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Abstract

We consider random graphs such that each edge is determined by an independent

random variable, where the probability of each edge is not assumed to be equal. We

use a Chernoff inequality for matrices to show that the eigenvalues of the adjacency

matrix and the normalized Laplacian of such a random graph can be approximated

by those of the weighted expectation graph, with error bounds dependent upon the

minimum and maximum expected degrees. In particular, we use these results to

bound the spectra of random graphs with given expected degree sequences, including

random power law graphs. Moreover, we prove a similar result giving concentration

of the spectrum of a matrix martingale on its expectation.

1 Introduction

The spectra of random matrices and random graphs have been extensively studied in the
literature (see, for example, [3], [4], [6], [8], [13]). We here focus on matrices with entries
as independent random variables. Throughout, we will consider G to be a random graph,
where pr(vi ∼ vj) = pij, and each edge independent of each other edge.

For random graphs with such general distributions, we derive several bounds for the
spectrum of the corresponding adjacency matrix and (normalized) Laplacian matrix (com-
plete definitions and notation are in section 2). Eigenvalues of the adjacency matrix
have many applications in graph theory, such as describing certain topological features
of a graph, such as connectivity and enumerating the occurrences of subgraphs [6], [13].
Eigenvalues of the Laplacian matrix provide information about diffusion, and have many
applications in studying random walks on graphs and approximation algorithms [6].

Before we proceed to examine eigenvalues of random graphs with given expected degree
sequences and random power law graphs, we will first prove the following two general
theorems. Previously, Oliveira [18] considered the same problem of approximating the
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spectra of the adjacency matrix and the Laplacian of random graphs. The following two
theorems improve the results in [18] since the assumptions in our theorems are weaker. In
addition, we improve the bound for the eigenvalues of the adjacency matrix by a factor
of 2, and we improve those for the Laplacian by a factor of 7/

√
3.

Theorem 1. Let G be a random graph, where pr(vi ∼ vj) = pij, and each edge is
independent of each other edge. Let A be the adjacency matrix of G, so Aij = 1 if vi ∼ vj

and 0 otherwise, and Ā = E(A), so Āij = pij. Let ∆ denote the maximum expected degree
of G. Let ǫ > 0, and suppose that for n sufficiently large, ∆ > 4

9
ln(2n/ǫ). Then with

probability at least 1 − ǫ, for n sufficiently large, the eigenvalues of A and Ā satisfy

|λi(A) − λi(Ā)| ≤
√

4∆ ln(2n/ǫ)

for all 1 ≤ i ≤ n.

Theorem 2. Let G be a random graph, where pr(vi ∼ vj) = pij, and each edge is
independent of each other edge. Let A be the adjacency matrix of G, as in Theorem 1.
Let D be the diagonal matrix with Dii = deg(vi), and D̄ = E(D). Let δ be the minimum
expected degree of G, and L = I − D−1/2AD−1/2 the (normalized) Laplacian matrix for
G. Choose ǫ > 0. Then there exists a constant k = k(ǫ) such that if δ > k ln n, then with
probability at least 1 − ǫ, the eigenvalues of L and L̄ satisfy

|λj(L) − λj(L̄)| ≤ 3

√

3 ln(4n/ǫ)

δ

for all 1 ≤ j ≤ n, where L̄ = I − D̄−1/2ĀD̄−1/2.

Here ln denotes the natural logarithm. We note that in these two theorems, the bound
is simultaneously true for all eigenvalues with probability at least 1 − ǫ.

As an example, we apply these results to the G(w) model, first introduced in [7], which
produces a random graph with a specified expected degree sequence w = (w1, w2, . . . , wn).
The spectrum of the adjacency matrix of this model has been studied in [9]. In that paper,
it is proven that if m = wmax is the maximum expected degree, then

d̃ −
√

2m2ρ ln n ≤ λmax(A) ≤ d̃ +

√

6
√

m ln n(d̃ + ln n) + 3
√

m ln n, (1)

where ρ = (
∑

wi)
−1, and d̃ =

P

w2

i
P

wi
is the second-order average degree. Using Theorem 1,

we prove the following:

Theorem 3. For the random graph G(w), if the maximum expected degree m satisfies
m > 8

9
ln(

√
2n), then with probability at least 1 − 1/n = 1 − o(1), we have

• The largest eigenvalue, λmax(A), of the adjacency matrix of G(w) satisfies

d̃ −
√

8m ln(
√

2n) ≤ λmax(A) ≤ d̃ +

√

8m ln(
√

2n)
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• For all eigenvalues λi(A) < λmax(A), we have

|λi(A)| ≤
√

8m ln(
√

2n)

In particular, if d̃ ≫
√

m ln n, then λ1(A) = (1 + o(1))d̃ a.a.s..

While the asymptotics in Theorem 3 for λ1(A) are the same as those in (1), the bounds
in Theorem 3 are a significant improvement upon these. Moreover, [9] does not provide
bounds for λi(A) for i > 1 other than in the case that

√
mi ≫ d̃ ln2 n.

For the Laplacian spectrum of G(w), the best known bound for λk(L) > λmin(L) = 0
is given in [10]. If we take w̄ to be the average expected degree, and g(n) a function going
to ∞ with n arbitrarily slowly, the result in [10] is that, for wmin ≫ ln2 n,

max
k

|1 − λk(L)| ≤ (1 + o(1))
4√
w̄

+
g(n) ln2 n

wmin

.

We not only improve upon this bound in Theorem 4, but we extend to the case that
wmin ≫ ln n, rather than ln2 n.

Theorem 4. For the random graph G(w), if the minimum expected degree wmin satisfies
wmin ≫ ln n, then with probability at least 1 − 1/n = 1 − o(1), we have that for all
eigenvalues λk(L) > λmin(L) of the Laplacian of G(w),

|λk(L) − 1| ≤ 3

√

6 ln(2n)

wmin

= o(1).

Using the G(w) model, we can also build random power law graphs in the following
way. Given a power law exponent β, maximum degree m, and average degree d, we take

wi = ci−
1

β−1 for each i with i0 ≤ i < n + i0. The values of c and i0 depend upon β, m and

d, in particular, c = β−2
β−1

dn
1

β−1 and i0 = n
(

d(β−2)
m(β−1)

)β−1

. One can easily verify that the

number of vertices of degree k is proportional to k−β (see [8], [9]). In section 4, we show
how Theorems 3 and 4 can be applied in this setting to provide bounds on the spectra of
random power law graphs. The remainder of this paper is organized as follows: In section
2, we develop notation and key tools to prove Theorems 1 and 2. Section 3 is devoted
to the proofs of these two main theorems. Section 4 contains the details of the proofs of
Theorems 3 and 4, applications of these theorems to random power law graphs, as well
as a discussion of our main results as applied to Gn,p.

2 Key Tools

As to notation, throughout the paper, given an n × n Hermitian matrix A, ‖A‖ denotes
the spectral norm, so ‖A‖ = max |λ|, where the maximum is over all eigenvalues λ of A.
We order the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. Given two matrices A and B, we say A � B
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if B −A is positive semidefinite. We refer to this ordering as the semidefinite order. If A
is a random n× n matrix, we write E(A) to denote the coordinate-wise expectation of A,
so E(A)ij = E(Aij). Similarly, var(A) = E((A − E(A))2).

We shall use several applications of functions to matrices. In general, if f is a function
with Taylor expansion f(x) =

∑∞
n=0 anxn, we take f(A) =

∑∞
n=0 anAn. We note that

notions of convergence are as in [16]. In particular, we will often use the matrix expo-
nential, exp(A) =

∑∞
n=0

1
n!

An. We note that exp(A) is always positive definite when A is
Hermitian, and that exp(A) converges for all choices of A. Moreover, we shall require brief
use of the matrix logarithm. In general, if B = exp(A), we say that A is a logarithm of B.
As our matrices will be Hermitian, it is sufficient for uniqueness of this function to require
that the logarithm also be Hermitian. Any notation not mentioned here pertaining to
matrices is as in [16].

Given a graph G, we will use A to denote the adjacency matrix for G, so Aij = 1 if
vi ∼ vj and 0 otherwise. We use D to denote the diagonal matrix with Dii = degG(vi).
If G is a random graph, then Ā denotes the expectation of A, and D̄ the expectation of
D. The Laplacian of G is denoted by L = I − D−1/2AD−1/2, and L̄ = I − D̄−1/2ĀD̄−1/2

is the Laplacian matrix for the weighted graph whose adjacency matrix is Ā. All other
notation referring to graph properties is as in [6].

We shall require the following concentration inequality in order to prove our main
theorems. Previously, various matrix concentration inequalities have been derived by
many authors including Ahlswede-Winter [2], Cristofides-Markström [12], Oliveira [18],
Gross [15], Recht [19], and Tropp [20]. Here we give a short proof for a simple version
that is particularly suitable for random graphs.

Theorem 5. Let X1, X2, . . . , Xm be independent random n×n Hermitian matrices. More-
over, assume that ‖Xi−E(Xi)‖ ≤ M for all i, and put v2 = ‖∑ var(Xi)‖. Let X =

∑

Xi.
Then for any a > 0,

pr(‖X − E(X)‖ > a) ≤ 2n exp

(

− a2

2v2 + 2Ma/3

)

.

For the proof, we will rely on the following results:

Lemma 1 (see, for example, [20]). Let f, g : R → R, and suppose there is a subset S ⊆ R

with f(a) ≤ g(a) for all a ∈ S. If A is a Hermitian matrix with all eigenvalues contained
in S, then f(A) � g(A).

Lemma 2 ([17]). Given a fixed Hermitian matrix A, the function X 7→ Tr(exp(A+log X))
is concave on the set of positive definite X.

We note that any real-valued function that is convex with respect to the semidefinite
order admits an operator Jensen’s inequality (see, for example, [19]). That is to say, if f
is convex with respect to the semidefinite order, then for a random matrix X, f(E(X)) ≤
E(f(X)). Given a fixed matrix A and a random Hermitian matrix X, we may apply the
function in Lemma 2 to eX . By then applying the operator Jensen’s inequality as stated,
we obtain the following:

the electronic journal of combinatorics 18 (2011), #P215 4



Lemma 3. If A is a fixed matrix and X is a random Hermitian matrix, then

E(Tr(exp(A + X))) ≤ Tr(exp[A + log(E[exp X])]). (2)

We shall use this result to overcome the difficulties presented by working with the
semidefinite order, as opposed to real numbers. The primary problem that must be
overcome is that unlike real numbers, the semidefinite order does not respect products.

Proof of Theorem 5. We assume for the sake of the proof that E(Xk) = 0 for all k. Clearly
this yields the general case by simply replacing each Xk by Xk − E(Xk).

Let g(x) = 2
x2 (e

x − x− 1) = 2
∑∞

k=2
xk−2

k!
. Notice that g is increasing, so in particular,

if x ≤ M , g(x) ≤ g(M). Given θ > 0, we have that ‖θXk‖ ≤ θM , and thus g(θXk) �
g(θM)I by Lemma 1. Therefore,

E(eθXk) = E(I + θXk +
1

2
θ2X2

kg(θXk)) (3)

� I +
1

2
g(θM)θ2E(X2

k) (4)

� e
1

2
g(θM)θ2E(X2

k
). (5)

We use this to prove the following claim:
Claim 1: For matrices Xk as given,

E

[

Tr(exp

(

m
∑

k=1

θXk

)

)

]

≤ Tr(exp

(

m
∑

k=1

1

2
g(θM)θ2E(X2

k)

)

) (6)

Proof of Claim 1: For a given k, let Ek(·) := E(·|X1, X2, . . . , Xk). Then we have

E

[

Tr(exp

(

m
∑

k=1

θXk

)

)

]

= EE1E2 . . .Em−1

[

Tr(exp

(

m−1
∑

k=1

θXk + θXm

)

)

]

As the Xi are independent, each Xk is fixed with respect to Em−1 except Xm, and
Em−1(exp Xm) = E(exp Xm). Applying inequality (2) from Lemma 3, we have

EE1E2 . . .Em−1

[

Tr(exp

(

m−1
∑

k=1

θXk + θXm

)

)

]

≤

EE1E2 . . .Em−2

[

Tr(exp

(

m−1
∑

k=1

θXk + log E(exp(θXm))

)

)

]

.

Iteratively applying this process, we obtain

E

[

Tr(exp

(

m
∑

k=1

θXk

)

)

]

≤ Tr(exp

(

m
∑

k=1

log E(exp θXm)

)

).
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As both log(·) and Tr(exp(·)) are monotone with respect to the semidefinite order
(these facts can be easily proven with basic manipulations), inequality (5) implies that

E

[

Tr(exp

(

m
∑

k=1

θXk

)

)

]

≤ Tr(exp

(

m
∑

k=1

log e
1

2
g(θM)θ2E(X2

k
)

)

)

≤ Tr(exp

(

m
∑

k=1

1

2
g(θM)θ2E(X2

k)

)

),

as desired.

Now, given a > 0, for all θ > 0 we have

pr(λmax(X) ≥ a) ≤ e−θaE(exp(θλmax(X)))

≤ e−θaE(Tr(exp(θX)))

= e−θaE
[

Tr(exp
(

∑

θXk

)

)
]

≤ e−θaTr(exp

(

∑ 1

2
g(θM)θ2E(X2

k)

)

)

≤ e−θanλmax(exp

(

1

2
g(θM)θ2

∑

E(X2
k)

)

)

≤ n exp

(

−θa +
1

2
g(θM)θ2v2

)

,

as v2 = ‖
∑

E(X2
k)‖ ≥ λmax(

∑

E(X2
k))

Notice that if x < 3, we have g(x) = 2
∑∞

k=2
xk−2

k!
≤
∑∞

k=2
xk−2

3k−2 = 1
1−x/3

. Take
θ = a

v2+Ma/3
. Clearly, θM ≤ 3, and thus we have

pr(λmax(X) ≥ a) ≤ n exp

(

−θa +
1

2
g(θM)θ2v2

)

≤ n exp

(

− a2

2v2 + 2Ma/3

)

Therefore, pr(‖X‖ ≥ a) ≤ 2n exp
(

− a2

2v2+2Ma/3

)

.

3 Proofs of the Main Theorems

In this section, we provide proofs of the two main theorems using Theorem 5.

Proof of Theorem 1. Let G be a random graph as described in the statement of the the-
orem, where the edge vivj appears with probability pij .

Given 1 ≤ i, j ≤ n, let Aij be the matrix with a 1 in the ij and ji positions and a 0
everywhere else. Let hij = 1 with probability pij and 0 otherwise. Take Xij = hijA

ij, so
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A =
∑

Xij . Thus, we can apply Theorem 5 to A with M = 1. We need first to calculate
v2.

Now, if i 6= j, then

var(Xij) = E((hij − pij)
2(Aij)2)

= var(hij)(A
ii + Ajj)

= pij(1 − pij)(A
ii + Ajj)

Similarly, var(Xii) = pii(1 − pii)A
ii. Therefore,

‖
∑

var(Xij)‖ =

∥

∥

∥

∥

∥

n
∑

i=1

(

n
∑

j=1

pij(1 − pij)

)

Aii

∥

∥

∥

∥

∥

= max
i=1,...,n

n
∑

j=1

pij(1 − pij)

≤ max
i=1,...,n

n
∑

j=1

pij = ∆.

Take a =
√

4∆ ln(2n/ǫ). By the assumption on ∆, we have a < 3∆, and thus we
obtain

pr(‖A − Ā‖ > a) ≤ 2n exp

(

− a2

2v2 + 2Ma/3

)

≤ 2n exp

(−4∆ ln(2n/ǫ)

4∆
)

)

= ǫ.

To complete the proof, we recall Weyl’s Theorem (see, for example, [16]), which states
that for Hermitian matrices M and N , max

k
|λk(M) − λk(N)| ≤ ‖M − N‖. Thus, with

probability at least 1− ǫ, we have that for all 1 ≤ i ≤ n, |λi(A)−λi(Ā)| <
√

4∆ ln(2n/ǫ).

Proof of Theorem 2. We will again use Weyl’s Theorem, as in the proof of Theorem 1,
so we need only bound ‖L − L̄‖. For each vertex vi, put di = deg(vi) and ti = E(di),
the expected degree of the ith vertex. Let C = I − D̄−1/2AD̄−1/2. Then ‖L − L̄‖ ≤
‖C − L̄‖ + ‖L − C‖. We consider each term separately.

Now, C − L̄ = D̄−1/2(A − Ā)D̄−1/2. Using notation as in the proof of Theorem 1, let

Yij = D̄−1/2((hij − pij)A
ij)D̄−1/2

=
hij − pij√

titj
Aij
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Then C − L̄ =
∑

Yij, so we can apply Theorem 5 to bound ‖C − L̄‖. Notice ‖Yij‖ ≤
(titj)

−1/2 ≤ 1
δ
. Moreover,

E(Y 2
ij) =

{

1
titj

(pij − p2
ij)(A

ii + Ajj) i 6= j
1
t2i

(pii − p2
ii)A

ii i = j

Thus, we obtain

v2 =
∥

∥

∥

∑

E(Y 2
ij)
∥

∥

∥
=

∥

∥

∥

∥

∥

n
∑

i=1

n
∑

j=1

1

titj
(pij − p2

ij)A
ii

∥

∥

∥

∥

∥

= max
i=1,...,n

(

n
∑

j=1

1

titj
pij −

n
∑

j=1

1

titj
p2

ij

)

≤ max
i=1,...,n

(

1

δ

n
∑

j=1

pij

ti

)

=
1

δ

Take a =
√

3 ln(4n/ǫ)
δ

. Take k to be large enough so that δ > k ln n implies a < 1 (in

particular, choosing k > 3(1 + ln(ǫ/4)) is sufficient). Applying Theorem 5, we have

pr(‖C − L̄‖ > a) ≤ 2n exp

(

−
3 ln(4n/ǫ)

δ

2/δ + 2a/(3δ)

)

≤ 2n exp

(

−3 ln(4n/ǫ)

3

)

≤ ǫ/2

For the second term, note that by the Chernoff bound (see, for example, [1]), for each
i,

pr(|di − ti| > bti) ≤
ǫ

2n
if b ≥

√

ln(4n/ǫ)

ti

Take b =
√

ln(4n/ǫ)
δ

, so that for all i, we have pr(|di − ti| > bti) ≤ ǫ
2n

. Then we obtain

‖D̄−1/2D1/2 − I‖ = max
i=1,...,n

∣

∣

∣

∣

∣

√

di

ti
− 1

∣

∣

∣

∣

∣

.

Note that for 0 < x < 1, we have |√x − 1| ≤ |x − 1|. Taking x = di

ti
> 0, we have that

with probability at least 1− ǫ
2
, this is at most b =

√

ln(4n/ǫ)
δ

= 1√
3
a < 1 for all i. Thus we

obtain

‖D̄−1/2D1/2 − I‖ = max
i=1,...,n

∣

∣

∣

∣

∣

√

di

ti
− 1

∣

∣

∣

∣

∣

≤
√

ln(4n/ǫ)

δ
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with probability at least 1 − ǫ
2
.

We note that as the Laplacian spectrum is in [0, 2], we have ‖I − L‖ ≤ 1. Therefore,
with probability at least 1 − ǫ

2
, we have

‖L − C‖ = ‖I − D−1/2AD−1/2 − I + D̄−1/2AD̄−1/2‖
= ‖D−1/2AD−1/2 − D̄−1/2D1/2D−1/2AD−1/2D1/2D̄−1/2‖
= ‖(I − L) − (D̄−1/2D1/2)(I − L)(D1/2D̄−1/2)‖
= ‖(D̄−1/2D1/2 − I)(I − L)D1/2D̄−1/2 + (I − L)(I − D1/2D̄−1/2)‖
≤ ‖D̄−1/2D1/2 − I‖‖D1/2D̄−1/2‖ + ‖I − D1/2D̄−1/2‖
≤ b(b + 1) + b = b2 + 2b

Finally, as b = 1√
3
a and a < 1, we have that with probability at least 1 − ǫ,

‖L − L̄‖ ≤ ‖C − L̄‖ + ‖L − C‖

≤ a +
1

3
a2 +

2a√
3
≤ 3a,

completing the proof.

4 Applications to Several Graph Models

The above theorems apply in a very general random graph setting. Here we discuss the
applications of Theorems 1 and 2 for the Erdős-Rényi graph and for the G(w) model, as
discussed in section 1 above. We begin by examining the Erdős-Rényi graph.

The Erdős-Rényi graph is a well studied random graph (see, for example, [1], [5])
where pij = p for i 6= j and 0 for i = j for some p ∈ (0, 1). We denote this graph by Gn,p.
If J represents the n × n matrix with a 1 in every entry, then for Gn,p, Ā = p(J − I) and
D̄ = (n − 1)pI. An application of Theorem 1 yields

Theorem 6. For Gn,p, if p > 8
9n

ln (
√

2n), then with probability at least 1−1/n = 1−o(1),
we have

|λi(A) − λi(p(J − I))| ≤
√

8np ln (
√

2n).

We note that stronger results for the spectrum of the adjacency matrix of Gn,p can
be found in [21], [14]. Specifically, in [14], it is shown that for pn ≥ c ln n, λ1(A) =
pn + O(

√
pn), and all other eigenvalues satisfy |λi(A)| = O(

√
pn). Here, we are at best

able to show that |λi(A)−λi(p(J−I))| ≤ O(pn). The spectrum of p(J−I) is {p(n−1),−p},
where −p has multiplicity n − 1, so if i > 1, we have only that λi(A) = O(pn). However,
due to the very strong symmetries in Gn,p, it seems unlikely that the methods used to
investigate this graph in detail will extend to general random graphs.

For the Laplacian of Gn,p, we obtain L̄ = I − 1
n−1

(J − I). An application of Theorem
2 yields
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Theorem 7. If pn ≫ ln n, then with probability at least 1 − 1/n = 1 − o(1), we have

|λk(L) − λk(I − 1

n − 1
(J − I))| ≤ 3

√

6 ln(2n)

pn
= o(1)

for all 1 ≤ k ≤ n.

The spectrum of I − 1
n−1

(J −I) is { 1
n−1

, 1+ 1
n−1

}, where 1+ 1
n−1

has multiplicity n−1.
Thus, we see that if pn ≫ ln n, then w.h.p. L has all eigenvalues other than λmin(L)
close to 1. This result is not new (see [10], [11]), and [11] also considers the case where
pn ≤ ln n.

We now turn to the G(w) model. We begin by precisely defining the model. Given
a sequence w = (w1, w2, . . . , wn), we define the random graph G(w) to have vertex set
{v1, . . . , vn}, and edges are independently assigned to each pair (vi, vj) with probability
wiwjρ, where ρ = 1

P

wi
. In this way, the expected degree of vi is wi for each i. Moreover,

the matrix Ā with Āij = pr(vi ∼ vj) is given by Ā = ρw′w, and as such has eigenvalues
ρ
∑

w2
i and 0, where 0 has multiplicity n − 1. Let d̃ denote the expected second order

average degree of G(w), so d̃ =
P

w2

i
P

wi
= ρ

∑

w2
i . Applying Theorem 1 with ǫ = 1/n, we

immediately obtain Theorem 3.
Similarly, we can apply Theorem 2 to obtain concentration results for the spectrum of

the Laplacian matrix for G(w). Notice that the value of k given in Theorem 1 will here
be k(ǫ) = k(1/n) > 3(1 + ln(1/(4n))), so the requirement in Theorem 4 that wmin ≫ ln n
is sufficient to give that for n sufficiently large, wmin > k ln n. This theorem improves on
the bounds for the eigenvalues of the Laplacian given in [10], as seen in section 1 above.

Let x = (w
1/2
1 , w

1/2
2 , . . . , w

1/2
n ). Then we have

(D̄−1/2ĀD̄−1/2)ij =
ρwiwj√

wiwj
= ρ

√
wiwj,

so L̄ = I − ρx′x. Thus, the eigenvalues of L̄ are 0 and 1, where 1 has multiplicity n − 1.
Applying Theorem 2 with ǫ = 1/n, we obtain Theorem 4.

Recall, as described in section 1, we can use the G(w) model to build random power law
graphs. Given a power law exponent β, maximum degree m, and average degree d, we take

wi = ci−
1

β−1 for each i with i0 ≤ i < n + i0, with c = β−2
β−1

dn
1

β−1 and i0 = n
(

d(β−2)
m(β−1)

)β−1

.

We obtain the following bounds for d̃ (see [9]):

d̃ =















d (β−2)2

(β−1)(β−3)
(1 + o(1)) if β > 3

1
2
d ln 2m

d
(1 + o(1)) if β = 3

d (β−2)2

(β−1)(3−β)

(

m(β−1)
d(β−2)

)3−β

(1 + o(1)) if 2 < β < 3

(7)

In [10], bounds are given for the largest eigenvalue of the adjacency matrix of a random
power law graph as described. In particular, the authors show that for a random power
law graph as above with adjacency matrix A,
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1. If β ≥ 3 and m > d2 log3+ǫ n, then a.a.s. λ1(A) = (1 + o(1))
√

m.

2. If 2.5 < β < 3 and m > d
β−2

β−2.5 ln
3

β−2.5 n, then a.a.s. λ1(A) = (1 + o(1))
√

m.

3. If 2 < β < 2.5 and m > ln
3

2.5−β n, then a.a.s. λ1(A) = (1 + o(1))d̃.

We note that these theorems require specific relationships between m and d, as noted.
Applying Theorem 3 to a random power law graph, we can eliminate such requirements,
although the bounds are less clean:

Theorem 8. Suppose G(w) is a random power law graph as described above. If m >
8
9
ln(

√
2n) then with probability 1 − o(1), we have

• If β > 3, then
∣

∣

∣

∣

λ1(A) − d
(β − 2)2

(β − 1)(β − 3)
(1 + o(1))

∣

∣

∣

∣

≤
√

8m ln(
√

2n)

• If β = 3, then
∣

∣

∣

∣

λ1(A) − 1

2
d ln

2m

d
(1 + o(1))

∣

∣

∣

∣

≤
√

8m ln(
√

2n)

• If 2 < β < 3, then
∣

∣

∣

∣

∣

λ1(A) − d
(β − 2)2

(β − 1)(3 − β)

(

m(β − 1)

d(β − 2)

)3−β

(1 + o(1))

∣

∣

∣

∣

∣

≤
√

8m ln(
√

2n)

From these bounds, one might be able to derive specific relationships between m and
d that lead to particular values for λ1(A).

Finally, we can apply Theorem 4 to the random power law graph model described here
to obtain bounds on the Laplacian spectrum:

Theorem 9. Suppose G(w) is a random power law graph as described above. If wmin =

ci
− 1

β−1

0 = mn
β

1−β ≫ lnn, then with probability 1− o(1), we have that for λk(L) > λmin(L),

|λk(L) − 1| ≤ 3

√

6 ln(2n)

mn
β

1−β

= o(1).

5 Concentration of Matrix Martingales

In the proofs of Theorem 1 and 2, the key tool is Theorem 5, a result giving concentration
in norm of sums of independent random Hermitian matrices on their expectation. As
mentioned in Section 2, these kinds of results have been derived and studied by various
authors. Here we provide a generalization of Theorem 5 in the event that the random
matrices are not independent, using matrix martingales.

A matrix martingale is a series of random n × n matrices X1, X2, . . . , Xm, together
with a sequence of σ-fields F0 ⊂ F1 ⊂ · · · ⊂ Fm−1, called a filtration, such that
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1. Xk is Fk measurable for all k.

2. for all k, E(Xk|Fk−1) = Xk−1, where X0 := E(X1).

We say the martingale X1, X2, . . . , Xm is adapted to the filtration F0,F1, . . . ,Fm−1. We
often consider the differences between consecutive matrices Yk = Xk−Xk−1. The sequence
of such Yk is called the associated difference sequence to the martingale.

Theorem 10. Let X1, X2, . . . , Xm be a martingale of Hermitian matrices adapted to
the filtration F0,F1, . . . ,Fm−1, so that E(Xk|Fk−1) = Xk−1. Let {Yk} be the associated
difference sequence. Moreover, suppose

1. ‖Yi‖ ≤ M for all i

2. Y 2
i � A2

i , where each Ai is a fixed Hermitian matrix.

Take c2 = ‖
∑

A2
i ‖. Then for all a > 0,

pr(‖Xm − E(Xm)‖ > a) ≤ 2n exp

(

− a2

2c2 + 2Ma/3

)

.

We note that the key difference between Theorem 10 and Theorem 5 is the use of the
second moment. In the case that the summands are independent, as in Theorem 5, we can
use the variance directly. However, for Theorem 10, the use of conditional expectation
in the proofs requires a slightly stronger constant. We bound the “worst-case scenario,”
that is, the largest possible spectrum of Yi, represented by Ai, and in that sense bound
the second moments without having taken expectations.

Proof. Take g(x) to be as in the proof of Theorem 5. Note that for each k > 0,

E(exp(θYk)|Fk−1) = E

(

I + θYk +
1

2
θ2Y 2

k g(θYk) | Fk−1

)

= I + E

(

1

2
θ2Y 2

k g(θYk) | Fk−1

)

Note that the second equality follows as E(Yk|Fk−1) = E(Xk − Xk−1|Fk−1) = 0. As
in Theorem 5, g(θYk) � g(θM)I. As I commutes with all other matrices, we have
Y 2

k g(θYk) � Y 2
k g(θM)I � g(θM)A2

k.
Therefore, we obtain

E(exp(θYk)|Fk−1) � I + E

(

1

2
θ2g(θM)A2

k | Fk−1

)

(8)

= I +
1

2
θ2g(θM)A2

k (9)

� e
1

2
θ2g(θM)A2

k (10)

We proceed with a claim similar to that in Theorem 5.

the electronic journal of combinatorics 18 (2011), #P215 12



Claim 2: For matrices Yk as given, and any θ > 0,

E

[

Tr(exp

(

m
∑

k=1

θYk

)

)

]

≤ Tr(exp

(

m
∑

k=1

1

2
g(θM)θ2A2

k

)

) (11)

Proof of Claim 2: For each k ≥ 1, let Ek(·) = E(·|Fk). Then we obtain

E

[

Tr(exp

(

m
∑

k=1

θXk

)

)

]

= EE1E2 . . .Em−1

[

Tr(exp

(

m−1
∑

k=1

θXk + θXm

)

)

]

Note that each Xk is fixed with respect to Em−1 with the exception of Xm. Applying
inequality (2) from Lemma 3, we have

EE1E2 . . .Em−1

[

Tr(exp

(

m−1
∑

k=1

θXk + θXm

)

)

]

≤

EE1E2 . . .Em−2

[

Tr(exp

(

m−1
∑

k=1

θXk + log E(exp(θXm)|Fm−1)

)

)

]

.

Now, as log(·), Tr(exp(·)), and E(·) are monotone with respect to the semidefinite
order, we can apply inequality 10 to obtain

EE1E2 . . .Em−1

[

Tr(exp

(

m−1
∑

k=1

θXk + θXm

)

)

]

≤

EE1E2 . . .Em−2

[

Tr(exp

(

m−1
∑

k=1

θXk +
1

2
θ2g(θM)A2

m)

)]

.

Noting that this last term is fixed, we may apply this process iteratively to obtain the
desired result.

Therefore, given a > 0, for all θ > 0 we have

pr(λmax(Xm − E(Xm)) ≥ a) = pr(λmax

(

m
∑

k=1

Yk

)

≥ a)

≤ e−θaE(exp(θλmax(
∑

Yk)))

≤ e−θaE(Tr(exp(θ
∑

Yk)))

= e−θaE
[

Tr(exp
(

∑

θYk

)

)
]

≤ e−θaTr(exp

(

∑ 1

2
g(θM)θ2A2

k

)

)

≤ e−θanλmax(exp

(

1

2
g(θM)θ2

∑

A2
k

)

)

≤ n exp

(

−θa +
1

2
g(θM)θ2c2

)

.

Take θ = a
c2+Ma/3

and proceed as in the proof of Theorem 5 to yield the result.
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