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Abstract

We present an O(n2)-time algorithm for calculating the genus distribution of
any 4-regular outerplanar graph. We characterize such graphs in terms of what we
call split graphs and incidence trees. The algorithm uses post-order traversal of the
incidence tree and productions that are adapted from a previous paper that analyzes
double-root vertex-amalgamations and self-amalgamations.

1 Introduction

A graph G is called an outerplanar graph if it has a planar embedding in which some
face-boundary walk contains every vertex of G. We refer to such an embedding as an
outerplane embedding, and we denote the face containing all the vertices by f∞ to
indicate that it contains the point at infinity. An outerplane embedding is said to be
normalized if all self-loops of the graph lie on the face-boundary walk of the face f∞.
We designate the edges that constitute the face-boundary walk of f∞ as exterior edges,
in contrast to the usage of interior edges for the remaining edges. Figure 1.1 shows
a 4-regular outerplane embedding before normalization, with the exterior edges shown
darker than interior edges.
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Figure 1.1: An unnormalized outerplane embedding of a 4-regular outerplanar graph.

Calculating genus distributions for families of graphs is a classical problem in topo-
logical graph theory. This paper describes a polynomial-time algorithm for calculating
the genus distribution of any 4-regular outerplanar graph. One special importance of
4-regular graphs is that they occur as projections of knots and links. Another is that
the medial graph of any embedded graph is a 4-regular graph. In the remainder of this
section, we review some standard terminology and notation, as well as prior work in this
area. In §2 and §3, we lay groundwork for exploiting the structure of 4-regular outerplanar
graphs for our present purpose. In §4, we discuss the algorithm, and we do a dry run on
a small example. In §5, we discuss the complexity of the algorithm. In §6, we give the
proof of correctness. In §7, we make some concluding remarks.

In this paper, we assume some familiarity with topological graph theory (see [GrTu87]
or [Wh01]). We permit graphs to have self-loops and multiple adjacencies. When regard-
ing an edge as a topological space homeomorphic to a curve in the space, an edge-end
is the small local part of the edge that begins at its endpoint and ends well short of its
midpoint. Each edge of the graph has two edge-ends, even if it is a self-loop. We refer
to the edge-ends of exterior and interior edges as exterior edge-ends and interior
edge-ends, respectively. The cyclic permutation of edge-ends at a vertex v is known as
a rotation at v. A rotation system of graph G is a set containing one rotation for
every vertex of G. It is well known that there is a bijective correspondence between the
rotations systems of a graph G and the orientable embeddings of G. Moreover, each rota-
tion system of a graph G specifies an embedding of G. We denote the orientable surface
of genus i by Si and the number of cellular embeddings of a graph G on the surface Si by
gi(G). The sequence {gi(G) : i ≥ 0}, is known as the genus distribution of the graph
G. An embedding of a graph G on a surface is assumed to be cellular and orientable and
is generically denoted by ιG. We abbreviate face-boundary walk as fb-walk.

Any vertex in a graph may be designated a root vertex. A graph with one or more
root vertices is known as a rooted graph. In this paper, we primarily deal with graphs
having two roots. We refer to such a graph as a double-rooted graph. For the purpose
of this paper, we assume that each root vertex in a double-rooted graph is 2-valent. If a
2-valent root vertex u occurs twice in an fb-walk, it breaks the fb-walk into two strands,
which are the maximal subwalks such that u is not an interior point. We refer to these
strands as u-strands. For a double-rooted graph (G, u, v), the vertex u is referred to as
the first-root of the graph G and the vertex v is referred to as the second-root of the
graph G.
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An enumerative concern, related to calculating genus distributions, has been to count
the number of embeddings of a graph in a surface of minimum-genus. Some recent papers
in this regard include [BGGS00], [GoRiSi07], [GrGr08], and [KoVo02]. Genus distribu-
tions were first studied in [GrFu87], [FuGrSt89], and [GrRoTu89]. Prior work on genus
distributions has been largely focused on graph families with high symmetries. In this
context, prior work on counting embeddings in all orientable surfaces or in all surfaces
includes [ChLiWa06], [KwLe93], [KwLe94], [KwSh02], [McG87], [Mu99], [St90], [St91a],
[St91b], [Tesa00], [ViWi07], [WaLi06], and [WaLi08]. The well known Heffter-Edmonds
algorithm calculates the genus distribution of any graph, but its time-complexity is super-
exponential in the size of the graph (see [GrTu87]).

We call attention to a recent series of related papers that provide foundational tech-
niques for calculating genus distributions of graphs that are produced from other more
well-understood graphs by performing various operations on them. These include the pub-
lications [GKP10], [Gr10], [PKG10], [KPG10], [Gr11a], and [PKG11]. An innovative use
of these techniques appears in [Gr11b], where a polynomial-time algorithm for calculating
the genus distribution of cubic outerplanar graphs is described. The results in this paper
also serve to demonstrate the power of these techniques. This paper is predominantly
self-contained, notwithstanding the use of results developed in [Gr11a].

2 Split Graphs and Incidence Trees

Given a normalized outerplane embedding of a 4-regular outerplanar graph G, we classify
its vertices into two types. A Type-I vertex has two exterior and two interior incident
edge-ends, whereas a Type-II vertex has four exterior incident edge-ends. Thus, every
cut-vertex is a Type-II vertex. Moreover, by requiring that the outerplane embedding be
normalized, we ensure that every self-loop lies on the fb-walk of the face f∞ and, therefore,
render its single endpoint a Type-II vertex. All other vertices are Type-I. The general
term splitting of a vertex vi is used to mean either of the following two operations on
the vertex vi:

• Type-I Vertices: In the rotation at a Type-I vertex vi in an outerplane embedding,
the exterior edge-ends e1 and e2 incident on vi are contiguous, as are the interior
edge-ends d1 and d2. Let the cyclic counter-clockwise order of the edge-ends incident
on vi be (e1, e2, d1, d2) in the outerplane embedding of graph G. Then splitting the
vertex vi consists of introducing two new vertices v′i and v′′i , called single-primed
and double-primed vertices, respectively, with the edge-ends d2 and e1 incident
on v′i instead of on vi, and with the edge-ends e2 and d1 incident on v′′i instead of
on vi. The vertex vi is deleted. This is illustrated in Figure 2.1.

• Type-II Vertices: Let the exterior edge-ends of vi be cyclically ordered as (e1,
e2, e3, e4), where e1 and e4 belong to one block and e2 and e3 to another. Then
splitting the vertex vi consists of introducing two new vertices v̇i and v̈i. We refer
to either of these as a dotted vertex. The edge-ends e1 and e4 are made incident
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Figure 2.1: Splitting a Type-I vertex vi.

on v̇i, while the edge-ends e2 and e3 are made incident on v̈i instead of on vi. The
vertex vi is deleted.

In this manner, we may split every vertex of the normalized outerplane embedding of a
4-regular outerplanar graph G, thereby obtaining a graph G′ where each vertex is 2-valent
and, therefore, each component is a cycle Cn for some n. We refer to G′ as the split graph
for the graph G, and we refer to each pair of vertices obtained from a split as coupled
vertices. The two vertices in a coupled pair belong to different components. These two
components are called coupled components with respect to that pair of vertices. An
example of a 4-regular outerplanar graph and its split graph is shown in Figure 2.2.

Figure 2.2: A 4-regular outerplanar graph and the split graph obtained from its nor-
malized outerplane embedding.

Remark Each component of a split graph is the boundary of a 2-cell, which is regarded
as having a counter-clockwise orientation induced from the orientation of the outerplane
embedding.

It is easy to visualize how the original graph G can be reassembled by amalgamating
each pair of coupled vertices in G′. As we will see, our algorithm utilizes this recon-
structability of a 4-regular outerplanar graph. It calculates genus distribution of the out-
erplanar graph by simulating its reconstruction, while calculating the genus distributions
for the subgraphs assembled at each step of the algorithm.
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By the component graph of the split graph C(G′), we mean the graph whose
nodes are the components of the split graph, and in which two nodes are adjacent if they
are coupled. We describe an algorithm to build an ordered tree that can be regarded as
a depth-first spanning tree of C(G′):

1. Designate an arbitrary component in the component graph C(G′) as the root node
of the tree. Represent the root node visually with a round-shaped vertex.

2. Construct a depth-first ordered tree rooted at the root node in the component
graph C(G′), such that the child components for each tree node C correspond to
the components coupled with it only with respect to its single-primed and dotted
vertices.

3. By ordered tree, we mean that the counter-clockwise rotation at each tree node
imposes a linear ordering on its children. The order prescribed for the children of
each tree node C is that in which these coupled child components are encountered
under the counter-clockwise orientation on C in G′. The first child node of the root
node is chosen arbitrarily since the root node has no parent node. In contrast,
for any other tree node C coupled with parent node P , the first child node of C is
chosen to be the first component coupled with it after P under the counter-clockwise
orientation on C.

4. Each new node added to the tree in step 2 is represented visually by a square
node if it corresponds to a component coupled to its parent with respect to dotted
vertices, otherwise it is represented by a round node.

The ordered tree formed in this manner is unique for a fixed root and a fixed first child
of the root, and is referred to as the incidence tree of the outerplanar graph G with
respect to the given outerplane embedding. Depending on the context, we may regard
the tree nodes of an incidence tree, interchangeably, either as the components of C(G′)
or as their more abstract round and square visual representations. For the split graph in
Figure 2.2 and a particular choice of the root component and the first child component,
the corresponding incidence tree is shown in Figure 2.3. The darker round node 18 shown
in Figure 2.3 is the root node. The arbitrarily selected first child of the root is illustrated
by the dark directed edge incident on it from the root node.

The post-order traversal of an incidence tree prescribes the order in which coupled
vertices are amalgamated when simulating the reconstruction of the outerplanar graph.
In this sense, the incidence tree for a 4-regular outerplanar graph fills the same role as
the “inner tree” for a 3-regular outerplanar graph in [Gr11b]. However, as we have just
seen, its construction involves more subtleties.

Remark The purpose in introducing component graphs is to facilitate the conceptual-
ization of incidence trees. In practice, an incidence tree can be constructed directly from
a split graph without recourse to construction of the component graph.
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Figure 2.3: An incidence tree for the split graph from Figure 2.2.

3 Amalgamations and Self-Amalgamations

In order to simulate the reconstruction of a 4-regular outerplanar graph, we require two
graph operations, known as amalgamation and self-amalgamation. We employ constructs
known as productions to model the effect of using these two operations on graphs. In
both cases, a production algebraically represents the embeddings of the resulting graph.
A production for double-rooted graphs is defined in terms of a concept called a double-
root partial. Accordingly, we introduce this concept before we proceed to define these two
operations and their corresponding productions.

Double-Root Partials

We observe that any given 2-valent vertex appears exactly twice in the set of fb-walks
of an embedding. This enables us to partition the embeddings of a double-rooted graph
(G, u, v) on a surface Si into the four basic types: ddi, dsi, sdi, and ssi. The first letter
of each type represents the first-root u, and the second letter represents the second-root
v. The letters s and d are mnemonics for “same” and “distinct”, indicating whether the
corresponding 2-valent root vertex occurs twice on the same fb-walk or once on each of two
distinct fb-walks. Each double-root partial counts the number of embeddings of one of
these four basic types. The four double-root partials are further refined by [GKP10] to
express the specific relationships of the fb-walks incident on both roots. These refinements
are known as sub-partials, and are as follows:
The sub-partials of type ddi are:

dd0
i (G, u, v) = the number of embeddings of type ddi such that

neither of the fb-walks incident on u is incident on v.
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dd′i(G, u, v) = the number of embeddings of type ddi such that

exactly one fb-walk incident on u is incident on v.

dd′′i (G, u, v) = the number of embeddings of type ddi such that

both fb-walks incident on u are incident on v.

Similarly, the sub-partials of type dsi and of type sdi are as follows:

ds0
i (G, u, v) = the number of embeddings of type dsi such that

neither fb-walk incident on u is incident on v.

ds′i(G, u, v) = the number of embeddings of type dsi such that

exactly one fb-walk incident on u is incident on v.

sd0
i (G, u, v) = the number of embeddings of type sdi such that

the fb-walk incident on u is not incident on v.

sd′i(G, u, v) = the number of embeddings of type sdi such that

the fb-walk incident on u is also incident on v.

Finally, the sub-partials of type ssi are as follows:

ss0
i (G, u, v) = the number of embeddings of type ssi such that

the fb-walk incident on u is not incident on v.

ss1
i (G, u, v) = the number of embeddings of type ssi such that

one u-strand of the fb-walk incident on u

contains both occurrences of v.

ss2
i (G, u, v) = the number of embeddings of type ssi such that

both u-strands of the fb-walk incident on u

contain an occurrence of v.

There are also additional sub-partials that are refinements for the sub-partials of types sd′

and ss1. The definitions for these sub-partials and the context in which they are needed
is discussed later.

The collection of values of all sub-partials, for all values of i, is known as a partitioned
genus distribution of the graph (G, u, v).

Productions for Self-Amalgamation

A self-amalgamation of a double-rooted graph is an operation (G, u, v) −→ W , where
the two roots of the graph are merged together to produce a new graph. We may alterna-
tively use the terminology self-pasting to mean the same. We know from [Gr11a] that
when both roots u and v are 2-valent, an embedding ιG of G under self-amalgamation
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induces six unique embeddings of W such that the rotations at vertices in ιG are con-
sistent with rotations at vertices in the six corresponding embeddings of W . We also
know that the genus of each of these embeddings of W is a function of the genus of the
embedding surface of ιG and of the configuration of fb-walks on which the roots of G lie.
This information can be represented in a form known as a production.

Let pi be a double-root sub-partial of the double-rooted graph (G, u, v). Then the
standard representation for a self-amalgamation production, as laid out in [Gr11a], is of
the form:

pi(G, u, v) −→ α1gi+k1(W ) + α2gi+k2(W )

where α1, α2 are non-negative integers whose sum is 6, and where k1, k2 are integers within
the range of -1 to 2. This can be interpreted as follows:

A type p embedding of (G, u, v) on surface Si self-amalgamates on the root-
vertices u and v to give six embeddings of the graph W . Out of these six
resulting embeddings, α1 embeddings are on surface Si+k1 , and α2 are on
surface Si+k2 .

The left-hand-side of a production is known as the production head. The right-hand-
side of a production is known as the production body.

The complete set of productions for self-amalgamation on 2-valent roots is given in
[Gr11a]. However, the form of the production defined above does not capture root-
related information for the graph W that is produced as a result of the self-pasting.
In our algorithm, we need to be able to repeatedly apply self-amalgamations and vertex-
amalgamations, in order to build a larger graph from many of the smaller subgraphs. For
this reason, after self-amalgamation, we pop new root vertices on the exterior edge e
incident on the first-root u of the graph (G, u, v). This is illustrated in Figure 3.1, where
the edges e and f are incident on the first-root u before self-amalgamation. The edge f is
necessarily an interior edge. New roots are popped on the edge e after self-amalgamation.
Nota bene, the root popped closer to the amalgamated vertex is considered the second-root
of the resulting graph.

Figure 3.1: A model representing self-amalgamation.

This entails adapting the production body to reflect the new roots. In particular, we
need to replace each occurrence of gi in the production body by the relevant double-root
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sub-partial type that is consistent with the face-boundaries incident on these new roots.
In light of this, we redefine a production for self-amalgamation as follows:

pi(G, u, v) −→
∑

xk ranges over all

sub-partial types

with k∈{i−1,i,i+1,i+2}

αxk
xk(W, s, v)

where each xk is a double-root sub-partial type for the graph W and where the numbers
αxk

are non-negative integers whose sum is 6.
Since both new roots are popped on the same edge, the same fb-walk that passes

through one root also passes through the other. Thus, each sub-partial type in the
production body for a self-amalgamation production is either of type dd′′ or of type ss1.

Adaptation of productions in this manner is straightforward for all sub-partials pi in
the production head, except for the sub-partials sd′i and ss1

i . To facilitate the adaptation
of productions for these two sub-partials, we further refine them as follows:

↑sdi
′(G, u, v) = the number of embeddings of type sd′i such that

the u-strand that contains the occurrence of
vertex v also contains both occurrences of ex-
terior edge e in it (see Figure 3.2).

↓sdi
′(G, u, v) = the number of embeddings of type sd′i such that

the u-strand that contains the occurrence of
vertex v does not contain the two occurrences
of exterior edge e in it (see Figure 3.2).

Therefore,

sd′i(G, u, v) = ↑sdi
′(G, u, v) + ↓sdi

′(G, u, v)

Similarly,

↑ssi
1(G, u, v) = the number of embeddings of type ss1

i such that
the u-strand that contains both occurrences of
the vertex v also contains both occurrences of
exterior edge e in it (see Figure 3.2).

↓ssi
1(G, u, v) = the number of embeddings of type ss1

i such that
the u-strand that contains both occurrences of
the vertex v does not contain the two occur-
rences of exterior edge e in it (see Figure 3.2).

Thus,

ss1
i (G, u, v) = ↑ssi

1(G, u, v) + ↓ssi
1(G, u, v)

We now adapt the proofs in [Gr11a] by popping two new roots on edge e, as shown
on the right side of Figure 3.1. This chosen edge e corresponds to the exterior edge of the
outerplane embedding that is incident on the first-root undergoing self-amalgamation.
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Figure 3.2: Refined partials types of sd′ and ss1.

The following theorem adapts the productions for self-amalgamation derived in [Gr11a]
by making the modification above.

Theorem 3.1 When an embedding of a double-rooted graph (G, s, t) with 2-valent roots
is self-amalgamated, the following productions hold:

dd0
i (G, u, v) −→ 4dd′′i+1(W, s, t) + 2↓ss1

i+2(W, s, t) (3.1)

dd′i(G, u, v) −→ dd′′i (W, s, t) + 3dd′′i+1(W, s, t) + 2↓ss1
i+1(W, s, t) (3.2)

dd′′i (G, u, v) −→ 4dd′′i (W, s, t) + 2↓ss1
i+1(W, s, t) (3.3)

ds0
i (G, u, v) −→ 6dd′′i+1(W, s, t) (3.4)

ds′i(G, u, v) −→ 3dd′′i (W, s, t) + 3↓ss1
i+1(W, s, t) (3.5)

sd0
i (G, u, v) −→ 6↓ss1

i+1(W, s, t) (3.6)

↑sd′i(G, u, v) −→ 3dd′′i (W, s, t) + 3↓ss1
i+1(W, s, t) (3.7)

↓sd′i(G, u, v) −→ 3↓ss1
i (W, s, t) + 3↓ss1

i+1(W, s, t) (3.8)

ss0
i (G, u, v) −→ 6↓ss1

i+1(W, s, t) (3.9)

↑ss1
i (G, u, v) −→ 6dd′′i (W, s, t) (3.10)

↓ss1
i (G, u, v) −→ 6↓ss1

i (W, s, t) (3.11)

ss2
i (G, u, v) −→ dd′′i−1(W, s, t) + 3dd′′i (W, s, t) + 2↓ss1

i (W, s, t) (3.12)

Proof An sd′-type embedding of (G, u, v) has one fb-walk incident on root u and two
on root v. Moreover, the fb-walk incident on u is also incident on root v. When such an
embedding is self-amalgamated, the resulting graph W has six corresponding embeddings.
This however results in two different scenarios based on whether the embedding of G is
of sub-type ↑sd′i or ↓sd′i. The first scenario, corresponding to an ↑sd′i-type embedding of
(G, u, v), is portrayed in Figure 3.3.

The six embedding models shown at the right of the figure correspond to the em-
beddings of W resulting from the self-amalgamation of an embedding of G. As a result
of self-amalgamation, the fb-walks incident on both root vertices of (G, u, v) break into
strands, that recombine to make new fb-walks. Two new roots are popped on the exterior
edge e after self-amalgamation, as shown in the figure. The root farther from the amal-
gamated vertex is the first-root, and the one closer to it is the second-root. One observes
that half of the embeddings of W resulting from self-amalgamation are of type dd′′, while
the remaining are of type ↓ss1. This accounts for Production 3.7.
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Figure 3.3: Self-amalgamation of a ↑sdi-type embedding of G.

Contrast this with the second scenario illustrated in Figure 3.4. This constitutes the
proof of Production 3.8.

Figure 3.4: Self-amalgamation of a ↓sdi-type embedding of G.

Remark Figure 3.1 makes it clear that the ss1-type partials resulting from the self-
amalgamation are always ↓ss1-sub-type.

The proofs for other productions are identical in substance to the proofs given for the
corresponding productions in [Gr11a]. However, a fine-tuning of the classification of
the embeddings resulting from self-amalgamation is necessitated, as in the proof of the
productions above. For the sake of brevity, we leave the remaining productions for the
reader to verify. ♦

Productions for Vertex-Amalgamation

Let (G, s, t) be a graph with the vertices s and t designated as roots, and let (H, u, v) be a
graph with the vertices u and v as roots. Then amalgamating the graph G at root vertex
t with the graph H at root vertex u yields a new graph (W, s, v) with the vertices s and
v serving as roots. We denote the amalgamation operation by an asterisk as follows:

(W, s, v) = (G, s, t) ∗ (H, u, v)
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As in [GKP10], we assume 2-valent roots. Thus, when an embedding ιG of G and an
embedding ιH of H amalgamate, they induce six unique embeddings of W , in which
the rotations at all vertices of W are consistent with the rotations at the corresponding
vertices in both ιG and ιH . Moreover, the genus of each of these embeddings of W is a
function of the genera of ιG and ιH and of the fb-walks on which the roots of G and H
lie as they undergo amalgamation.

Let pi and qj be double-root sub-partials. Then, a production is used to represent
the ways in which a p-type embedding of (G, s, t) and a q-type embedding of (H, u, v)
amalgamate on their root vertices t and u, respectively, to give various types of embeddings
of the resulting graph (W, s, v). We write

pi(G, s, t) ∗ qj(H, u, v) −→
∑

xk ranges over all

sub-partial types

with k∈{i+j,i+j+1}

αxk
xk(W, s, v)

where the coefficients αxk
are non-negative integers that sum to six, and where each term

in the production body indicates that there are αxk
embeddings of the graph produced

by the amalgamation, that have genus k and a sub-partial type xk. This can be read as
follows:

Amalgamating a p-type embedding of (G, s, t) on surface Si with a q-type
embedding of (H, u, v) on surface Sj on the root-vertices t and u yields six
embeddings of the graph (W, s, v). Each of these six embeddings corresponds
to a partial type x on the surface Si+j or Si+j+1, as specified by the subscript
of x.

A method for deriving productions for vertex-amalgamation was presented in [Gr11a], but
no distinction was made between the ↑ss1 and ↓ss1 sub-partials, or between the ↑sd′ and
↓sd′ sub-partials. The method in [Gr11a] works equally well for these new sub-partials.
The complete list of productions needed for our algorithm is given in Table 3.1. The
productions not involving sub-partial types ↑sd′, ↓sd′, ↑ss1 or ↓ss1 in the production
body are taken from [Gr11a] and are listed here only for the sake of completion. For
brevity, we abbreviate the double-root partials by omitting the double-rooted graphs.

Even though there are twelve sub-partials defined in this paper, the number of pro-
ductions directly needed for our algorithm is 2 × 12 = 24. This is because the order in
which the various graph components are amalgamated necessitates that the roots of the
first amalgamand in any vertex-amalgamation be adjacent. This allows three possibilities
for the sub-partial types of such a component: dd′′, ↑ss1, and ↓ss1. It turns out that an
embedding of the first amalgamand is never of type ↑ss1. The first amalgamand has an
ss1-type embedding only as an outcome of a previous self-amalgamation or as an outcome
of a step in our algorithm that involves vertex-amalgamating a pair of dotted vertices.
In our earlier remark, we mentioned that self-amalgamation produces only ↓ss1-type em-
beddings. The same is also true for the latter scenario as will become evident in the next
section. Therefore, the sub-partials of the first amalgamand are limited to only two valid
types: dd′′ and ↓ss1.

the electronic journal of combinatorics 18 (2011), #P212 12



Table 3.1: Productions for vertex-amalgamation (G, s, t) ∗ (H, u, v) where the embed-
ding of graph G has partial type dd′′.

dd′′i (G, s, t) productions ↓ss1
i (G, s, t) productions

dd′′i ∗ dd0
j −→ 4dd0

i+j + 2sd0
i+j+1 ↓ss1

i ∗ dd0
j −→ 6sd0

i+j

dd′′i ∗ dd′j −→ 2dd0
i+j + 2dd′i+j + ↓sd′i+j+1 + ↑sd′i+j+1 ↓ss1

i ∗ dd′j −→ 3↓sd′i+j + 3sd0
i+j

dd′′i ∗ dd′′j −→ 4dd′i+j + 2ss2
i+j+1 ↓ss1

i ∗ dd′′j −→ 6↓sd′i+j

dd′′i ∗ ds0
j −→ 4ds0

i+j + 2ss0
i+j+1 ↓ss1

i ∗ ds0
j −→ 6ss0

i+j+1

dd′′i ∗ ds′j −→ 2ds0
i+j + 2ds′i+j + ↓ss1

i+j+1 + ↑ss1
i+j+1 ↓ss1

i ∗ ds′j −→ 3ss0
i+j + 3↓ss1

i+j

dd′′i ∗ sd0
j −→ 6dd0

i+j ↓ss1
i ∗ sd0

j −→ 6↓sd′i+j

dd′′i ∗ ↓sd′j −→ 6dd′i+j ↓ss1
i ∗ ↑sd′j −→ 6↓sd′i+j

dd′′i ∗ ↑sd′j −→ 6dd′i+j ↓ss1
i ∗ ↓sd′j −→ 6↓sd′i+j

dd′′i ∗ ss0
j −→ 6ds0

i+j ↓ss1
i ∗ ss0

j −→ 6ss0
i+j

dd′′i ∗ ↑ss1
j −→ 6ds′i+j ↓ss1

i ∗ ↑ss1
j −→ 6↓ss1

i+j

dd′′i ∗ ↓ss1
j −→ 6ds′i+j ↓ss1

i ∗ ↓ss1
j −→ 6↓ss1

i+j

dd′′i ∗ ss2
j −→ 4ds′i+j + 2dd′′i+j ↓ss1

i ∗ ss2
j −→ 6↓ss1

i+j

4 Algorithm

This section describes the algorithm that calculates the genus distribution of a 4-regular
n-vertex outerplanar graph in O(n2) time. The later part of this section also demonstrates
how the algorithm works by illustrating it for a simple example.

Input: A rotation system that specifies an outerplane embedding of a 4-regular outer-
planar graph G.

Algorithm:

1. Normalize the outerplane embedding by changing rotations of all vertices that have
a self-loop incident on them and by making the self-loops lie on the boundary of the
face f∞.

2. Obtain the split graph G′ from the normalized outerplane embedding, and form an
incidence tree T with respect to an arbitrarily designated root component and an
arbitrarily chosen first child of the root component. At the outset, the only non-zero
double-root sub-partial for each component of the split graph G′ is dd′′0 = 1. As we
see in an example developed in this section, splitting the base vertex of a self-loop
leads to a component of G′ with only one vertex and one edge. However, we pop
a new root vertex adjacent to that one vertex and regard that component as also
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having two roots and as having the double-root partial dd′′0 = 1, thereby avoiding
exceptional handling of this case.

3. Perform a post-order traversal of the incidence tree T and process all the nodes
of T in that order. Processing each node requires a vertex-amalgamation, a self-
amalgamation, or both operations on its associated component, in addition to cer-
tain other actions. When performing a vertex-amalgamation or a self-amalgamation,
we calculate the double-root sub-partials for the resulting subgraph by applying the
relevant productions to the non-zero double-root sub-partials of the components
involved in the operation.

We elaborate on how to process a node based on its type:

(a) Processing a round node of T requires two steps:

i. First the component associated with the round node undergoes vertex-
amalgamation on its first-root with the component associated with its
parent node in the incidence tree.

ii. After the vertex-amalgamation, check whether the vertex coupled with
the second-root of the component belongs to a different component or
to the same component. If it is the same component, perform a self-
amalgamation.

(b) Processing a square node simulates the amalgamation of coupled vertices that
were initially produced by splitting a Type-II vertex. Let P be the component
associated with the parent node of a square node, and let S be the component
associated with the square node. Then processing the square node involves the
following steps:

i. First the component P is vertex-amalgamated on its second-root to the
component S. The resulting graph has the first-root on what was previ-
ously the component P , while the second-root is on what was previously
the component S. There are no further amalgamations to be performed on
the subgraph S, whereas we still need two root vertices on the subgraph
P in order to process the parent node (or the sibling node) of the square
node in the post-order traversal of the incidence tree. This necessitates
that we drop the second-root and pop a new root vertex adjacent to the
first-root. Depending on whether the first-root lies in a type d or a type s
embedding, the two new roots will now be in a type dd′′ or in a type ↓ss1

embedding, respectively. This explains our next step.

ii. All ddi and dsi partials for the graph produced in the previous step are
added and saved as dd′′i for each i, and all sdi and ssi partials for each i
are added and saved as ↓ss1

i . Other than these two sub-partials, all other
sub-partials are made zero-valued.

4. Once the entire incidence tree has been processed, the values of sub-partials consti-
tute the partitioned genus distribution of the given graph G. The genus distribution
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can now be calculated by summing all non-zero double-root sub-partials for each i,
i.e.,

gi(G) =
∑

xi ranges over all

sub-partials

xi(G, u, v)

Working Out an Example

We simulate the algorithm on a simple example of a 4-regular outerplanar graph, shown in
Figure 4.1. The split graph and its corresponding incidence tree for an arbitrarily chosen
root component are also shown in Figure 4.1. For ease of referencing, we have labeled the
components of the split graph with letters of the alphabet.

Figure 4.1: Graph G, its split graph and incidence tree.

1. Processing tree node 1 involves a vertex-amalgamation of components A and B,
followed by a self-amalgamation. We refer to the subgraph obtained as a result
of the vertex-amalgamation as U1, and to the subgraph resulting from the self-
amalgamation of U1 as U2.

(a) Since dd′′0(A) = 1 and dd′′0(B) = 1 are the only non-zero sub-partials
of components A and B, there is only one applicable production for vertex-
amalgamation:

dd′′i (A) ∗ dd′′j (B) −→ 4dd′i+j(U1) + 2ss2
i+j+1(U1)

=⇒

dd′k(U1) = 4dd′′k(A)× dd′′0(B) = 4dd′′k(A)× 1 = 4dd′′k(A)

ss2
k(U1) = 2dd′′k−1(A)× dd′′0(B) = 2dd′′k−1(A)× 1 = 2dd′′k−1(A)

=⇒

dd′0(U1) = 4dd′′0(A) = 4× 1 = 4

ss2
1(U1) = 2dd′′0(A) = 2× 1 = 2
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(b) For self-amalgamation of U1, we need Productions 3.2 and 3.12:

dd′i(U1) −→ dd′′i (U2) + 3dd′′i+1(U2) + 2↓ss1
i+1(U2)

ss2
i (U1) −→ dd′′i−1(U2) + 3dd′′i (U2) + 2↓ss1

i (U2)

=⇒

dd′′k(U2) = dd′k(U1) + 3dd′k−1(U1) + ss2
k+1(U1) + 3ss2

k(U1)

↓ss1
k(U2) = 2dd′k−1(U1) + 2ss2

k(U1)

=⇒

dd′′0(U2) = dd′0(U1) + 0 + ss2
1(U1) + 0 = 4 + 2 = 6

dd′′1(U2) = 0 + 3dd′0(U1) + 0 + 3ss2
1(U1) = 3× 4 + 3× 2 = 18

↓ss1
1(U2) = 2dd′0(U1) + 2ss2

1(U1) = 2× 4 + 2× 2 = 12

2. Processing tree node 2 involves two steps, since it is a square vertex:

(a) The first step involves amalgamating the component C to the component D.

Remark Notice that even though D has a single vertex, we can consider a
second-root vertex adjacent to the single vertex and then work as before, using
dd′′0(D) = 1 as the only non-zero sub-partial.

Since dd′′0(C) = 1 and dd′′0(D) = 1, this case is similar to what occurred while
processing tree node 1, where components A and B were vertex-amalgamated.
The resulting graph U3 = C ∗ D will have the same values for sub-partials as
were produced for the subgraph U1 = A ∗B. Thus, before the second step, the
partials for U3 are dd′0(U3) = 4 and ss2

1(U3) = 2.

(b) In the second step, we save all partials of U3 as dd′′i and ↓ss1
i in order to simulate

dropping the second-root of U3 and popping the new root on that part of U3

which was previously the component C:

dd′′0(U3) = 4, ↓ss1
1(U3) = 2

3. Processing tree node 3 means amalgamating the component U2, that was produced
while processing node 1, to the component U3 produced while processing node 2.
We refer to the component U2 ∗ U3 as U4. The non-zero sub-partials of U2 are

dd′′0(U2) = 6, dd′′1(U2) = 18, ↓ss1
1(U2) = 12

and the non-zero sub-partial of U3 are

dd′′0(U3) = 4, ↓ss1
1(U3) = 2
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The productions needed for vertex-amalgamation of U2 and U3 are

dd′′i (U2) ∗ dd′′j (U3) −→ 4dd′i+j(U4) + 2ss2
i+j+1(U4)

↓ss1
i (U2) ∗ dd′′j (U3) −→ 6↓sd′i+j(U4)

dd′′i (U2) ∗ ↓ss1
j(U3) −→ 6ds′i+j(U4)

↓ss1
i (U2) ∗ ↓ss1

j(U3) −→ 6↓ss1
i+j(U4)

=⇒

dd′k(U4) = 4dd′′k(U2)× dd′′0(U3) = 4dd′′k(U2)× 4 = 16dd′′k(U2)

ss2
k(U4) = 2dd′′k−1(U2)× dd′′0(U3) = 2dd′′k−1(U2)× 4 = 8dd′′k−1(U2)

↓sd′k(U4) = 6↓ss1
k(U2)× dd′′0(U3) = 6↓ss1

k(U2)× 4 = 24↓ss1
k(U2)

ds′k(U4) = 6dd′′k−1(U2)× ↓ss1
1(U3) = 6dd′′k−1(U2)× 2 = 12dd′′k−1(U2)

↓ss1
k(U4) = 6↓ss1

k−1(U2)× ↓ss1
1(U3) = 6↓ss1

k−1(U2)× 2 = 12↓ss1
k−1(U2)

=⇒

dd′0(U4) = 16dd′′0(U2) = 16× 6 = 96

↓sd′1(U4) = 24↓ss1
1(U2) = 24× 12 = 288

dd′1(U4) = 16dd′′1(U2) = 16× 18 = 288

ds′1(U4) = 12dd′′0(U2) = 12× 6 = 72

ss2
1(U4) = 8dd′′0(U2) = 8× 6 = 48

ds′2(U4) = 12dd′′1(U2) = 12× 18 = 216

ss2
2(U4) = 8dd′′1(U2) = 8× 18 = 144

↓ss1
2(U4) = 12↓ss1

1(U2) = 12× 12 = 144

4. Processing tree node 4 involves amalgamating subgraphs E and U4, followed by a
self-amalgamation. We refer to the subgraph E ∗ U4 as U5, and we refer to the
subgraph that results from self-amalgamating U5 as U6.

(a) For this purpose, five productions are needed for the cases dd′′ ∗ dd′, dd′′ ∗ ss2,
dd′′ ∗ ↓sd′, dd′′ ∗ ds′, and dd′′ ∗ ↓ss1, since dd′′0(E) = 1 is the only non-zero
sub-partial of E. These are the relevant productions:

dd′′i (E) ∗ dd′j(U4) −→ 2dd0
i+j(U5) + 2dd′i+j(U5) + ↑sd′i+j+1(U5) + ↓sd′i+j+1(U5)

dd′′i (E) ∗ ss2
j(U4) −→ 4ds′i+j(U5) + 2dd′′i+j(U5)

dd′′i (E) ∗ ↓sd′j(U4) −→ 6dd′i+j(U5)

dd′′i (E) ∗ ds′j(U4) −→ 2ds0
i+j(U5) + 2ds′i+j(U5) + ↓ss1

i+j+1(U5) + ↑ss1
i+j+1(U5)

dd′′i (E) ∗ ↓ss1
j(U4) −→ 6ds′i+j(U5)
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=⇒
dd0

k(U5) = 2dd′′0(E)× dd′k(U4) = 2dd′k(U4)

dd′k(U5) = 2dd′′0(E)× dd′k(U4) + 6dd′′0(E)× ↓sd′k(U4)

= 2dd′k(U4) + 6↓sd′k(U4)

↑sd′k(U5) = dd′′0(E)× dd′k−1(U4) = dd′k−1(U4)

↓sd′k(U5) = dd′′0(E)× dd′k−1(U4) = dd′k−1(U4)

ds′k(U5) = 4dd′′0(E)× ss2
k(U4) + 2dd′′0(E)× ds′k(U4) + 6dd′′0(E)× ↓ss1

k(U4)

= 4ss2
k(U4) + 2ds′k(U4) + 6↓ss1

k(U4)

dd′′k(U5) = 2dd′′0(E)× ss2
k(U4) = 2ss2

k(U4)

ds0
k(U5) = 2dd′′0(E)× ds′k(U4) = 2ds′k(U4)

↑ss1
k(U5) = dd′′0(E)× ds′k−1(U4) = ds′k−1(U4)

↓ss1
k(U5) = dd′′0(E)× ds′k−1(U4) = ds′k−1(U4)

=⇒
dd0

0(U5) = 2dd′0(U4) = 2× 96 = 192

dd0
1(U5) = 2dd′1(U4) = 2× 288 = 576

dd′0(U5) = 2dd′0(U4) + 6↓sd′0(U4) = 2× 96 + 0 = 192

dd′1(U5) = 2dd′1(U4) + 6↓sd′1(U4) = 2× 288 + 6× 288 = 2304

↑sd′1(U5) = dd′0(U4) = 96

↑sd′2(U5) = dd′1(U4) = 288

↓sd′1(U5) = dd′0(U4) = 96

↓sd′2(U5) = dd′1(U4) = 288

ds′1(U5) = 4ss2
1(U4) + 2ds′1(U4) + 6↓ss1

1(U4) = 4× 48 + 2× 72 + 0 = 336

ds′2(U5) = 4ss2
2(U4) + 2ds′2(U4) + 6↓ss1

2(U4)

= 4× 144 + 2× 216 + 6× 144 = 1872

dd′′1(U5) = 2ss2
1(U4) = 2× 48 = 96

dd′′2(U5) = 2ss2
2(U4) = 2× 144 = 288

ds0
1(U5) = 2ds′1(U4) = 2× 72 = 144

ds0
2(U5) = 2ds′2(U4) = 2× 216 = 432

↑ss1
2(U5) = ds′1(U4) = 72

↑ss1
3(U5) = ds′2(U4) = 216

↓ss1
2(U5) = ds′1(U4) = 72

↓ss1
3(U5) = ds′2(U4) = 216

(b) Productions 3.1−3.5, 3.7−3.8, and 3.10−3.11 are needed for self-amalgamation
of U5:

dd0
i (U5) −→ 4dd′′i+1(U6) + 2↓ss1

i+2(U6) dd′i(U5) −→ dd′′i (U6) + 3dd′′i+1(U6)
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dd′′i (U5) −→ 4dd′′i (U6) + 2↓ss1
i+1(U6) + 2↓ss1

i+1(U6)

ds0
i (U5) −→ 6dd′′i+1(U6) ds′i(U5) −→ 3dd′′i (U6) + 3↓ss1

i+1(U6)

↑sd′i(U5) −→ 3dd′′i (U6) + 3↓ss1
i+1(U6) ↓sd′i(U5) −→ 3↓ss1

i (U6) + 3↓ss1
i+1(U6)

↑ss1
i (U5) −→ 6dd′′i (U6) ↓ss1

i (U5) −→ 6↓ss1
i (U6)

=⇒

dd′′k(U6) = 4dd0
k−1(U5) + dd′k(U5) + 3dd′k−1(U5) + 4dd′′k(U5) + 6ds0

k−1(U5)

+ 3ds′k(U5) + 3↑sd′k(U5) + 6↑ss1
k(U5)

↓ss1
k(U6) = 2dd0

k−2(U5) + 2dd′k−1(U5) + 2dd′′k−1(U5) + 3ds′k−1(U5)

+ 3↑sd′k−1(U5) + 3↓sd′k(U5) + 3↓sd′k−1(U5) + 6↓ss1
k(U5)

=⇒

dd′′0(U6) = 0 + dd′0(U5) + 0 + 0 + 0 + 0 + 0 + 0 = 192

dd′′1(U6) = 4dd0
0(U5) + dd′1(U5) + 3dd′0(U5) + 4dd′′1(U5) + 0 + 3ds′1(U5)

+ 3↑sd′1(U5) + 0

= 4× 192 + 2304 + 3× 192 + 4× 96 + 3× 336 + 3× 96 = 5328

dd′′2(U6) = 4dd0
1(U5) + 0 + 3dd′1(U5) + 4dd′′2(U5) + 6ds0

1(U5) + 3ds′2(U4)

+ 3↑sd′2(U5) + 6↑ss1
2(U5)

= 4× 576 + 3× 2304 + 4× 288 + 6× 144 + 3× 1872 + 3× 288

+ 6× 72 = 18144

dd′′3(U6) = 0 + 0 + 0 + 0 + 6ds0
2(U5) + 0 + 0 + 6↑ss1

3(U5)

= 6× 432 + 6× 216 = 3888

↓ss1
0(U6) = 0

↓ss1
1(U6) = 0 + 2dd′0(U5) + 0 + 0 + 0 + 3↓sd′1(U5) + 0 + 0

= 2× 192 + 3× 96 = 672

↓ss1
2(U6) = 2dd0

0(U5) + 2dd′1(U5) + 2dd′′1(U5) + 3ds′1(U5) + 3↑sd′1(U5)

+ 3↓sd′2(U5) + 3↓sd′1(U5) + 6↓ss1
2(U5)

= 2× 192 + 2× 2304 + 2× 96 + 3× 336 + 3× 96 + 3× 288

+ 3× 96 + 6× 72 = 8064

↓ss1
3(U6) = 2dd0

1(U5) + 0 + 2dd′′2(U5) + 3ds′2(U5) + 3↑sd′2(U5) + 0 + 0

+ 3↓sd′2(U5) + 6↓ss1
3(U5)

= 2× 576 + 2× 288 + 3× 1872 + 3× 288 + 3× 288 + 6× 216

= 10368

5. Processing tree node 5 returns immediately, since it is the root node. Thus, the
assembled graph U6 is the outerplanar graph G.
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6. By summing the sub-partials, we obtain the genus distribution for G:

g0(G) = dd′′0(G) + 0 = 192

g1(G) = dd′′1(G) + ↓ss1
1(G) = 5328 + 672 = 6000

g2(G) = dd′′2(G) + ↓ss1
2(G) = 18144 + 8064 = 26208

g3(G) = dd′′3(G) + ↓ss1
3(G) = 3888 + 10368 = 14256

5 Time-Complexity Analysis

Normalizing the outerplane embedding and obtaining the split graph are O(n) operations,
where n is the number of vertices of the given graph. Since the split graph has fewer than
n components, it follows that forming an incidence tree is also O(n).

Theorem 5.1 A subgraph H of a 4-regular outerplanar graph, with |V (H)| = k number
of vertices, has O(k) number of partials.

Proof Let k be the number of vertices in a subgraph H assembled using the algorithm. A
connected 4-regular graph with k vertices has cycle rank β = k+1. Since H is a subgraph

of a connected 4-regular graph, the maximum genus of H is bounded by
⌊

β(H)
2

⌋
≤

⌊
k+1
2

⌋
.

As there are 12 sub-partial types, the number of sub-partials of H is bounded from above
by 12×

⌊
k+1
2

⌋
. ♦

1. Time-Complexity of an Amalgamation Operation: If the parent component
has p vertices and the child component has q vertices, then by Theorem 5.1 their
number of partials are O(p) and O(q), respectively. Applying a single production
for an amalgamation step is O(1). Consequently, the complexity of applying all
productions for a single amalgamation is O(pq). The number of vertices in the
subgraph resulting from amalgamation is O(p + q).

2. Time-Complexity of a Self-Amalgamation Operation: If the graph compo-
nent undergoing self-amalgamation has p vertices then the complexity of applying
self-amalgamation productions is O(p). The number of vertices in the resulting
graph component is O(p).

Let n1, n2, · · · , nr be the number of vertices in the components of the split graph
of a graph G. From the first point above, it follows that if a component of size

∑
i∈I ni

amalgamates to a component of size
∑

j∈J nj, where I and J are some disjoint sets, then
the time-complexity of performing the operation is∑

i∈I

ni

∑
j∈J

nj
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and the size of the resulting graph is ∑
i∈I∪J

ni

As each coupled pair of vertices is amalgamated only once, the complexity of recon-
structing the original graph is O(

∑
i∈I, j∈J ninj) for some disjoint sets I and J . Therefore,

the complexity of the given algorithm is O((n1+· · ·+nr)(n1+· · ·+nr)) = O(n·n) = O(n2).

6 Correctness

In order to show that the algorithm given in §4 correctly computes genus distribution
of 4-regular outerplanar graphs, we need to address the question of whether root ver-
tices will be available at the right time and the right place for amalgamations and self-
amalgamations. As before, we regard the components represented by round and square
nodes of an incidence tree as nodes of the tree themselves, and we use expressions like
“parent component”, “child component” etc. We argue inductively for a tree node that
the graph constructed by processing each of the child nodes of that node contains two
root vertices and that these roots are available for the next amalgamation operation on
that graph.

Lemma 6.1 Components of an incidence tree that are coupled are always in an ancestor-
descendant relationship.

Proof When two components are not coupled, they are said to be separated. Since
an incidence tree is created in a depth-first manner and since depth-first trees have no
cross-edges, it follows that the components from sibling subtrees of an incidence tree are
separated from each other. Thus, the vertices that recombine under amalgamation or
self-amalgamation must initially belong to coupled components that are in an ancestor-
descendant relationship. ♦

Theorem 6.2 Let P be a component with one or more child components, none of which
correspond to square nodes. Then every graph in the sequence of graphs produced by
processing the children of P contains two root vertices, such that these root vertices are
available for the next amalgamation.

Proof Before any of its child nodes are processed, P is homeomorphic to a cycle graph
and has two roots. When P has more than one child, processing its first child involves
an amalgamation of the child with P and necessarily ends with a self-amalgamation that
produces two consecutive roots on the resulting graph. This is illustrated in Figure 6.1.
The first-root of the double-rooted graph produced as a result of the self-amalgamation
corresponds to the vertex popped farther in the counter-clockwise direction, as shown.
The first- and second-root of each amalgamand are labeled 1 and 2, respectively. Thus,
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the roots are available at the right place for the next child to be processed. All but the
last child will be eventually processed similarly during the post-order traversal. In case
of the last child or the only child, if P has exactly one child component, its eventual
amalgamation with P may or may not be immediately followed by a self-amalgamation.
If there is an immediate self-amalgamation then as before, it will produce two adjacent
roots, which can again be used for attaching the resulting subgraph to its parent. On the
other hand, if there is no immediate self-amalgamation, then the second-root is preserved
till a later time, when it undergoes a self-amalgamation while processing an ancestor of
P or P itself. ♦

Figure 6.1: An example of propagation of root vertices.

Lemma 6.3 No self-amalgamation is required while processing a square node.

Proof Processing a square node represents the need to amalgamate coupled vertices that
arise either by splitting a cut vertex or by splitting the endpoint of a loop. A square node
has descendant components only in the former case. The descendants of a square node
are separated from its ancestor components since these two sets of components arise from
splitting different blocks of the outerplanar graph embedding. In addition, a component
corresponding to a square node has exactly one vertex coupled to its parent component.
Therefore, no self-amalgamation is required when processing a square node. ♦

Theorem 6.4 Let P be a component with at-least one child component corresponding to
a square node. Then every graph in the sequence of graphs produced by processing the
children of P contains two root vertices, such that these root vertices are available for the
next amalgamation.
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Proof Let S be the first child component of P corresponding to a square node. Then
S is necessarily separated from its siblings as well as from the ancestor of P , by Lemma
6.1 and 6.3. The amalgamation of S to its parent component produces two roots on the
resulting graph, only the first of which lies on its subgraph P . The other root, that lies on
the subgraph S, is redundant by Lemma 6.3. So we drop the redundant root, retaining
only the information for the first-root in the form of single-root partials si and di. We
then pop up a new second-root adjacent to our first-root on the subgraph P and re-adjust
the numbers we had for si and di as ↓ss1

i and dd′′i , respectively. Thus, as we continue to
process the remaining child components of P or P itself, both roots will be available for
the next amalgamation. ♦

By Theorem 6.2 and 6.4, each component is readily amalgamated to its parent node.
If a self-amalgamation is required, it is performed as soon as the opportunity presents
itself. In this bottom up fashion, eventually the entire graph is reconstructed.

7 Conclusions

We have presented an O(n2)-time algorithm for calculating the genus distribution of 4-
regular outerplanar graphs, where n is the number of vertices in the graph. The algorithm
accomplishes this by simulating the synthesis of the graph by iteratively applying pro-
ductions for amalgamation and self-amalgamation. This in turn demonstrates the power
of theoretical results developed by [GKP10], [Gr11a] and other related papers. We have
already seen in [Gr11b] an O(n2)-time algorithm for computing the genus distribution of
3-regular outerplanar graphs. A natural direction for future research is to ask whether
such polynomial-time algorithms exist for k-regular outerplanar graphs for larger k, as
well as for all outerplanar graphs.

Another point of interest is that regular projections of all knots and links correspond
to 4-regular graphs. This raises the question, what kinds of knots and links correspond
to 4-regular outerplanar graphs?

A special case of 4-regular outerplanar graphs are the 4-regular Hamiltonian outerpla-
nar graphs, for which the boundary of f∞ is a Hamiltonian cycle, and for which the interior
edges can be regarded as comprising the polygons inscribed inside the Hamiltonian cycle.
One observes that all 4-regular Hamiltonian planar graphs can also be characterized in a
similar manner, as a Hamiltonian cycle with “outer” polygons as well as “inner” polygons.
Are the techniques in this paper, therefore, extendible to 4-regular planar Hamiltonian
graphs?
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