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Abstract

Let P be a set of n points in the finite plane F2
q over the finite field Fq of q

elements, where q is an odd prime power. For any s ∈ Fq, denote by A(P; s) the
number of ordered triangles whose vertices in P having area s. We show that if
the cardinality of P is large enough then A(P; s) is close to the expected number
|P|3/q.

1 Introduction

Let P be a set of n points in the plane R2. We consider all the triangles whose vertices
are any three non-collinear points of P. We regard these triangles as triangles determined
by the set P. Denote by g(P) the number of distinct areas of triangles determined by P.
For every n ∈ N, let g(n) be the minimum of g(P) over all sets P of n noncollinear points
in the plane. The first estimates on g(n) were given by Erdős and Purdy [7], who proved
that

c1n
3/4 ≤ g(n) ≤ c2n, (1.1)

for some absolute constant c1, c2 > 0. The upper bound ([1]) can be archived by taking
P to be a set of equally space

⌈

n
2

⌉

points on a line l together with
⌊

n
2

⌋

equally spaced
points on a line l′ parallel to l. It gives

⌊

n−1

2

⌋

triangles of distinct areas. Motivated by
this example, Erdős, Purdy, and Straus [8] conjectured the following:

Conjecture 1.1 ([8]) For every n, g(n) =
⌊

n−1

2

⌋

.

A linear lower bound was first established by Burton and Purdy [1]. More precisely,
they showed that g(n) ≥ 0.32n. Dumitrescu and Cs. Tóth [5] improved this bound to
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g(n) ≥ 17

38
n − O(1) ≈ 0.04473. Pinchasi [18] settled Conjecture 1.1 using an ingenious

counting argument. Recently, a stronger version of the result of Pinchasi is proved by
Iosevich and Rudnev [13].

The remarkable results of Bourgain, Katz and Tao [2] on sum-product problem and its
application in Erdős distance problem over finite fields have stimulated a series of studies
of finite field analogues of classical discrete geometry problems, see [3, 4, 6, 9, 11, 12, 14,
15, 16, 13, 19, 20, 21, 22, 23, 24] and references therein. The main purpose of this note is
to study the finite field analogue of g(n). Since there are only q possible areas for triangles
in finite plane F2

q, one may expect that if P is large, then A(P) covers the whole or a
positive proportion of Fq.

Let P be a set of n points in the finite plane F2
q over the finite field Fq of q elements,

where q is an odd prime power. The area of triangles determined by three points x =
(x1, x2), y = (y1, y2), z = (z1, z2) ∈ F2

q is defined as usual

1

2

∣

∣

∣

∣

∣

∣

x1 x2 1
y1 y2 1
z1 z2 1

∣

∣

∣

∣

∣

∣

=
1

2
(x ∗ y + y ∗ z + z ∗ x), (1.2)

where (a1, a2)∗ (b1, b2) = a1b2 −a2b1 ∈ Fq. For any s ∈ Fq, denote by A(P; s) the number
of ordered triangles (i.e. triangles are determined by an ordered triple of vertices) whose
vertices in P having area s. Our main result is the following theorem.

Theorem 1.2 Let P be a set of n points in the finite plane F2
q. Suppose that s 6= 0 and

|P| ≫ q3/2 then A(P; s) = (1 + o(1))|P|3/q. Moreover, if |P| ≫ q5/3 then A(P; 0) =
(1 + o(1))|P|3/q.

We conjecture that the exponent 3/2 can be further improved to 1 + ǫ, or at least, we
hope to show that if |P| ≫ q1+ǫ then we can find a triangle of an arbitrary area from the
set A. Note that one can not go lower than 1 as we can take q points on a line.

In the nondegenerate case s 6= 0, the above result follows immediately from Hart and
Iosevich’s result ([9]) on the problem where one of the vertices of the triangle is assumed
to be at the origin. Our result in the degenerate case s = 0, however, is stronger than the
related result in Hart and Iosevich ([9]).

2 Proof of Theorem 1.2

To prove the first part of Theorem 1.2 we will need the following lemma.

Lemma 2.1 Let P be a set of n points in the finite plane. For any s ∈ Fq, denote by

µ(P, s) the number of ordered pair (x,y) ∈ P × P such that x ∗ y = 2s. For any s 6= 0,
then

∣

∣

∣

∣

µ(P, s) − |P|2
q

∣

∣

∣

∣

≤ 2
√
q|P|.
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Proof See the proof of Theorem 1.4 in [10]. Note that [10, Theorem 1.4] only states for
dot product but the proof works transparently for any non-degenerate bilinear form, in
particular, the ∗-product defined here. The reader also can find a graph-theoretic proof
of this lemma in [24, Section 8]. �

For any x ∈ P, denote P − x = {y − x : y ∈ P}. Then

A(P; s) =
∑

x∈P

µ(P − x, s). (2.1)

It follows from Lemma 2.1 that µ(P − x, s) = (1 + o(1)) |P|2

q
if |P| ≫ q3/2. Together

with (2.1), we have A(P; s) = (1 + o(1))|P|3/q if |P| ≫ q3/2.
Next we will follow the methods in [19] to prove the second part of the theorem. Note

that Lemma 2.1 does not work when s = 0, so we cannot use the above methods to study
the case of triangles with zero area. Let Ψ be the set of all additive characters of Fq, and
let Ψ∗ ⊂ Ψ be the set of all nonprincipal characters. We recall the following identity

∑

ψ∈Ψ

ψ(z) =

{

q z = 0,
0 otherwise.

(2.2)

Note that if the field is Zp, then the characters are just e
2πia

p and the identity follows
by summing up the geometric series. For more information about the additive characters,
we refer the reader to [17, Section 11.1].

For any a, b, c ∈ F2
q and λ ∈ Fq, the product ∗ satisfies the following properties:

a ∗ b = −b ∗ a

a ∗ b + a ∗ c = a ∗ (b + c)

a ∗ (λb) = λ(a ∗ b).

It follows from (1.2) and (2.2) that

A(P; s) =
1

q

∑

ψ∈Ψ

∑

x,y,z∈P

ψ(x ∗ y + y ∗ z + z ∗ x − 2s).

Separating the principle character gives

∣

∣

∣

∣

A(P; 0) − |P|3
q

∣

∣

∣

∣

=
1

q

∣

∣

∣

∣

∣

∑

ψ∈Ψ∗

∑

x,y,z∈P

ψ(x ∗ y + y ∗ z + z ∗ x)

∣

∣

∣

∣

∣

≤ 1

q

∑

ψ∈Ψ∗

∣

∣

∣

∣

∣

∑

x,y,z∈P

ψ(x ∗ (y − z) + y ∗ z)

∣

∣

∣

∣

∣

.
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Applying the Cauchy-Schwartz inequality twice, we have

≤
∣

∣

∣

∣

A(P; 0) − |P|3
q

∣

∣

∣

∣

2

≤ q − 1

q2

∑

ψ∈Ψ∗

∣

∣

∣

∣

∣

∑

x,y,z∈P

ψ(x ∗ (y − z) + y ∗ z)

∣

∣

∣

∣

∣

2

<
(q − 1)|P|

q2

∑

ψ∈Ψ∗

∑

x∈P

∣

∣

∣

∣

∣

∑

y,z∈P

ψ(x ∗ (y − z) + y ∗ z)

∣

∣

∣

∣

∣

2

≤ (q − 1)|P|
q2

∑

ψ∈Ψ∗

∑

x∈F2
q

∣

∣

∣

∣

∣

∑

y,z∈P

ψ(x ∗ (y − z) + y ∗ z)

∣

∣

∣

∣

∣

2

=
(q − 1)|P|

q2

∑

ψ∈Ψ∗

∑

x∈F2
q

∑

y,z,y′,z′∈P

ψ(x ∗ (y − z − y′ + z′) + y ∗ z − y′ ∗ z′)

=
(q − 1)|P|

q2

∑

ψ∈Ψ∗

∑

y,z,y′,z′∈P

ψ(y ∗ z − y′ ∗ z′)
∑

x∈F2
q

ψ(x ∗ (y − z − y′ + z′)).

By the orthogonality property of additive characters (2.2), we see that the inner sum
vanishes if and only if y − z = y′ − z′, in which case it equals q2. This implies that

∣

∣

∣

∣

A(P; 0) − |P|3
q

∣

∣

∣

∣

2

≤ (q − 1)|P|
∑

ψ∈Ψ∗

∑

y,z,y′,z′∈P,y−z=y′−z′

ψ(y ∗ z − y′ ∗ z′)

≤ (q − 1)|P|
∑

ψ∈Ψ

∑

y,z,y′,z′∈P,y−z=y′−z′

ψ(y ∗ z − y′ ∗ z′)

= q(q − 1)|P|V, (2.3)

where V is the number of solutions to the system

y − z = y′ − z′ and y ∗ z = y′ ∗ z′ (2.4)

in y, z,y′, z′ ∈ P. We consider two cases.
Case I. Suppose that y = z or y′ = z′. Since y = z if and only if y′ = z′, this case

contributes |P|2 solutions to the system (2.4).
Case II. Suppose that y 6= z and y′ 6= z′. The number of solutions to the system (2.4)

in this case is bounded by the number of solutions to the equation

y ∗ z = y′ ∗ (y′ + z − y) = y′ ∗ (z − y) (2.5)

in y, z,y′ ∈ P, y 6= z. When y, z ∈ P, y 6= z are fixed, the equation (2.5) has at most q
solutions. Hence, this case contributes at most q|P|2 solutions to the system (2.4).

Putting these cases together, we have

W ≤ (q + 1)|P|3. (2.6)
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It follows from (2.3) and (2.6) that

∣

∣

∣

∣

A(P; 0) − |P|3
q

∣

∣

∣

∣

2

≤ q(q − 1)(q + 1)|P|3 < q3|P|3, (2.7)

which also implies that A(P; 0) = (1 + o(1)) |P|3

q
if |P| ≫ q5/3. This completes the proof

of Theorem 1.2.
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