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Abstract

A graph G is a k-dot product graph if there exists a vector labelling u : V (G) →
Rk such that u(i)Tu(j) ≥ 1 if and only if ij ∈ E(G). Fiduccia, Scheinerman, Trenk
and Zito [Discrete Math., 1998] asked whether every planar graph is a 3-dot product
graph. We show that the answer is “no”. On the other hand, every planar graph
is a 4-dot product graph. We also answer the corresponding questions for planar
graphs of prescribed girth and for outerplanar graphs.

1 Introduction and statement of results

We study a type of geometric representation of graphs using vectors from Rk for some
k ∈ N. Let G be a graph. We say G is a k-dot product graph if there exists a vector
labelling u : V (G) → Rk such that u(i)Tu(j) ≥ 1 if and only if ij ∈ E(G). An explicit
set of vectors in Rk that exhibits G in this way is called a k-dot product representation
of G. The dot product dimension of G is the least k such that there is a k-dot product
representation of G. Every graph has finite dot product dimension; see for instance [4].

The well-studied class of threshold graphs is closely related to 1-dot product graphs: a
1-dot product graph has at most two nontrivial connected components and each of these

∗Research partially supported by the Engineering and Physical Sciences Research Council (EPSRC),
grant EP/G066604/1.

†Research supported by the European Research Council (ERC), grant 227701.
‡Research partially supported by a VENI grant from the Netherlands Organisation for Scientific

Research (NWO).

the electronic journal of combinatorics 18 (2011), #P216 1



components is a threshold graph (cf. [4]). Mahadev and Peled [9] give an extensive survey
of threshold graphs.

Notions closely related to dot product representations were studied in the context of
communications complexity by amongst others Paturi and Simon [10], Alon, Frankl and
Rödl [1] and Lovász [8]. Partially motivated by these treatments, Reiterman, Rödl and
Šiňajová [11, 12, 13] introduced dot product representations of graphs and studied them
extensively. They obtained several bounds for the dot product dimension in terms of
threshold dimension, sphericity, chromatic number, maximum degree, maximum average
degree, and maximum complementary degree; they also detailed various examples. Here
it should be mentioned that they used a slightly different definition: they used a threshold
t ∈ R (i.e. ij ∈ E(G) if and only if u(i)Tu(j) ≥ t). This leads to a slightly larger class
of graphs. However, in most of their constructions, Reiterman et al. in fact take t = 1.
The proofs of our results below can easily be adapted to work also for the more general
definition of a dot product graph used in [11, 12, 13]. Fiduccia, Scheinerman, Trenk and
Zito [4] considered amongst other things the dot product dimension of bipartite, complete
multipartite and interval graphs.

Both Reiterman et al. [12] and Fiduccia et al. [4] proved that every forest is a 3-dot
product graph, and there exist trees which are not 2-dot product graphs. Envisioning a
potential extension to this result, Fiduccia et al. asked whether every planar graph is a
3-dot product graph. Here we will answer this question in the negative by describing two
counterexamples. In contrast, any planar graph has dot product dimension at most 4.

Theorem 1 Every planar graph is a 4-dot product graph, and there exist planar graphs
that are not 3-dot product graphs.

In Section 3, we show that every planar graph has a 4-dot product representation. In
Section 4, we present one small example (on eighteen vertices) of a planar graph that is
not a 3-dot product graph. It remains open to characterise which planar graphs have dot
product dimension exactly 4; however, we do demonstrate the following.

Theorem 2 Every planar graph of girth at least 5 is a 3-dot product graph, and there
exist planar graphs of girth 4 that are not 3-dot product graphs.

We exhibit a planar graph of girth 4 that has dot product dimension 4 in Section 5. In
the next section, we develop some notation and recollect some spherical geometry needed
in Sections 3 and 5.

Let us also mention that as a direct consequence of a result of Kotlov, Lovász and
Vempala [7] (repeated as Theorem 7 below) every outerplanar graph has dot product
dimension at most 3. Given the examples of trees that are not 2-dot product graphs
given by Fiduccia et al. [4], we have the following.

Theorem 3 Every outerplanar graph is a 3-dot product graph, and there are outerplanar
graphs that are not 2-dot product graphs.

Some of the results of this paper were presented at the 18th International Symposium
on Graph Drawing (GD 2010) in Konstanz [5].
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2 Preliminaries

Let Sk denote the unit sphere in Rk+1, i.e. Sk = {u ∈ Rk+1 : ‖u‖ = 1}. Let us review
some basic geometry on Sk. For u, v ∈ Sk, let us denote by [u, v] the (shortest) spherical
arc between u and v. Let distSk(u, v) denote the length of [u, v]. Then distSk(u, v) equals
the angle between the two vectors u, v ∈ Sk. It can thus be expressed as

distSk(u, v) = arccos(vTu).

For 0 < r < π, let the spherical cap of radius r around v on Sk be defined as

capSk(v, r) := {u ∈ Sk : distSk(u, v) ≤ r}.

For r < π/2, a spherical cap can also be written in terms of a fixed vector w ∈ Rk+1 with
‖w‖ > 1:

capSk(v, r) = capSk(w) := {u ∈ Sk : wTu ≥ 1}.

The vector w and the radius r of the spherical cap are related via ‖w‖ = 1/ cos(r)
(remembering that 0 < r < π/2). We will mostly work in S2, in which case we drop the
subscript and simply use dist and cap.

Suppose that u, v, w ∈ S2 are three points on the sphere in general position (i.e. not
all three on the same great circle/equator). We shall call the union of the three spherical
arcs [u, v], [v, w], [u, w] a spherical triangle. Let us write a := dist(u, v), b := dist(u, w),
c := dist(v, w), and let γ denote the angle between [u, v] and [u, w]. See Figure 1. Recall
the spherical law of cosines:

cos(c) = cos(a) cos(b) + sin(a) sin(b) cos(γ). (1)

The spherical law of cosines can be rephrased as

vTw = (uTv) · (uTw) + cos(γ)
√

(1− (uTv)2)(1− (uTw)2). (2)

This second form will be more useful for our purposes.
Similarly to a spherical triangle, one can define a spherical n-gon determined by

u1, . . . , un ∈ Sk as
⋃n

i=1[ui, ui+1] (where un+1 := u0). In the proof of Theorem 8, we
will make use of the well-known fact that the sum of the angles of a spherical n-gon is
strictly larger than (n− 2)π.

3 All planar graphs are 4-dot product graphs

We present a short argument that the dot product dimension of every planar graph is at
most 4, one that makes use of Koebe’s Theorem [6].

Given a graph G, we say that a vector labelling u : V (G) → Rk is a cap contact
representation of G on Sk if it satisfies the following:
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Figure 1: A spherical triangle.

(i) capSk(u(i)) ∩ capSk(u(j)) is a singleton if ij ∈ E(G);

(ii) capSk(u(i)) ∩ capSk(u(j)) is empty if ij /∈ E(G).

In terms of cap contact representations, Koebe’s Theorem (originally given in terms of
circle packings in the plane) can be reformulated as follows.

Theorem 4 (Koebe [6]) A graph is planar if and only if it has a cap contact represen-
tation on S2.

Proposition 5 If a graph G has a cap contact representation on Sk, then G is a (k +2)-
dot product graph.

Proof: For w ∈ Rk with ‖w‖ > 1, let us denote by θ(w) the radius of capSk(w), i.e. θ(w) =
arccos(1/‖w‖).

Suppose u : V (G) → Rk is a cap contact representation of G on Sk. Let us define
f : V (G) → Rk by setting f(i) := (u(i), tan(θ(u(i))))T . We now demonstrate that f is a
(k + 2)-dot representation of G.

If ij ∈ E(G), then the angle between u(i) and u(j) is precisely θ(u(i))+θ(u(j)). Thus

f(i)Tf(j) = u(i)Tu(j) + tan(θ(u(i))) tan(θ(u(j)))

= ‖u(i)‖‖u(j)‖ cos(θ(u(i)) + θ(u(j))) + tan(θ(u(i))) tan(θ(u(j)))

=
cos(θ(u(i))) cos(θ(u(j)))− sin(θ(u(i))) sin(θ(u(j)))

cos(θ(u(i))) cos(θ(u(j)))

+
sin(θ(u(i))) sin(θ(u(j)))

cos(θ(u(i))) cos(θ(u(j)))

= 1,

since ‖u(i)‖ = 1/ cos(θ(u(i))) and ‖u(j)‖ = 1/ cos(θ(u(j))).
If ij /∈ E(G), then the angle between u(i) and u(j) is strictly more than θ(u(i)) +

θ(u(j)) and similar calculations in this case demonstrate that f(i)Tf(j) < 1. �
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Figure 2: A graph G′ with ν(G′) = 4 and dot product dimension 3.

Now Proposition 5 and Koebe’s Theorem together imply that the dot product dimension
of any planar graph is at most 4.

Let us mention work by Kotlov, Lovász and Vempala [7] on a notion closely related to
dot product dimension. As a way of studying the Colin de Verdiére parameter µ(G) [2, 3],
Kotlov et al. introduced the following parameter. Let ν(G) denote the smallest k such
that there exists a vector labelling u : V (G) → Rk that satisfies the following:

(i) u(i)Tu(j) = 1 if ij ∈ E(G);

(ii) u(i)Tu(j) < 1 if ij 6∈ E(G) and i 6= j; and

(iii) if X is a symmetric n × n matrix such that Xij = 0 for all ij 6∈ E(G) and Xii = 0
for all i and

∑
j Xiju(j) = 0 for all i, then X = 0.

Kotlov et al. demonstrated a very close relationship between ν(G) and µ(G).
Clearly, every graph G is a ν(G)-dot product graph. However, because (i) asks for

equality and because of the extra demand (iii), G might also be a k-dot product graph
for some k < ν(G). For example, the graph G′ in Figure 2 is the smallest such that
ν(G′) = 4 [7], but it is not difficult to check that G′ is a 3-dot product graph.

Using Koebe’s Theorem, Kotlov et al. obtained the following.

Theorem 6 (Corollary 8.7, [7]) If G is a planar graph, then ν(G) ≤ 4.

This implies that every planar graph is a 4-dot product graph. Kotlov et al. also considered
several subclasses of planar graphs.

Theorem 7 (Corollaries 8.7 and 9.8, [7]) If G is an outerplanar graph or a planar
graph with girth at least 5, then ν(G) ≤ 3.

This implies that outerplanar graphs and planar graphs with girth at least 5 have dot
product dimension at most 3. It is already known that the trees which are not caterpillars
have dot product dimension 3 [12, 4]. This for instance shows that imposing a girth
condition cannot lower the above dot product dimension bound for outerplanar graphs.
Although the above theorem shows that a girth constraint of 5 for planar graphs lowers
the dot product dimension bound to 3, there is not much hope of further improvement
here. In Section 5, we show an example of a planar graph with girth 4 that is not a 3-dot

the electronic journal of combinatorics 18 (2011), #P216 5



product graph. It is left open to determine whether there is any triangle-free planar graph
without adjacent 4-cycles that has dot product dimension 4.

We remark here that Reiterman et al. [13] studied the problem of bounding the dot
product dimension for (not necessarily planar) graphs of prescribed girth; more generally,
they showed that graphs of order n and maximum average degree δ have dot product
dimension at most O(δ2 log n).

4 A small planar graph of dimension 4

In this section, we exhibit a small example Ĝ of a planar graph that has dot product
dimension greater than 3. Let Ĝ be defined as follows. The vertex set V (Ĝ) is defined as
the union of the following sets:⋃

i∈{1,...,4}

{ti, si, s−i} and
⋃

i,j∈{1,...,4},i<j

{sij}.

So there are eighteen vertices in total. The edge set E(Ĝ) is defined as the union of the
following sets: ⋃

i∈{1,...,4}

({siti} ∪ {s−itj : j ∈ {1, . . . , 4} \ {i}}) and

⋃
i,j∈{1,...,4},i<j

{titj, sijti, sijtj}.

An embedding of Ĝ in the plane is depicted in Figure 3. We remark that Ĝ contains
several copies of the complete graph K4 on four vertices.

Suppose, to the contrary, that u is a 3-dot product representation of Ĝ.
Four vectors in R3 are necessarily linearly dependent, so let λ1, . . . , λ4 be scalars, not

all zero, such that

000T = λ1u(t1)
T + λ2u(t2)

T + λ3u(t3)
T + λ4u(t4)

T. (3)

We will split the analysis into cases depending on how many of the scalars are non-
negative. By symmetry, there are only three cases to consider.

(i) All of the scalars are non-negative. Taking the inner product with u(t1) on both
sides of (3), we obtain

0 = 000Tu(t1)

= λ1u(t1)
Tu(t1) + λ2u(t2)

Tu(t1) + λ3u(t3)
Tu(t1) + λ4u(t4)

Tu(t1)

≥ λ1‖u(t1)‖2 + λ2 + λ3 + λ4

> 0,

where the first inequality holds since the vertex t1 is adjacent to t2, t3 and t4, and
the second inequality holds since not all of the scalars are zero. We have reached a
contradiction.
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Figure 3: A planar graph Ĝ with dot product dimension 4.

(ii) Exactly three of the scalars are non-negative. Without loss of generality, let us
assume −λ4 > 0 and hence λ1, λ2, λ3 ≥ 0. We rewrite (3) as

−λ4u(t4)
T = λ1u(t1)

T + λ2u(t2)
T + λ3u(t3)

T. (4)

If we take the inner product with u(s−4) on both sides of (4), we obtain

−λ4 > −λ4u(t4)
Tu(s−4)

= λ1u(t1)
Tu(s−4) + λ2u(t2)

Tu(s−4) + λ3u(t3)
Tu(s−4)

≥ λ1 + λ2 + λ3,

where the first inequality holds since t4 and s−4 are not adjacent and the second
inequality holds since s−4 is adjacent to t1, t2 and t3. However, if we take the inner
product with u(s4) on both sides of (4) instead, we obtain

−λ4 ≤ −λ4u(t4)
Tu(s4)

= λ1u(t1)
Tu(s4) + λ2u(t2)

Tu(s4) + λ3u(t3)
Tu(s4)

< λ1 + λ2 + λ3,

where the first inequality holds since t4 and s4 are adjacent and the second inequality
holds since s4 is adjacent to t1, t2 and t3. Again, we have reached a contradiction.

(iii) Exactly two of the scalars are non-negative. Without loss of generality, assume
−λ3,−λ4 > 0, and hence λ1, λ2 ≥ 0. We rewrite (3) as

−λ3u(t3)
T − λ4u(t4)

T = λ1u(t1)
T + λ2u(t2)

T. (5)
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If we take the inner product with u(s12) on both sides of (5), we obtain

−λ3 − λ4 > −λ3u(t3)
Tu(s12)− λ4u(t4)

Tu(s12)

= λ1u(t1)
Tu(s12) + λ2u(t2)

Tu(s12) ≥ λ1 + λ2,

where the first inequality holds since s12 is neither adjacent to t3 nor t4 and the
second inequality holds since s12 is adjacent to t1 and t2. On the other hand, if we
take the inner product with u(s34) on both sides of (5), we obtain

−λ3 − λ4 ≤ −λ3u(t3)
Tu(s12)− λ4u(t4)

Tu(s12)

= λ1u(t1)
Tu(s12) + λ2u(t2)

Tu(s12) < λ1 + λ2,

where the first inequality holds since s34 is adjacent to t3 and t4 and the second
inequality holds since s34 is neither adjacent to t1 nor t2. This is a contradiction.

In all cases, we have reached a contradiction. (One scalar non-negative is the same as
three non-negative: just multiply (3) by −1. The case in which none of the scalars is
non-negative can be dealt with in the same way.) This concludes the proof that Ĝ is not
a 3-dot product graph.

5 A triangle-free planar graph of dimension 4

In this section, we provide an alternative example Hk of a planar graph with dot product
dimension greater than 3 that satisfies the additional property that it does not contain a
triangle as a subgraph.

We construct graphs F, G, H as follows.

(i) We start with K4, the complete graph on the four vertices t1, t2, t3, t4.

(ii) To obtain F , we subdivide each edge titj of K4 five times; that is, we replace titj by

a path Pij = tit
(1)
ij . . . t

(5)
ij tj with five internal vertices.

(iii) The graph F divides the plane into four faces. To obtain G, we place an additional
vertex inside each face of F . Here fi will denote the vertex in the face whose limiting
cycle does not contain ti. We connect fi to tj for j 6= i and to t

(2)
jk and t

(4)
jk for j, k 6= i.

(iv) Finally, to obtain H we attach four leaves to each vertex of G.

The graphs F , G and H are depicted in Figure 4. For k ∈ N, let the graph Hk consist of
k disjoint copies of H. Clearly, Hk is planar and triangle-free for all k. In the rest of this
section we shall prove the following.

Theorem 8 The graph Hk is not a 3-dot product graph for some k ∈ N.

Proof: The proof is by contradiction. Let us assume that Hk has a 3-dot product
representation for all k. Then the following must hold.
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Figure 4: The graphs K4 (top left), F (top right), G (bottom left) and H (bottom right).

Claim 9 For every η > 0, there is a 3-dot product representation u of H, with ‖u(t)‖ <
1 + η for all t ∈ V (H).

Proof of Claim 9: Suppose there is no such representation. Then there must exist a
constant η > 0 such that in every 3-dot product representation u : V (H) → R3 of H,
there is a vertex t ∈ V (H) such that ‖u(t)‖ ≥ 1 + η.

As Hk is the disjoint union of k copies of H, in any 3-dot product representation
u : V (Hk) → R3, there is a vertex in each of the k copies of H whose corresponding vector
has length at least 1 + η. Let s1, . . . , sk denote these vertices. We know sisj 6∈ E(Hk) for
all 1 ≤ i < j ≤ k, and ‖u(si)‖ ≥ 1 + η for all 1 ≤ i ≤ k.

Let us write v(si) := u(si)/‖u(si)‖ and l(si) := ‖u(si)‖. As u(si)
Tu(sj) < 1, we must

have

v(si)
Tv(sj) <

1

l(si)l(sj)
≤ (1 + η)−2.

Write ρ := arccos((1 + η)−2). Note that dist(v(si), v(sj)) > ρ for all 1 ≤ i < j ≤ k.
Hence the spherical caps cap(v(s1), ρ/2), . . . , cap(v(sk), ρ/2) must be disjoint subsets of
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the sphere. These caps all have the same area, which depends only on ρ, and hence only
on η. Let us denote this area by f(η). It is possible to express f(η) explicitly in terms of
η, but there is no need to do this here. We get

4π = area(S2) ≥
k∑

i=1

area(cap(v(si), ρ/2)) = k · f(η),

which is impossible if we choose k > 4π/f(η). �

Let us fix a small η (say η := 1/1010) and let u : V (H) → R3 be a representation
provided by Claim 9. For s ∈ V (H) let us write l(s) := ‖u(s)‖, v(s) := u(s)/‖u(s)‖. Let
us observe that

st ∈ E(H) if and only if v(s)Tv(t) ≥ 1/l(s)l(t).

Note also that each spherical arc on S2 corresponding to an edge in H has length at most
ρ = arccos((1 + η)−2).

Claim 10 We can assume without loss of generality that no three of {v(s) : s ∈ V (H)}
lie on the same great circle/equator of S2.

Proof of Claim 10: Clearly it suffices to show that without loss of generality no three
of {u(s) : s ∈ V (H)} lie on the same linear space of dimension two. Let u : V (H) → R3

be an arbitrary 3-dot product representation of H such that ‖u(s)‖ < 1 + η for all
s ∈ V (H). Then we can find a ξ > 0 such that (1 + ξ)‖u(s)‖ < 1 + η for all s, and
(1 + ξ)2u(s)T u(t) < 1 for all non-edges st 6∈ E(H). Thus u′ := (1 + ξ)u is also a valid
3-dot product representation, such that u′(s)T u′(t) < 1 for all non-edges st 6∈ E(H) and
u′(s)T u′(t) > 1 for all edges st ∈ E(H). We can now add very small perturbations to
u′ to obtain a valid 3-dot product representation u′′ such that no three vectors lie in the
same linear hyperplane, and still u′′(s) < 1 + η for all s ∈ V (H). �

For the remainder of the proof, we make the assumption that no three of {v(s) : s ∈
V (H)} lie on the same great circle.

Recall that G ⊆ H is the subgraph induced by all non-leaf vertices.

Claim 11 For every t ∈ V (G), we have l(t) > 1.

Proof of Claim 11: Suppose that some s ∈ V (G) satisfies l(s) ≤ 1. Let s1, s2, s3, s4

be the four leaves attached to s, in clockwise order. One of the angles ∠s1ss2, ∠s2ss3,
∠s3ss4, ∠s4ss1 must be at most π/2, since their sum is at most 2π.

v(s4)

v(s3)

v(s2)
v(s1)

v(s)
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Without loss of generality, we may assume it is γ := ∠s1ss2. We have cos(γ) ≥ 0, so that
the spherical cosine rule (2) gives that

v(s1)
Tv(s2) ≥ (v(s)Tv(s1)) · (v(s)Tv(s2))

≥
(

1

l(s)l(s1)

) (
1

l(s)l(s2)

)
≥ 1

l(s1)l(s2)
,

using the property that l(s) ≤ 1 for the last inequality. But then we must have s1s2 ∈
E(H), a contradiction. �

Claim 12 Suppose that st, s′t′ ∈ E(G) are edges with s, s′, t, t′ distinct and suppose that
the arcs [v(s), v(t)] and [v(s′), v(t′)] cross. Then at least one of ss′, st′, ts′, tt′ is also an
edge of G.

Proof of Claim 12: Suppose that the arcs [v(s), v(t)] and [v(s′), v(t′)] cross and that
ss′, st′, ts′, tt′ 6∈ E(G). Consider the angles of the spherical 4-gon with corners v(s), v(s′),
v(t), v(t′). Since the sum of the angles of a spherical 4-gon is larger than 2π, at least one
angle is larger than π/2. We may assume without loss of generality that the points are
in clockwise order v(s), v(s′), v(t), v(t′) and that the angle ∠v(s′)v(s)v(t′) is more than
π/2.

v(t)

v(t′)v(s)

v(s′)

Then by version (2) of the spherical cosine rule we must have

v(s′)Tv(t′) <
(
v(s)Tv(s′)

) (
v(s)Tv(t′)

)
.

Since l(s) ≥ 1 by Claim 11 and ss′, st′ 6∈ E(G), this gives

v(s′)Tv(t′) <

(
1

l(s)l(s′)

) (
1

l(s)l(t′)

)
≤ 1

l(s′)l(t′)
,

which contradicts s′t′ ∈ E(G). �

If s1, s2, s3 ∈ V (G), then v(s1), v(s2), v(s3) determine a spherical triangle ∆ =
[v(s1), v(s2)]∪ [v(s2), v(s3)]∪ [v(s1), v(s3)] (which by Claim 12 is “non-degenerate”). Then
∆ ⊆ cap(v1, 100ρ) because each spherical arc corresponding to an edge of G has length at
most ρ and G has diameter at most 101. Note that S2 \∆ consists of two path-connected
components by the Jordan curve theorem. As ρ is very small, exactly one of these com-
ponents has area bigger than 3.9π. We shall refer to this component as the “outside” of
∆, and the other component as the “inside”.
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Claim 13 Suppose that s1s2s3 form a path in G, and v(s) lies inside the spherical triangle
determined by v(s1), v(s2), v(s3). Then either ss1 ∈ E(G) or ss2 ∈ E(G) or ss3 ∈ E(G).

v(s2)

v(s)
v(s3)

v(s1)

Proof of Claim 13: Observe that if v(s) lies inside the (smaller of the two) spherical
triangle(s) defined by v(s1), v(s2), v(s3), then we must have

∠v(s1)v(s)v(s2) + ∠v(s2)v(s)v(s3) + ∠v(s1)v(s)v(s3) = 2π.

This shows that one of ∠v(s1)v(s)v(s2), ∠v(s1)v(s)v(s3) is at least π/2. (Otherwise we
would have ∠v(s1)v(s)v(s3) > π, which is impossible.) Without loss of generality, we may
assume that ∠v(s1)v(s)v(s2) ≥ π/2. The spherical cosine rule (2) gives that

v(s1)
Tv(s2) ≤

(
v(s)Tv(s1)

) (
v(s)Tv(s2)

)
. (6)

If both ss1, ss2 6∈ E(G), then v(s)Tv(s1) < 1/(l(s)l(s1)) and v(s)Tv(s2) < 1/(l(s)l(s2)).
But then, as l(s) > 1, we get from (6) that v(s1)

Tv(s2) < 1/(l(s1)l(s2)). This contradicts
that s1s2 ∈ E(G). �

Let γij denote the curve

γij :=
4⋃

k=1

[v(t
(k)
ij ), v(t

(k+1)
ij )]

(i.e. γij is the union of the arcs corresponding to the internal edges of Pij). By Claim 12,
the curves γij and γkl do not cross if {i, j} 6= {k, l}.

Let C denote the cycle P12 ∪ P23 ∪ P13. Let γ denote the corresponding spherical
polygon, i.e.

γ :=
⋃

st∈E(C)

[v(s), v(t)].

As earlier with spherical triangles, we have γ ⊆ cap(v1, 100ρ). Also note that now S2 \ γ
consists of at least two path-connected components (by the Jordan curve theorem). Again,
since ρ is very small, exactly one of these components has area bigger than 3.9π. We shall
refer to this component as the outside of γ, and the union of the other components as the
inside of γ.

Claim 14 We may assume without loss of generality that v(t4) lies inside γ.
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v(t4)

Proof of Claim 14: For i ∈ {1, 2, 3, 4}, let Ti ⊆ S2 denote the union of arcs

Ti :=
⋃

s∈N(ti)

[v(ti), v(s)].

Observe that by Claim 12 the Ti’s are disjoint. Let Iij ⊆ γij denote the minimal subset
(“the minimal subcurve”) that connects Ti and Tj. Then the Iijs are disjoint, Iij hits each
of Ti, Tj in exactly one point, and Iij does not intersect Tk for k 6= i, j.

T4

T2
T1

T3

I34

I23

I24

I12

I14

I13

S2 \ (T1 ∪ I12 ∪ T2 ∪ I23 ∪ T3 ∪ I13) consists of two regions and since T4 does not intersect
T1 ∪ I12 ∪ T2 ∪ I23 ∪ T3 ∪ I13 it must be contained in one of those regions. Applying a
suitable relabelling if necessary, we can assume that T4 lies inside the smaller of the two
regions of S2 \ (T1 ∪ I12 ∪ T2 ∪ I23 ∪ T3 ∪ I13). (This can for instance be see from the fact
that

⋃
i Ti ∪

⋃
ij Iij contains a planar drawing of K4.) But in that case v(t4) ∈ T4 lies

inside P as desired. �

Claim 15 v(t4) lies inside the spherical triangle determined by v(f4) and two consecutive
points on γ.

Proof of Claim 15: Notice that no matter where v(f4) lies exactly the great circle
through v(t4) and v(f4) hits γ at least twice, and we can speak of the first segment of P
that lies behind v(t4) viewed from v(f4).

v(f4)

v(t4)

v(s2)

v(s1) v(s1)

v(s2)

v(t4)

v(f4)

If the vertices corresponding to the endpoints of this segment are v(s1) and v(s2), then the
spherical triangle determined by v(f4), v(s1), v(s2) clearly contains v(t4). By Claim 10,
v(t4) cannot lie on the boundary of this spherical triangle. �

Since f4, s1, s2 induce a path in G, Claim 13 together with Claim 15 implies that t4 must
be adjacent to at least one of them. This is a contradiction since t4 is neither adjacent to
f4 nor to any vertex of C. This concludes the proof of Theorem 8. �
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