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Abstract

Consider a graph each of whose vertices is either in the ON state or in the OFF
state and call the resulting ordered bipartition into ON vertices and OFF vertices
a configuration of the graph. A regular move at a vertex changes the states of
the neighbors of that vertex and hence sends the current configuration to another
one. A valid move is a regular move at an ON vertex. For any graph G, let D(G)
be the minimum integer such that given any starting configuration x of G there
must exist a sequence of valid moves which takes x to a configuration with at most
ℓ + D(G) ON vertices provided there is a sequence of regular moves which brings
x to a configuration in which there are ℓ ON vertices. The shadow graph S(G) of
a graph G is obtained from G by deleting all loops. We prove that D(G) ≤ 3 if
S(G) is unicyclic and give an example to show that the bound 3 is tight. We also
prove that D(G) ≤ 2 if G is a two-dimensional grid graph and D(G) = 0 if S(G) is
a two-dimensional grid graph but not a path and G 6= S(G).

1 Definitions and background

A graph G is a pair of sets consisting of its vertex set V (G) and its edge set E(G) such
that E(G) ⊆

(

V (G)
2

)

∪ V (G) and we say that there is a loop at a vertex v of G provided
{v} ∈ E(G). When u 6= v, we often denote an edge {u, v} by uv; a singleton set {u}
is mostly just written as u. Two different vertices u and v of G are adjacent provided
uv ∈ E(G) and v is adjacent to itself if v ∈ V (G) ∩ E(G) (so there is a loop at v). The
set of vertices adjacent to a given vertex v in G is designated by NG(v) and called the
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set of neighbors of v in G. For S ⊆ V (G), we put G[S] to be the graph with vertex set
S and edge set E(G) ∩ (

(

S

2

)

∪ S). For any v ∈ V (G), we use the abbreviation G − v for
G[V (G) \ {v}]. The degree of a vertex v in a graph G is defined to be the number of edges
in E(G) \ V (G) that contain v and we will use the notation degG(v) for it. We say that
v is a branch vertex of G if degG(v) ≥ 3.

For any k positive integers m1, . . . , mk, the k-dimensional grid graph Gm1,...,mk
has

vertex set {vi1,...,ik : 1 ≤ i1 ≤ m1, . . . , 1 ≤ ik ≤ mk} and {vi1,...,ik , vj1,...,jk
} ∈ E(Gm1,...,mk

)

if and only if
∑k

t=1(it − jt)
2 = 1. The graph Gn is often called an n-path and denoted

[v1, . . . , vn]; see Fig. 1. For any n ≥ 3, the graph obtained from the path [v1, . . . , vn] by
adding an edge v1vn is referred to as an n-cycle and is denoted 〈v1, . . . , vn〉. Note that a
4-cycle is nothing but G2,2. A unicyclic graph is a loopless connected graph containing
exactly one cycle.

s s s s s

v1 v2 . . . vn−1 vn

Figure 1: An n-path [v1, . . . , vn].

The shadow graph of a graph G, which we denote by S(G), is the (loopless) graph with
vertex set V (G) and edge set E(G) \ V (G). If S(G) is a tree, we call G a pseudo-tree.
Similarly, we can talk about a pseudo-cycle and a pseudo-unicyclic graph, etc..

Let F2 be the binary field and we refer to any element x of F
V (G)
2 as a configuration

of G. We say that v ∈ V (G) is ON in x if x(v) = 1 and is OFF in x if x(v) = 0 and
hence we can also regard a configuration as an assignment of states ON (1) or OFF (0)
to vertices of G, or simply an ordered bipartition of V (G) into ON vertex set and OFF
vertex set. The light number L(x) of a configuration x is the number of ON vertices in
x, namely L(x) = |supp(x)|, where supp(x) means the support of the function x. For

any x ∈ F
V (G)
2 and any U ⊆ V (G), xU is the restriction of x on U, namely the image

of x under the natural projection from F
V (G)
2 to F

U
2 . For any S ⊆ V (G), χS ∈ F

V (G)
2 is

the characteristic vector of S. Note that χS + χQ = χS△Q where △ stands for taking the
symmetric difference of two sets. We will write χ{v} simply as χv. It is clear that each
configuration x is just the characteristic vector of supp(x). In a graphical representation
of a configuration, we often use a circle for a vertex in the OFF state and a bullet for a
vertex in the ON state; see Fig. 2 for an example.

u

e

e

u
v1 v2

v3v4

Figure 2: A cycle of length 4 with configuration χ{v2,v4}.

A regular move (regular toggling or regular switching) at a vertex v on a graph G
transforms a configuration x to x + χNG(v) and we write x →G y to designate that we
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can make successive moves to go from x to y. In the σ-game on G [42], we are given a
configuration x and aim to find a y such that x →G y and that L(y) is as small as possible.
In the literature, if there is a loop at each vertex of G, the operation is sometimes called
closed neighborhood switching and the game is generally called the σ+-game. The phase
space (game digraph) PS(G) of the σ-game on a graph G is the arc-labeled symmetric
digraph whose vertex set (phases) is the set of configurations on G and whose phase
transitions (labeled-arcs) consist of a vertex v (the label) and corresponding regular move
at v from a configuration to a different configuration (the arc).

A lit-only move (lit-only toggling) at a vertex v on a graph G transforms a configuration
x to x+x(v)χNG(v). Clearly, the lit-only toggling at v will not change the configuration if
v is OFF and will change the states of all neighbors of v if v is ON. We say that a lit-only
move at v applied on a configuration x is valid if x(v)χNG(v) is nonzero. For brevity, a
valid move will often be referred to as a move/pushing/toggling in the sequel. Note that
the set of valid moves forms a special subclass of regular moves. The set of valid moves
gives rise to an asynchronous discrete dynamical system, called the lit-only σ-game on G,
and the dynamical behavior of this system is captured by its phase space (game digraph)
PS

∗(G), the arc-labeled digraph whose vertex set (phases) is the set of configurations
on G and whose phase transitions (labeled-arcs) consist of a vertex v (the label) and
corresponding valid move at v from a configuration to a different configuration (the arc).
See Appendix A for a description of PS

∗(G) where G runs through all 4-cycles with some
loops attached. Note that PS

∗(G) is a subdigraph of PS(G). For any two configurations

x and y of G, we write x
∗
−→G y to mean that we can make successive lit-only moves to

go from x to y, namely, there exists a walk from x to y in PS
∗(G). Moreover, if there is

a walk from x to y in PS
∗(G) on which a label v is read an odd number of times if and

only if v ∈ S ⊆ V (G), we will record this by x
∗
−→
S G

y.

The lit-only σ-game and its closely related variants have been studied not only for fun
by amateurs [40] but are also studied by mathematicians for mathematical fun [8, 10, 25,
26, 44, 45, 46, 48] and from the perspectives of error-correcting codes and combinatorial
game theory [12, 13, 14, 15, 17], Lie algebras and Coxeter groups [4, 5, 6, 7, 29, 30, 31,
32, 39], statistical physics of social balance [33, 34], and general reachability analysis [27].
The study of the σ-game has a longer history than that of the lit-only σ-game and is still
mushrooming; see [1, 2, 3, 9, 10, 11, 16, 18, 19, 20, 21, 22, 23, 24, 25, 28, 35, 36, 40, 41,
42, 43, 47, 49] and their references.

For any x ∈ F
V (G)
2 , we define its minimum light number for the σ-game on G to be

MLG(x) = min
x→Gy

L(y),

and define its minimum light number for the lit-only σ-game on G, also called its lit-only
minimum light number, to be

ML∗
G(x) = min

x
∗−→Gy

L(y).

The minimum light number for the σ-game on G, denoted ML(G), is the worst result a
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smart player can encounter, namely

ML(G) = max
x∈F

V (G)
2

MLG(x).

We let ML∗(G) denote the minimum light number for the lit-only σ-game on G, that is,

ML∗(G) = max
x∈F

V (G)
2

ML∗
G(x).

It is trivial to see that MLG(x) ≤ ML∗
G(x) and ML(G) ≤ ML∗(G). A graph G is

nonsingular (singular) provided its adjacency matrix is nonsingular (singular) over F2,
namely provided ML(G) = 0 (ML(G) > 0).

Lemma 1. [45, Theorem 12] If G is obtained from the n-path [v1, v2, . . . , vn] by adding
zero or more loops, then any configuration x of G can be transformed to a configuration
with light number at most one by a series of valid moves inside {v1, v2, . . . , vn−1}.

Example 2. Suppose G is the n-path. Then,

ML∗(G) = 1, ML(G) =

{

1, if n is odd;

0, if n is even.

On the other hand, if G is the n-cycle then

ML∗(G) = 2 and ML(G) =

{

1, if n is odd;

2, if n is even.

It turns out that many algebraic/combinatorial tools are useful to estimate MLG(x)

for any/some x ∈ F
V (G)
2 and hence also ML(G). The estimation of ML∗

G(x) and ML∗(G)
is a relatively new task and seems that not many tools apply well here. It thus becomes
natural to study the parameter

D(G) = max
x∈F

V (G)
2

(ML∗
G(x) − MLG(x)),

as the massive literature on the σ-game may already provide us good information on
MLG(x). If the graph G is nonsingular, we have ML(G) = 0 and so D(G) = ML∗(G).
More generally, it is not hard to verify the next observation.

Theorem 3. [45, Theorem 2] For any graph G, the inequality ML∗(G) ≤ ML(G)+D(G)
holds. That is, D(G) is an upper bound of ML∗(G) − ML(G).

For any integer m > 1, a complete m-partite graph is a loopless graph whose vertex
set can be partitioned into m nonempty parts such that two vertices are adjacent if and
only if they belong to different parts.
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Example 4. Let k and t be positive integers with m = 2k + 1 and n = mt, and let G
be the complete equi-m-partite graph with n vertices (t vertices in each part). If x is the
configuration with all vertices ON in k + 1 parts and all OFF in the other k parts, then
ML∗(x) = k+1

2k+1
n, while ML(x) = 0 if k is odd. Hence D(G) can be as large as 2n/3

when k = 1.

We have found that ML∗
G(x) ≤ 2|V (G)|

3
for any configuration x of any graph G and

the equality holds only when each connected component of G is a complete equi-tripartite
graph and when two partite sets of each such component are ON in x and the remaining
one partite set of each such component is OFF. This result along with Example 4 and
some further research suggest the following conjecture. The reader may like to compare
it with [45, Conjecture 4].

Conjecture 5. Let G be a connected graph on n vertices. If D(G) > n/2 then G is a
complete m-partite graph for some positive integer m ≡ 3 (mod 4).

In spite of the possible large values of D(G) for certain graphs G, the existence of
certain local structures guarantees that D(G) will be small in some classes of graphs. This
paper is a continuation of the work in [45] towards further understanding this observed
small difference on many graphs. Almost all earlier work focuses on either graphs where
there are no loops (usually called the regular and lit-only σ-games) or where every vertex
has a loop (usually called the regular and lit-only σ+-games). When there are no loops,
both the regular and lit-only games can be viewed as permutation groups acting on the
set of configurations on a graph. In the regular σ-game the group is abelian, so there
are induced orbits all of the same size. In the lit-only σ-game, the group is a nonabelian
subgroup of GL(n, F2) with orbits of non-uniform size [25]. For the regular σ+-game, there
is again an abelian group action, while in the lit-only σ+-game, due to the non-reversibility
of moves, there is no group action at all. So the result of [26], that in terms of reachability
there is essentially no difference between the regular and lit-only σ+-games, may be a bit
of a surprise (see Example 8). Regarding general graphs which have at least one loop,
many evidences, theoretically and experimentally, support the following conjecture, the
truth of which will further defend for our interest in studying the small difference between
the σ-game and lit-only σ-game.

Conjecture 6. Let G be a connected graph with V (G) ∩ E(G) = L 6= ∅. Let C be a
(strongly) connected component of PS(G). Let |C| = 2r. If 0 /∈ C, then C is also a
strongly connected component of PS

∗(G). If 0 ∈ C, then either of the following holds: (1)

{0}, C \ {0, χL}, {χL} are three strongly connected components of PS
∗(G) and χL

∗
−→G

x
∗
−→G 0 for any x ∈ C; (2) C is the disjoint union of r+1 strongly connected components

C0, C1, . . . , Cr of PS
∗(G), where C0 = {0}, Cr = {χL}, |Ci| =

(

r

i

)

for i ∈ {0, . . . , r} and

x
∗
−→G y for any x ∈ Ci, y ∈ Cj and any r ≥ i ≥ j ≥ 0.

The main discovery of [45] and this paper is that there exists a simple principle to
design algorithms to play the lit-only σ-game on a graph to reach a configuration with
small light number by taking advantage of our knowledge on how to play the σ-game on
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the same graph; we refer the reader to [45, Section 3] for an illustration of this strategy.
We mention that the performance of these algorithms in reducing light number can be
guaranteed by the existence of some local structures along with the performance of our
strategy for playing the σ-game. With the help of this guiding principle, roughly speaking,
our main effort is to determine these good local structures and show that they are always
present in some graph classes. Computer experiments have suggested some very surprising
relationship between the σ-game and lit-only σ-game [27] and so it may be worthwhile to
try to understand the role of the lit-only restriction and its possible counterpart in some
more general algebraic settings.

2 Main Results

We list below a series of observations on the difference between the minimum light numbers
of the σ-game and the lit-only σ-game on several graph classes.

Example 7. Let G be a graph, L = V (G) ∩ E(G). The famous Sutner’s Theorem [1, 3,
9, 41, 47] asserts that χL →G 0, namely ML(χL) = 0. We can show the stronger result

that χL
∗
−→G 0, i.e., ML∗(χL) = 0, and will report its proof in another paper.

Example 8. Let G be a graph with V (G) ⊆ E(G). [26, Theorem 3] says that for any

x 6= 0 and y 6= χV (G), x →G y if and only if x
∗
−→G y. In particular, any orbit of the

σ-game on G which does not contain the all-OFF configuration will also be an orbit of
the lit-only σ-game on G. Additionally, combined with the Sutner’s Theorem (Example
7), we see that D(G) = 0. Indeed, checking the proof of [26, Theorem 3] shows that a
stronger result holds: If x = y +

∑

v∈S χNG(v), x 6= 0 and y 6= χV (G), where NG(v) 6= ∅

for any v ∈ S, then x
∗
−→
S G

y holds. More results of this nature will be addressed in [27].

Let us now turn attention to trees and unicyclic graphs.

Example 9. Suppose G is the 4-cycle (G2,2) and x the configuration of G as depicted in
Fig. 3. Then ML∗(x) − ML(x) = 2 = D(G).

e

e

e

u
v1,1 v1,2

v2,2v2,1
u

Figure 3: A configuration x of G2,2 with ML∗(x) − ML(x) = 2.

Example 10. Let G and x be depicted as in Fig. 4. Then

ML(G) = ML∗(G) = 3, MLG(x) = 0, ML∗
G(x) = 3.
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v11

v12

Figure 4: A loopless unicyclic graph G
with configuration x = χ{v1,v2,v3}.

Theorem 11. [32, Theorem 1.9] If G is a tree with a perfect matching, then ML∗
G(x) = 1

and MLG(x) = 0 for any x ∈ F
V (G)
2 \ {0}.

Theorem 12. [45, Theorem 14] If G is a pseudo-tree, then the inequality D(G) ≤ 2 holds
and the upper bound 2 is sharp.

Theorem 13. Let G be a graph. If S(G) is unicyclic, then D(G) ≤ 3 and the upper
bound 3 is tight.

Similar to an earlier conjecture for trees [45, Conjecture 7], we propose the next one
on unicyclic graphs.

Conjecture 14. Let G be a graph such that S(G) is unicyclic. Then ML∗(G)−ML(G) ≤
2.

Let us remark that Nath and Sarma found a nice combinatorial characterization for
a tree or a unicyclic graph to have a nonsingular adjacency matrix [37, Theorems 3.1,
3.4]. Their proof is given for the real field but can be checked to be valid over the binary
field as well. As suggested by Theorem 11, it might be a good idea to tackle Conjecture
14 firstly for those nonsingular loopless graphs as in that case we have a nice equivalent
representation of the lit-only σ-game [32, 39], of which we give a brief introduction at the
end of Section 3.

For any n ≥ 3, the flower graph Fn of order 2n is the graph with vertex set {v1, . . . , vn,
u1, . . . , un} and edge set {v1v2, v2v3, . . . , vn−1vn, vnv1}∪ {v1u1, v2u2, . . . , vnun}, i.e., the n-
cycle with a leaf at each vertex; see Fig 5. The following observation says that the bound
in Conjecture 14 is best possible, if it is true.

Theorem 15. For any n ≥ 3 we have ML(Fn) = 0, D(Fn) = ML∗(Fn) = 2.

To be compared with Example 10 and Theorem 15, let us also take a look at those
graphs obtained by ‘planting’ a pseudo-tree with at least two branch vertices on a con-
nected graph. If we relax the condition of Theorem 16 a bit to allow that G[V1] has at
most one branch vertex, then its conclusion may become false; see Example 10 (Fig. 4).
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Figure 5: The flower graph Fn.

Theorem 16. Let G be a graph with V (G) = V1 ∪ V2 and V1 ∩ V2 = {u}. Suppose that
G[V1] is a pseudo-tree which contains at least two branch vertices and G[V2] is connected.
If there is no edge in G which intersects both V1 \ {u} and V2 \ {u}, then D(G) ≤ 2 and
this upper bound is sharp.

In the study of the σ-game, the most widely investigated graph class is that of the
2-dimensional grid graphs. Let us report some results on grid graphs and the lit-only
σ-game.

Theorem 17. [25, Theorem 15] The parameter ML(Gm,n) equals d
2
+1 if d ≡ 2 (mod 4)

and ⌈d
2
⌉ otherwise, where d = gcd(m + 1, n + 1) − 1.

Theorem 18. [25, Theorem 16] ML∗(Gm,n) ≤ min(m, n).

The next result strengthens Theorem 18 a little bit.

Theorem 19. If S(G) = Gm,n, then ML∗(G) ≤ min(m, n).

Let G be a graph. For any configuration x ∈ F
V (G)
2 , we say that a vertex v is admissible

in x provided either v ∈ V (G)∩E(G) and x(v) = 0 or v ∈ V (G)\E(G) and x(v) = 1. If v
is admissible in x, a reverse-lit-only move at v, or a reverse-move at v in short, transforms
x to x + χNG(v). It is clear that a sequence of reverse-lit-only moves bring x to y if and

only if y
∗
−→G x (just reverse the sequence of toggles). So, the toggling game specified by

the reverse-lit-only moves will be called the reverse game of the lit-only σ-game.
By examining the reachability of the phase space of the lit-only σ-game in view of

both the lit-only moves and reverse-lit-only moves, we obtain the following result, which
may be a bit surprising at first sight.

Theorem 20. Let G be a graph with S(G) = Gm,n for integers m ≥ 2 and n ≥ 3. Suppose
L = V (G) ∩ E(G) 6= ∅ and Q is a subset of V (G). If x is any non-zero configuration in

F
V (G)
2 and y = x +

∑

v∈Q χNG(v) 6= χL, then x
∗
−→
Q G

y.

From Fig. 16 in Appendix A, we see that the configuration (0111) will go back to itself

by regular togglings at vertices 1, 2 and 3 but it is not true that (0111)
∗

−−−−→
{1,2,3}

(0111).

Hence the conclusion of Theorem 20 does not hold when m = n = 2.
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Theorem 21. Let G be a graph with S(G) = Gm,n for two integers m, n ≥ 2. Suppose

L = V (G) ∩ E(G) 6= ∅. For any x ∈ F
V (G)
2 \ {0} and y ∈ F

V (G)
2 \ {χL}, if x →G y then

x
∗
−→G y.

Theorem 22. Let G be a graph with V (G) ∩ E(G) 6= ∅ and S(G) = Gm,n for m, n ≥ 2.
Then D(G) = 0.

Note that a consequence of Theorem 19 is that D(P ) ≤ 1 for any pseudo-path P . A
deeper understanding of the inequality D(P ) ≤ 1 is embodied in the next two theorems.

Theorem 23. Let P be a pseudo-path with at least one loop and x a configuration of P .
If x → 0 then x

∗
−→ 0.

Theorem 24. Let x be a configuration on a pseudo-path P where P 6= S(P ) = [v1, v2,
. . . , vn]. If x cannot be reduced to 0 by regular togglings then it can be reduced by lit-only
togglings to just v1 ON and to just vn ON.

Let us mention that the lit-only σ-game on a pseudo-path can be analyzed even more
satisfactorily than as reported in Theorems 23 and 24 due to the fact that a path is a line
graph and the corresponding result will be reported in a separate paper on line graphs
and related structures.

Owing to Example 9 (Fig. 3), we see that the next result is best possible in some
sense.

Theorem 25. For any positive integers m and n, D(Gm,n) ≤ 2.

When m and n are at least 4, the ensuing result is another slight improvement of
Theorem 18.

Theorem 26. Let m and n be positive integers and let d = gcd(m + 1, n + 1) − 1. Then
ML∗(Gm,n) ≤

d
2

+ 3 if d ≡ 2 (mod 4) and ML∗(Gm,n) ≤ ⌈d
2
⌉ + 2 otherwise.

Proof. This follows from Theorems 3, 17 and 25.

Theorem 27. [25, Theorem 17] The parameter ML∗(Gm,2) is equal to 2 if m ≡ 2 (mod 3)
and is equal to 1 otherwise.

Let G+
m,n be the graph obtained from Gm,n by attaching loops everywhere. Goldwasser,

Klostermeyer and Trapp [21] use Fibonacci polynomials to deduce the number of orbits
in the σ-game on G+

m,n. This also gives some information on the lit-only σ-game on G+
m,n

in view of Example 8.
We recall some technical lemmas in the next section. After that, we will devote

ourselves to proving Theorems 13, 15, 16, 19, 20, 21, 22, 23, 24 and 25. In the course of
presenting the proofs, we will also collect some relevant results and provide some discussion
and problems.
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3 Preliminaries

For any two integers n, k ≥ 1, the rake with k teeth w1, . . . , wk and an n-handle v1, . . . , vn

is the graph Pn,k with V (Pn,k) = {v1, v2, . . . , vn, w1, . . . , wk} and E(Pn,k) = {v1v2, v2v3,
. . . , vn−1vn, vnw1, . . . , vnwk}; see Fig. 6. The top of the rake is v1 and all the other
vertices are called the common vertices. When k = 1, Pn,k is just an (n + 1)-path one of
whose two leaves is specified as the top. When n = 1, Pn,k is also known as a k-star.

���

HHH

s s s s s s

s

s

v1 v2 . . . vn−1 vn

w1
...
wk

Figure 6: The rake Pn,k with k teeth and an n-handle.

What come next are some preliminary results prepared in [45]. The reader can try
to prove them as a warm-up and a test of his/her understanding of the basic strategy
introduced in [45, Section 3].

Lemma 28. [45, Lemma 18] Let G be a connected graph and x ∈ F
V (G)
2 \ {0}. Suppose

a and b are two vertices of G satisfying NG(a) 6= NG(b). Then, there is y ∈ F
V (G)
2 such

that y(a) 6= y(b) and x
∗
−→G y.

Lemma 29. [45, Lemma 19] Let G be a graph, a, b ∈ V (G), ab /∈ E(G), c ∈ NG(a) ∩
NG(b). Let S ⊆ V (G) \ (NG(a) ∪ NG(b)) such that G[S ∪ {c}] is connected. Assume that
x and y are two configurations of G such that x = y +

∑

v∈Q χNG(v) for some Q ⊆ V (G)
and χNG(v) 6= 0 for any v ∈ Q. If x(a) 6= x(b), then there exists R ⊆ V (G) \ (S ∪ {c})

such that x
∗

−−−→
Q△R G

z = y +
∑

v∈R χNG(v) and z(a) 6= z(b).

Lemma 30. [45, Lemma 22] Let G be a connected graph, c ∈ V (G), and x ∈ F
V (G)
2 .

Suppose that U and W are two components of G − c. Further assume that the shadow
graphs of G[{c}∪U ] and G[{c}∪W ] are both rakes with c being its top. If there are u ∈ U
and w ∈ W such that either NG(u) 6= NG(w) or x(u) 6= x(w), then ML∗

G(x)−MLG(x) ≤
2. Furthermore, ML∗

G(x) − MLG(x) ≤ 1 if |U | = |W | = 1.

Finally, let us discuss an interesting invariant of the lit-only σ-game [39], following
the nice discovery of [32, Section 4]. Let G be a graph and let Ev = χvχ

⊤
v be the

|V (G)| × |V (G)| matrix with a lone 1 on its (v, v)-position. Let A be the adjacency
matrix of G and let I =

∑

v∈V (G) Ev be the identity matrix. In the lit-only σ-game on G,
a lit-only move at v transforms a configuration x to y if and only if

y = (I + AEv)x. (1)

If A is nonsingular, by multiplying A−1 on the left of both sides of Eq. (1), we see that a
lit-only move at v brings x to y if and only if

A−1y = (I + EvA)A−1x. (2)
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For any configuration x of G, define RG(x) =
∑

v∈V (G) x(v) +
∑

uv∈E(G)\V (G) x(u)x(v). If

G is loopless, it is easy to check that RG(z) = RG((I + EvA)z) holds for any vertex v
and any configuration z. Combined with the relationship between a lit-only move and Eq.
(2), we arrive at the conclusion

x
∗
−→G y ⇒ RG(A−1x) = RG(A−1y) (3)

whenever G is both loopless and nonsingular.

4 Unicyclic graphs

Lemma 31. Let G be a graph. If S(G) is a cycle 〈u1, u2, . . . , us〉, then ML∗(G) ≤ 2.











J

JJ

J
JJs s

s s

s s

S(G) :

u1 u2

u3us

. . . . . .

Proof. Let x be any configuration of G. Let G′ be the graph obtained from G by deleting
the edge u1us. Lemma 1 applied to G′ and x says that there is a series of valid moves
inside V (G) \ {u1} which transforms x to a configuration y with at most one ON vertex.
The same series of moves are still valid on G and the resulting configuration y′ can differ
with y only at vertex u1 and this possible difference can only be caused by valid moves
at us. This gives ML∗

G(x) ≤ 2, completing the proof.

As suggested by the above proof, a natural question is as follows: Given any rooted
tree, can we play the lit-only σ-game on it to reduce the light number of any starting
configuration to at most two without invoking any move at the root? If this is always
possible, we can immediately get a proof of Theorem 13 analogous to that of Lemma 31.
Unfortunately, this is too good to be expected as can be seen from the all-ON configuration
of the k-star for k > 2 with its top as the specified root.

To investigate more general unicyclic graphs, we need the following “rooted” version
of [45, Lemma 17].

Lemma 32. For any tree T with at least two vertices and a specified vertex r, one of the
following holds:

(a) T is a rake with r being its top;

(b) There is a vertex v ∈ V (T ) for which T −v contains two components U and W such
that r /∈ U ∪W and both T [{v} ∪U ] and T [{v} ∪W ] are rakes with v being the top
and |W | ≥ 2.

Proof. We distinguish three cases.
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Case 1: V (T ) \ {r} does not contain any branch vertex.
There are three possibilities: Either T − r has only one component, or has more than

one component but each of them is of size one, or contains at least two components and
the biggest size of these components is greater than one. In the first case, T is an n-path
for some n ≥ 2 and so (a) holds; in the middle case, T is a k-star for some k ≥ 2 and so
(a) holds; in the final case, we choose a largest component of T − r as W and any other
component as U and set v = r, establishing (b).

Case 2: The maximum number of branch vertices inside V (T ) \ {r} which can appear
in a common path starting from r is 1.

If there is a branch vertex v ∈ V (T ) \ {r} and a component W of T − v such that
r /∈ W and |W | ≥ 2, then we take U to be any component of T − v such that U 6= W and
r /∈ U and then yield (b).

In the remaining case, each component of T − r is a rake, one of them containing a
branch vertex and hence of size at least 3, and so we either have (a) or can choose v = r
to obtain (b).

Case 3: The maximum number of branch vertices inside V (T ) \ {r} which can appear
simultaneously in a path starting from r is k ≥ 2.

Choose a path in T with r being one endpoint and which passes through as many
branch vertices of T as possible. Suppose that after starting from r in this path, the
branch vertices appearing after r are w1, . . . , wk in that order. If this path can be chosen
such that T −wk has a component W which does not contain r and has size at least two,
we then put v = wk and take U to be any component of T − v which is not W and does
not contain r. Otherwise, we set v = wk−1, let W be the component of T −v that contains
wk, and let U be any component of T − wk−1 subject to U 6= W and r 6∈ U . It is easy to
check that the requirements for (b) are fulfilled in both situations.











J

JJ

J
JJs s

s s

s s





JJ

JJ





S(G) :

T1 T2

T3

. . . . . .

Ts

u1 u2

u3us

Figure 7: A unicyclic graph.

Proof of Theorem 13. In view of Example 10, what remains to do is to show ML∗
G(x) −

MLG(x) ≤ 3 for every x ∈ F
V (G)
2 .

Suppose that S(G) is obtained from a cycle 〈u1, u2, . . . , us〉, s ≥ 3, by attaching a tree
Ti at ui for i = 1, . . . , s; see Fig. 7. We specify ui as the root of Ti for each index i. Let us
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then play the lit-only σ-game on G with the initial configuration x. By Lemma 32, the
following four cases are exhaustive.

Case 1: V (Ti) = {ui} for every i ∈ {1, . . . , s}.
In this case, Lemma 31 leads to ML∗

G(x) − MLG(x) ≤ 2.

Case 2: There exists an index i such that the tree Ti rooted at ui has more than one
vertex and statement (b) in Lemma 32 holds for it.

It follows from Lemma 30 that ML∗
G(x) − MLG(x) ≤ 2.

Case 3: There exists an index i such that the tree Ti rooted at ui is a rake with ui

being the top such that either it has two teeth which are in different states in x or it has
at least two teeth and at least one of them has a loop.

Taking c to be the vertex on the handle of Ti which is adjacent to all the teeth of Ti,
we deduce from Lemma 30 that ML∗

G(x) − MLG(x) ≤ 1.

Case 4: There exists an index i such that the tree Ti rooted at ui is a rake with ui

being the top and all its teeth are in the same state in x and do not have loops. Without
loss of generality, suppose i = 1 and T1 is given as in Fig. 6 where u1 = v1 is the top. Let
P = {v1, v2, . . . , vn}.

Case 4.1: For every y such that x
∗
−→G y we have supp(y) \ V (T1) 6= ∅.

Since NG(w1) = · · · = NG(wk), we can assume that there is a configuration z satisfying
L(z) = MLG(x) and z = x +

∑

v∈U χN(v) +
∑

v∈W χN(v) where U ⊆ P ∪ {w1} and
W ⊆ V (G) \ V (T1).

Let v′ be the vertex in U, if any, which is farthest from v1 and let S be the union
of V (G) \ V (T1) and the set of vertices on the unique path connecting v′ and v1. By
assumption, there must exist a vertex u ∈ S and a path connecting u and v′ on which the
only ON vertex is u. Pushing all the vertices on this path from u to v′ in that order brings
us to a new configuration x′ such that z = x′ +

∑

v∈U ′ χN(v) +
∑

v∈W ′ χN(v) where U ′ ⊆
P ∪ {w1}, W ′ ⊆ V (G) \ V (T1), and either U ′ = ∅ or distance(U ′, w1) > distance(U, w1).

Continuing in this way, we know that there exists y ∈ F
V (G)
2 such that x

∗
−→G y and

z = y +
∑

v∈R χN(v) for some R ⊆ V (G) \ V (T1).
The graph G[V (G) \ V (T1)] is a pseudo-tree and so an application of Theorem 12

shows that we can start from y and execute a series of valid moves inside V (G) \ V (T1)
and get to a configuration z′ such that |supp(z′) \ V (T1)| ≤ |supp(z) \ V (T1)| + 2. Note
that supp(z′)∩V (T1) ⊆ {u1}∪ (supp(z)∩V (T1)) as moves in V (G) \ V (T1) cannot affect
the state of any vertex in V (T1) \ {u1}. This then exhibits that ML∗

G(x) ≤ L(z′) ≤
L(z) + 2 + 1 = MLG(x) + 3, as required.

Case 4.2: There is y such that x
∗
−→G y and supp(y) ⊆ V (T1).
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Case 4.2.1: If y(w1) = · · · = y(wk) = 0, we apply Lemma 1 on G[P ] and find that
there is a sequence of valid moves inside v1, . . . , vn−1 that transforms y to z satisfying
|supp(z) ∩ P | ≤ 1. But the only vertices in V (G) \ P which have a possibility to be
assigned the ON state are u2 and us. This gives ML∗

G(x) ≤ L(z) ≤ 1 + 2 = 3.

Case 4.2.2: If Case 4.2.1 does not happen, we must have y(w1) = · · · = y(wk) = 1. If
k = 1 and there is a loop at w1, then a valid move at w1 takes us back to Case 4.2.1. For
the remaining case, we will have NG(wi) = {vn} for any i ∈ {1, . . . , k}. If y(vn) = 1, we
make a valid move at vn and otherwise we make two consecutive valid moves at w1 and
vn in that order. In both cases we will either be reduced to Case 4.2.1 when n > 1 or else
reach a configuration whose only ON vertices are us, u2 and possibly u1, implying that
ML∗

G(x) ≤ 3.

Before presenting the proof of Theorem 15, let us prepare a technical lemma on the
flower graph.

Lemma 33. Take two subsets I and J of {1, . . . , n}. Then there exists a subset I ′ of I

such that
∑

i∈I χN(vi) +
∑

j∈J χN(uj)
∗
−→Fn

∑

i∈I′ χN(ui) +
∑

j∈J χN(uj).

Proof. Let x =
∑

i∈I χN(vi) +
∑

j∈J χN(uj). It suffices to prove for any i ∈ I that either

x
∗
−→Fn

x + χN(vi) or x
∗
−→Fn

x + χN(vi) + χN(ui). Indeed, i ∈ I means that x(ui) = 1 and
so either a move at vi or successive moves at ui and vi will be allowed and that gives the
result.

Proof of Theorem 15. Let An be the adjacency matrix of Fn. Since there is a unique
matching between the leaves and the vertices on the cycle, it is immediate that there is
only one nonzero term in the expansion of det An and hence ML(Fn) = 0.

We next show that ML∗(Fn) ≤ 2. Given a configuration x 6= 0, we want to show
ML∗(x) ≤ 2. Note that ML(Fn) = 0 guarantees x → 0. Taking (a, b, c) = (v2, u1, v1),
S = V (G) \ {v1, v2, v3, u1, u2, u3} and G = Fn, Lemma 28 along with Lemma 29 now

implies that there is a configuration y1 such that x
∗
−→Fn

y1, and y1 =
∑

w∈I1

χN(w) for some

I1 ⊂ {v2, v3, u1, u2, u3}. Applying Lemma 33 we find that there is a subset I2 of {1, 2, 3}
such that

x
∗
−→Fn

y1
∗
−→Fn

y2 (4)

where y2 =
∑

i∈I2
χN(ui). If I2 6= {1, 2, 3}, then L(y2) ≤ 2 and so Eq. (4) already

demonstrates ML∗(x) ≤ 2. If I2 = {1, 2, 3}, then y2
∗
−→
v2 Fn

χu2 + χv2 , hence yielding

ML∗(Fn) ≤ 2 as before.
It remains to prove ML∗(Fn) ≥ 2. For i ∈ {1, 2, . . . , n}, we have A−1

n χvi
= χui

and
A−1

n χui
= χvi

+ χui−1
+ χui+1

where the subscripts i− 1 and i + 1 should be read modulo
n. Therefore, we find that for any w ∈ V (Fn), R(A−1

n χw) = 1. In view of Eq. (3) and the
fact that the all-OFF configuration cannot be reached in the lit-only σ-game on a loopless
graph from any other configuration, this then leads to ML∗(x) ≥ 2 for any nonzero
configuration x with R(A−1

n x) = 0 and it then follows ML∗(Fn) ≥ 2, as wanted.
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5 Graphs containing a pseudo-tree with at least two

branch vertices

Let H be a graph and u one of its vertices. Adapting a bit a definition made by Nylen
[38, p. 309], we say that a vertex v of G is appropriate for u provided there are at least
two components of H [V (H) \ {v}] which do not contain u and are pseudo-rakes whose
tops are the only vertices in the components that are adjacent to v.

x: e eu u

e e

v1 v2 v3 v4

v5 v6

Figure 8: ML∗(x) − ML(x) = 2 ([45, Example 9]).

Proof of Theorem 16. The sharpness of the bound is seen from [45, Example 9]; we repro-
duce this example in Fig. 8. It then remains to establish the asserted bound. By virtue
of Lemma 30, the only case that we need to worry about is the situation where every
component of G[V (G) \ {v}] that is a pseudo-rake contains exactly one vertex, where v
is any appropriate vertex of G for u. We end the proof by deriving a contradiction under
the assumption that this case happens.

Let H be the shadow graph of G[V1] and let k be the maximum number such that there
is a path in G[V1] passing through k branch vertices of H and having u as one endpoint.
Since G[V1] has at least two branch vertices, we immediately know that k ≥ 2. Now
take a path in G[V1] starting from u such that the branch vertices v1, v2, . . . , vk appear
in that order along the path. It is not difficult to see that vk−1 is appropriate for u but
the component of G[V (G) \ {vk−1}] containing vk is a pseudo-rake with more than one
vertices, yielding the desired contradiction.

We remark that a shorter proof of Theorem 16 follows from an application of Lemma
30 and Lemma 32, though the proof of Lemma 32 itself is not short.

6 Grid graphs with loops attached

To begin with, let us prove a result on general pseudo-grid graphs, namely Theorem 19.
The idea of our proof is similar to the proof of Goldwasser and Klostermeyer [25] for
Theorem 18 but not the same.

Proof of Theorem 19. Without loss of generality, we suppose that m ≤ n. We only give
the proof for m = 2; the same idea works if m > 2. We play the lit-only σ-game on G
with any initial configuration. We label the elements of V (G) = V (G2,n) as in Fig. 9.
For each k = 1, 2, . . . , 2n − 2, as long as one of {vk+2, vk+3, . . . , v2n} is ON, we execute a
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sequence of valid moves inside {vk+2, vk+3, . . . , v2n} to turn vk OFF. Finally, at most two
vertices are ON.

s s s s s

s s s s s
v1

v2

v3

v4

. . .

. . .

v2n−3

v2n−2

v2n−1

v2n

Figure 9: G2,n with vertex set {v1, . . . , v2n}.

Lemma 34. Let G be a connected graph. For any vertex u of G and any configuration x

of G in which we can find at least one admissible vertex, there is a configuration y such
that y

∗
−→G x and u is admissible in y.

Proof. If w is not admissible but it has an admissible neighbor w′, then a reverse-lit-only
move at w′ makes w admissible.

Lemma 35. Let G be a graph with S(G) = Gm,n where m ≥ 2 and n ≥ 3, L = V (G) ∩

E(G), u /∈ L, v ∈ L, uv ∈ E(G), y ∈ F
V (G)
2 , y 6= χL. Then there exists z ∈ F

V (G)
2 such

that z
∗
−→G y and z(u) = z(v) = 0.

Proof. Our task is to show that we can make a sequence of reverse-lit-only moves to go
from y to a configuration z such that z(u) = z(v) = 0.

Since y 6= χL, at least one vertex is admissible in y. By Lemma 34, we can start from
the initial configuration y and play the reverse game to reach a configuration where u is
admissible. If v is not admissible, one more reverse-move at u will make both u and v
admissible, namely u is ON and v is OFF.

For the current configuration, if u has an admissible neighbor w 6= v, then after a
reverse-move at w, both u and v are OFF. Similarly, if v has an inadmissible neighbor w,
then after consecutive reverse-moves at v and w, both u and v are OFF. So we can assume
that no vertex from NG(u) \ {v} is admissible and each vertex from NG(v) is admissible.

Case 1: Both u and v are corner vertices of G. Because of our assumption that m ≥ 2
and n ≥ 3, S(G) has an induced subgraph H as shown in Fig. 10. If w3 is not admissible,
after two consecutive reverse-moves at u and w4, w3 becomes admissible and the states of
u and v are unchanged. Then either w3, w2, w1 or w2, w1 is a sequence of reverse-moves
which make u OFF and so we arrive at the required configuration z.

Case 2: Either u or v is not a corner vertex of G. There exist w1 ∈ NG(u) \ {v} and
w2 ∈ NG(v) \ {u, v} such that w1w2 /∈ E(G). After reverse-moves at w2, u and w1 in that
order, both u and v are OFF and hence the resulting configuration can be chosen to be
z.

Proof of Theorem 20. Pick any vertex v from L. Part of S(G) can be drawn as in Fig.
11. Depending on the position of v in G, some wi may be nonexistent. But, without
loss of generality, we can always assume the existence of w6, w7, w11. Denote by N the
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r r r

H :

u

v

w1 w2

w3w4

Figure 10: Both u and v are corner vertices.

r r r r

r r r r

r r r r

r r r r
w1 w2 w3 w4

w5 w6 w7 w8

w9 v w11 w12

w13 w14 w15 w16

Figure 11: Part of S(G) around v, w6, w7, w11.

set {w1, w2, w5, w6, w7, v, w11, w12, w15, w16} and use the notation N ′ for N \ {w7, v}. We
depict the shadow graph of the induced subgraph G[N ] in Fig. 12.

By Lemma 34, there exists z ∈ F
V (G)
2 such that

z
∗
−→
Q1 G

y (5)

for some subset Q1 of V (G) and z(v) = 0. Moreover, Lemma 35 allows us to assume that

z(w6) = 0 when w6 /∈ L. (6)

We then play the lit-only σ-game on G with the initial configuration x. Since m ≥ 2
and n ≥ 3, we can find that NG(w6) 6= NG(w11) and so Lemma 28 guarantees that there

exist Q2 ⊆ V (G) and x ∈ F
V (G)
2 such that

x
∗
−→
Q2 G

x and x(w6) 6= x(w11). (7)

Due to the topological structure of the grid graph (see Fig. 11), we know that G[V (G)\N ′]
has at most two components, say S1 that contains v and S2 that contains w7. Note that
G[V (G) \N ′] is connected if and only if S1 = S2. We claim that there exists S ⊆ N ′ such
that for x′ = z +

∑

w∈S χNG(w) we have

x
∗

−−−−−−−−→
Q1△Q2△Q△S G

x′ and x′(w6) 6= x′(w11). (8)

Applying Lemma 29 for (a, b, c, S) = (w6, w11, v, S1 \ {v}), we find that Eq. (8) holds for
some S ⊆ V (G) \S1. If S1 = S2, then V (G) \S1 = N ′ and so we are done. If S1 6= S2, we
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Figure 12: The graph S(G)[N ].

can employ Lemma 29 once again with the choice of (a, b, c, S) = (w6, w11, w7, S2 \ {w7})
and further reduce the range of S to make it inside N ′, thus proving the claim.

To proceed, we turn our attention to Fig. 12 and play the lit-only σ-game on G with
initial configuration x′ restricted to moves inside N . Since one of w6 and w11 is ON, we
can turn v ON, and then, by a possible toggling at v ∈ L, make the states of v and w7

different. Applying Lemma 29 at this moment for (a, b, c) = (v, w7, w6) and (v, w7, w11),
we know from Eqs. (7) and (8) that

x
∗

−−−−−−→
Q△Q1△S′

G

x′′ = z +
∑

w∈S′

χNG(w) (9)

for some S ′ ⊆ {v, w7} and x′′(v) 6= x′′(w7).
In view of Eqs. (5) and (9), to complete the proof we need to show that

x′′ ∗
−→
S′

G

z.

From v ∈ NG(v) \ NG(w7) we deduce that χNG(v) and χNG(w7) are linearly independent
and so it suffices to establish

x′′ ∗
−→
S′′

G

z

for any S ′′ ⊆ {v, w7} (which can only be S ′). We focus on the path [v, w6, w7] and
construct the required sequence of valid moves in all the possibilities.

Case 1: (x′′(v),x′′(w7)) = (0, 1).
Since z(v) = 0 and v ∈ L, we conclude that either z = x′′ or z = x′′ + χNG(w7). As

x′′(w7) = 1, a possible lit-only move at w7 brings us from x′′ to z.
Case 2: (x′′(v),x′′(w7)) = (1, 0). Since z(v) = 0, we have S ′ = {v} or {v, w7}.
Case 2.1: S ′ = {v}. This is trivial as x′′(v) = 1.
Case 2.2: S ′ = {v, w7}. We now have z = x′′ + χNG(v) + χNG(w7) and hence z(w6) =

x′′(w6). Recall from Eq. (6) that if w6 /∈ L then we have z(w6) = 0. Therefore, the
following cases are exhaustive.

Case 2.2.1: w6 /∈ L,x′′(w6) = 0. It is not hard to check that the sequence of lit-only
moves at v, w6, w7, v, w6, v transforms x′′ to z.

Case 2.2.2: w6 ∈ L,x′′(w6) = 0. The sequence of lit-only moves at v, w6, w7, w6 does
it.
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Case 2.2.3: w6 ∈ L,x′′(w6) = 1. The required sequence of lit-only moves can be
chosen to be w6, w7, w6, v.

Lemma 36. Let G be a graph with S(G) = G2,2 and V (G) ∩ E(G) = L 6= ∅. For any

x ∈ F
V (G)
2 \ {0} and y ∈ F

V (G)
2 \ {χL}, if x →G y then x

∗
−→G y. In particular, D(G) = 0.

Proof. When |L| = 1, 2, 3, the claim follows from an exhausted enumeration based on
those phase spaces given in Appendix A (Figs. 14, 15, 16 and 17). For |L| = 4, the result
turns out to be a special case of Example 8.

Proof of Theorem 21. Theorem 20 together with Lemma 36 proves the result, as desired.

Proof of Theorem 22. This follows from the combination of Theorem 21 and Sutner’s
Theorem (Example 7).

7 Paths

Lemma 37. Let n ≥ 2, P be a pseudo-path such that S(P ) = [v1, v2, . . . , vn]. If P is
singular, then P − vn is nonsingular.

Proof. Let ti be the determinant of the adjacency matrix of P [{v1, . . . , vi}] for 1 ≤ i ≤ n
and let t0 = 1. It is clear that

ti = ℓiti−1 + ti−2, i = 2, . . . , n, (10)

where ℓi = 1 if P has a loop at vi and ℓi = 0 else. It suffices to show that ti is 0 will imply
ti−1 is 1 for i = 1, . . . , n. When i = 1, the result is clear. If the result is not true, there is
a smallest i ≥ 2 such that ti = ti−1 = 0. By the assumption on i, we know that ti−2 = 1.
But it follows from Eq. (10) that ti−2 = 0, a contradiction.

Proof of Theorem 23. Suppose that S(P ) = [v1, v2, . . . , vn]. We shall prove the theorem
by induction on n. The theorem is trivially true for n = 1. Let us assume n ≥ 2 and
carry out the inductive step. Without loss of generality, suppose that x 6= 0 and P − vn

has a loop. By applying lit-only togglings on x to turn vn ON and then making a possible
move at vn, we find a y ∈ F

V (G)
2 such that x

∗
−→ y and

y =
∑

v∈S

χNG(v) (11)

for some S ⊆ Π = {v1, . . . , vn−1}.
Case 1: y = 0. The result is trivially true.
Case 2: y 6= 0, P − vn is nonsingular. By the inductive hypotheses, y

∗
−→
S′

tχvn
for

some S ′ ⊆ Π and t ∈ F2. Compared with Eq. (11), we obtain
∑

v∈S

χNG(v)∩Π =
∑

v∈S′

χNG(v)∩Π.
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Henceforth, we derive S = S ′ from the fact that P − vn is nonsingular. This in turn gives
t = 0 and x

∗
−→ y

∗
−→
S

0, as desired.

Case 3: y 6= 0, P − vn is singular. Since P − vn has at least one loop, we know that
n ≥ 3. By Lemma 37, both P − vn − v1 and P − vn − vn−1 are nonsingular.

Subcase 3.1: yΠ 6= 0. Clearly, we can pick a v ∈ {v1, vn−1} such that P − vn − v
has a loop. By a sequence of lit-only togglings on P − vn, we can make v ON and then
a further possible pushing at v produces a configuration z such that y

∗
−→ z and z can be

turned all-OFF by regular togglings on P − vn − v. By the inductive hypotheses, there is
a sequence of lit-only togglings on P − vn − v which brings z to w where w can only take
nonzero value on either v or vn. Since w can be turned all-OFF by regular togglings on
P − vn − v and P − vn − v is nonsingular, w(v) = w(vn) = 0 and hence w = 0.

Subcase 3.2: yΠ = 0, namely y = χvn
. Let k be the largest integer such that vk has

a loop.
Subcase 3.2.1: vn /∈ E(P ), or equivalently, k < n. By executing the sequential

togglings at vn, vn−1, . . . , vk, we see that

y
∗
−→ χvk−1

.

If k = 1, we are finished. Otherwise, after the additional sequential togglings at vk−1,
vk, . . . , vn, we see that y

∗
−→ z where z(vk) = 1 and z can be turned all-OFF by regular

togglings on P − vn (as we toggle vn twice in the process of going from y to z). We are
now reduced to Subcase 3.1.

Subcase 3.2.2: vn ∈ E(P ), or equivalently, k = n. By toggling vn, vn−1 and vn

consecutively, we reach a configuration u with u(vn−2) = 1. Observe that u can still be
turned all-OFF by regular moves inside P − vn. This means that we return to Subcase
3.1 with the new y being u.

Lemma 38. Let P be obtained from a path by attaching a loop at one of its endpoints.
Then P is nonsingular.

Proof. For both the case of |V (P )| being odd and |V (P )| being even, we can check that
the Laplace expansion of the determinant of the adjacency matrix of P has only one
nonzero term and hence the result follows. The result can also be seen by verifying that
there is no nonempty set S ⊆ V (P ) such that each vertex of P is adjacent to an even
number of vertices in S.

Proof of Theorem 24. Let v be v1 or vn. Let us show that x
∗
−→ χv. Since x cannot be

reduced to 0 by valid togglings, we know from Theorem 23 that P is singular. Lemma 38
now tells us that v cannot be the only loop of P and so P − v is not loopless. Meanwhile,
we obtain from Lemma 37 that P − v is nonsingular. To conclude the proof, we first
choose a y such that x

∗
−→ y and y(v) = 1, which is possible as x cannot be 0, and then

appeal to Theorem 23 for y restricted on P − v.
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8 Grid graphs

Lemma 39. Let G = Gm,n and C = {v1,j : 1 ≤ j ≤ n− 1}∪ {vi,1 : 1 ≤ i ≤ m− 1}. For

any x ∈ F
V (G)
2 , there exists y ∈ F

V (G)
2 such that yC = 0, L(y) ≤ L(x) and x →G y.

Proof. If x(vk,1) = 1 and k ≤ m − 1, then

z = x +

min{n,m−k}
∑

i=1

χNG(vk+i,i)

satisfies L(z) ∈ {L(x), L(x)−1, L(x)−2}, zC\{vk,1} = xC\{vk,1} and z(vk,1) = 0. Similarly,
if x(v1,k) = 1 and k ≤ n − 1, then

z = x +

min{m,n−k}
∑

i=1

χNG(vi,k+i)

satisfies L(z) ∈ {L(x), L(x) − 1, L(x) − 2}, zC\{v1,k} = xC\{v1,k} and z(v1,k) = 0. It then
follows that the required y can be taken to be

y = x +
∑

vk,1∈supp(x)

k≤m−1

min{n,m−k}
∑

i=1

χNG(vk+i,i) +
∑

v1,k∈supp(x)

k≤n−1

min{m,n−k}
∑

i=1

χNG(vi,k+i),

finishing the proof.

Proof of Theorem 25. Write G for Gm,n. If min(m, n) ≤ 2, then it follows from Theorem
18 (Theorem 19) that ML∗(G) ≤ 2 and so the result is clear. If x = 0, then ML∗

G(x) =
MLG(x) = 0.

We now assume that min(m, n) ≥ 3,x ∈ F
V (G)
2 \ {0}, and try to show that

ML∗
G(x) − MLG(x) ≤ 2. Just for convenience, we also refer to v3,1, v1,3, v2,1, v1,2, v1,1

as u1, u2, u3, u4, u5, respectively; see Fig. 13. Denote by Sk the set {u1, u2, . . . , u5} \
{u1, u2, . . . , uk−1} for 1 ≤ k ≤ 6. Note that G[Sk] is connected for any k.

By Lemma 28, we can assume that u3 and u4 have different states in x. Take y such
that x →G y and L(y) = MLG(x). By Lemma 39, we may suppose that y(vi,1) = 0 for
all i ∈ {1, . . . , m − 1} and y(v1,j) = 0 for all j ∈ {1, . . . , n − 1}.

Setting a = u3, b = u4, c = v2,2 and S = V (G) \ (S1 ∪ {v2,2}), we deduce from Lemma

29 that there exists R1 ⊆ S1 such that x
∗
−→G y +

∑

v∈R1
χNG(v) = z1 and z1(u3) 6= z1(u4).

Since one of u3 and u4 must be ON in z1 and G[S1] is connected, we can apply our

basic strategy [45, Sec. 3] to yield x
∗
−→G z1

∗
−→G y +

∑

v∈R2
χNG(v) = z2 for some R2 ⊆ S2,

regardless of the value of z1(u1) and the position of u1 relative to R1.
Going this way, let us find inductively for k = 3, 4, 5, 6 and Rk ⊆ Sk such that

x
∗
−→G y +

∑

v∈Rk

χNG(v) = zk. (12)
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Figure 13: Locations of u1, . . . , u5 in the grid graph G.

If this can be done till k = 6, we have x
∗
−→G z6 = y and so ML∗

G(x) = MLG(x) follows.
Otherwise, there is the smallest k ∈ {3, 4, 5, 6} at which we get stuck. This implies that
for this k ∈ {3, 4, 5, 6} we can find an Rk−1 ⊆ Sk−1 such that uk−1 ∈ Rk−1,

x
∗
−→G y +

∑

v∈Rk−1

χNG(v) = zk−1,

and
|supp(zk−1) ∩ Sk−1| = 0.

If k = 6, L(z5) − L(y) ≤ |supp(χNG(u5))| = |{u3, u4}| = 2. If k = 3 and y(u2) = 0 or
if k = 5, since the path G[S2] and G[S4] are nonsingular, we have zk−1 = y. If k = 4,
then R = {u3, u4} or R = ∅, so L(z3)−L(y) ≤ |supp(χNG(u3) +χNG(u4))| = |{u1, u2}| = 2.
If k = 3 and y(u2) = 1, which can happen only if n = 3, we have R = {u3, u4} and
hence L(z2) − L(y) ≤ |supp(χNG(u3) + χNG(u4)) \ {u2}| = |{u1}| = 1. In conclusion,
ML∗

G(x) − MLG(x) ≤ 2, and hence the theorem, is established.

Our proof of Theorem 25 only relies on the local structure at the corner of the grid
graphs. The work of Florence and Meunier [11] is the very rare one which contains results
and conjectures for the σ-game on general k-dimensional grid graphs. It might be interest-
ing to pursue the counterpart of Theorem 25 for general grid graphs by investigating how
good the higher-dimensional corner could allow us to play the lit-only σ-game equipped
with information about the best way to play the σ-game.
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A Phase spaces of some pseudo-cycles

We depict below the phase spaces of the lit-only σ-game on 4-cycles with one, two, or three loops
attached. In each case, we display both the graph and the phase space of the lit-only σ-game
on that graph.
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Figure 14: A 4-cycle with one loop and its phase space.

Figure 15: A 4-cycle with two adjacent loops and its phase space.
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Figure 16: A 4-cycle with two nonadjacent loops and its phase space.

Figure 17: A 4-cycle with three loops and its phase space.
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