi}−A(xi). That
means that for each i a graph G̃ − xi is hamiltonian. Furthermore, the cycle contains all
vertices from A(v) of every non-neighbor v of xi. Therefore, all edges incident to v in G̃
that are subdivided in G must be involved in a hamiltonian cycle in G̃−xi. Since for each
v ∈ G at least one edge incident to v is subdivided, the third statement of the proposition
holds.

Finally, by the same argument as in the proof of Theorem 3 we may exclude loops in
G̃. Furthermore, G̃ does not have multiple edges. Indeed, otherwise we remove a vertex,
say x, that is incident to a multiple edge, say xy. As a result we lose not only all vertices
from {x} ∪A(x) but also all vertices from {y} ∪A(y), because degG(y) = 3 (so it cannot
be in any cycle in G − x). In such situation the number of vertices in G (by far) exceeds
(3). 2

Corollary 7 G(4,1) is the only (C10; 1) stable graph with minimum size.

Proof. Let G be a (C10; 1) stable graph with minimum size. By Proposition 6, G has
8 vertices of degree 3 and 4 vertices of degree 2. In particular |G̃| = 8. There are 5
connected cubic graphs Q1, ..., Q5 of order 8, see Fig. 3 [7]. It is easy to check that for
i = 2, 3, 4, Qi − v2 is not hamiltonian. Moreover, v1 ∈ Q1 does not satisfy condition 3
of Proposition 6 which is seen by considering the graphs Q4 − v3, Q4 − v4 and Q4 − v6.
Furthermore, note that the vertex v1 ∈ Q5 has a unique edge ev1

satisfying condition
3 of Proposition 6, namely ev1

= v1v5. This is seen by considering the graphs Q5 − vi,
i = 3, 4, 6, 7. By symmetry, each vertex v ∈ Q5 has the unique edge ev. Therefore, by
Proposition 6, G = G(4,1). 2
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Figure 3:

4 (Cn; k) stability of graphs

Theorem 8 Let k ≥ 2 be a fixed integer. For each 0 < ǫ ≤ 1/(2k + 4) there exists n(ǫ)
such that if n ≥ n(ǫ) then

stab(Cn; k) ≥ n + 2
√

(1 − ǫ)kn − 1.

Proof. Let G be a (Cn; k) stable graph with minimum size. We define xi and A(xi),
i = 1, ..., m, in the same way as in the proof of Theorem 3. For the same reasons as in
the proof of Theorem 3 we assume that G is connected and does not have any subdivided
loops. Furthermore we may assume that m ≥ k + 2. Let M = max1≤i1<...<ik≤m |A(xi1) ∪
... ∪ A(xik)| = |A(xj1) ∪ ... ∪ A(xjk

)| for some {j1, ..., jk} ⊂ {1, ..., m}. Thus,

(

m

k

)

· M ≥
∑

i1<...<ik

|A(xi1) ∪ ... ∪ A(xik)|

=

[(

m − 1

k − 1

)

+

(

m − 2

k − 1

)]

(v − m), (7)

because vertices of degree 2 which lie on a fixed subdivided edge are counted
(

m−1
k−1

)

+
(

m−2
k−1

)

times. It is not dificult to check that

M ≥ (2m − k − 1)k

m(m − 1)
(v − m).

Note that since G is (Cn; k) stable, G−{xj1 , ..., xjk
} contains a cycle of length n. This cycle

cannot contain any vertex from A(xj1)∪ ...∪A(xjk
). Thus, v−|A(xj1)∪ ...∪A(xjk

)|−k =
v − M − k ≥ n. Hence,
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v ≥ n
m(m − 1)

m(m − 1) − 2mk + k2 + k
− km2 − k2m

m(m − 1) − 2mk + k2 + k
. (8)

Furthermore,

2e ≥ 3m + 2(v − m) hence

e ≥ m/2 + n
m(m − 1)

m(m − 1) − 2mk + k2 + k
− km2 − k2m

m(m − 1) − 2mk + k2 + k
. (9)

It is easy to check that if m ≥ k+1
2ǫ

and ǫ ≤ 1
2k+4

then

e ≥ m

2
+ n

m − 1

m − 1 − (2 − 2ǫ)k
− (k + 1).

Let f(x) = x/2 + n x−1
x−1−(2−2ǫ)k

− (k + 1), x ≥ k + 2. By simple computations, one

can see that f has minimum in x0 = 2
√

(1 − ǫ)kn + 2(1 − ǫ)k + 1. This implies that

e ≥ f(x0) = n+2
√

(1 − ǫ) kn− ǫk +1/2−1 ≥ n+2
√

(1 − ǫ) kn−1. On the other hand,
if m < k+1

2ǫ
then for sufficiently large n we have e > (1 + c)n for a constant c > 0. Thus,

for sufficiently large n, e ≥ n + 2
√

(1 − ǫ) kn − 1, too. 2

Theorem 9 For each k ≥ 1 and each n ≥ 3

stab(Cn; k) ≤ n + 2k
⌈√

n
⌉

+ k2.

Proof. Let us consider a cycle Cn+kp with the vertex set V = {0, ..., n + kp − 1} and
the edge set E = {(i, i + 1); i = 0, ..., n + kp − 1} for some p > 0, the numbers
being taken mod(n + kp). Let Gk

p be a graph created from Cn+kp by adding edges
{

(jp, (j + 1)p + 1), ..., (jp, (j + k)p + 1) : j = 0, ..., (k − 1) +
⌈

n
p

⌉}

. We will prove that

Gk
p is (Cn; k) stable. The proof is by induction on k. For k = 1 see the proof of Theorem

4. In general case, let v ∈ [ip+1, (i+1)p] for some i. Then Gk
p −{ip + 1, ..., (i + 1)p} con-

tains a Gk−1
p . Hence, by the induction hypothesis, Gk

p −{ip + 1, ..., (i + 1)p} is (Cn; k−1)
stable. This implies that Gk

p is (Cn; k) stable, because v was chosen arbitrarily

Furthermore ||Gk
p|| = n + k2 + k

(

p +
⌈

n
p

⌉)

. Let n = l2 + 1 + α, where α ∈ [0, 2l]. In

the same way as in the proof of Theorem 4, by taking p = l or p = l+1, we conclude that

||Gk
p|| ≤ n + k2 + k(2l + 2) = n + k2 + 2k

⌈√
n
⌉

.

2
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5 Concluding remarks

We have presented the lower and upper bound for stab(Cn; k), k ≥ 1. In case k = 1 the
bounds differ only by 1. Moreover, for infinitely many n’s we have determined the exact
value of stab(Cn; 1). Note that from Theorem 1 it follows that the first unknown value
is stab(C12; 1) ∈ {19, 20} and the next one stab(C15; 1) ∈ {23, 24}. By an exhaustive
computer search, we found exactly two (C12; 1) stable graphs with size 19 (one of them
arises from Petersen graph by dividing four of five edges connecting the outer cycle with
the inner one in the most popular picture of this graph). Hence, stab(C12; 1) = 19.
Therefore, in each case when we know the exact value of stab(Cn; 1) it is equal to the
lower bound from Theorem 1. We do not know if there is n with stab(Cn; 1) equal to the
upper bound from this theorem. We are closer to think that the answer is yes.
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