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Abstract

A proper edge coloring of a graph G with colors 1, 2, 3, . . . is called an interval
coloring if the colors on the edges incident with any vertex are consecutive. A bipar-
tite graph is (3, 4)-biregular if all vertices in one part have degree 3 and all vertices
in the other part have degree 4. Recently it was proved [J. Graph Theory 61 (2009),
88-97] that if such a graph G has a spanning subgraph whose components are paths
with endpoints at 3-valent vertices and lengths in {2, 4, 6, 8}, then G has an interval
coloring. It was also conjectured that every simple (3, 4)-biregular bipartite graph
has such a subgraph. We provide some evidence for this conjecture by proving that
a simple (3, 4)-biregular bipartite graph has a spanning subgraph whose components
are nontrivial paths with endpoints at 3-valent vertices and lengths not exceeding 22.
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1 Introduction

We use [7] for terminology and notation not defined here and consider finite graphs only.
V (G) and E(G) denote the sets of vertices and edges of a graph G, respectively. In
this paper, “graphs” may have multiple edges whereas “simple graphs” do not have any
multiple edges.

A proper edge coloring of a graph G is called an interval coloring if the colors on the
edges incident with any vertex of G are consecutive. An interval coloring of G with colors
1, 2, . . . , t is called an interval t-coloring if at least one edge is colored i, for i = 1, . . . , t.

The notion of interval colorings was introduced by Asratian and Kamalian [4] (available
in English as [5]), motivated by the problem of finding compact school timetables, that
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is, timetables such that the lectures of each teacher and each class are scheduled at
consecutive periods. Generally, it is an NP-complete problem to determine whether a
given bipartite graph has an interval coloring [21]. Nevertheless, trees [14, 18], regular
and complete bipartite graphs [14, 18], doubly convex bipartite graphs [18], grids [11], and
simple outerplanar bipartite graphs [10, 6] all have interval colorings. Giaro [9] showed
that one can decide in polynomial time whether bipartite graphs with maximum degree
4 have interval 4-colorings.

A bipartite graph with bipartition (X, Y ) is called (a, b)-biregular if all vertices of X
have degree a and all vertices of Y have degree b. The investigation of the existence of
interval colorings of (a, b)-biregular bipartite graphs was initiated by Hansen [14]. He
proved that (2, b)-biregular bipartite graphs have interval colorings when b is even. This
was extended to all b by Hanson, Loten and Toft [15] and independently by Kostochka
[19]. Only a little is known about (3, b)-biregular bipartite graphs. It follows from the
result of Hanson and Loten [16] that no such graph has an interval coloring with fewer
than 3 + b − gcd(3, b) colors, where gcd denotes the greatest common divisor. Asratian
and Casselgren showed in [3] that the problem to determine whether a (3, b)-biregular
bipartite graph has an interval b-coloring is NP-complete in the case when 3 divides b.
This implies that there are (3, b)-biregular bipartite graphs without interval b-colorings.
However, it is still an open question whether all (a, b)-biregular bipartite graphs have
interval colorings (using any number of colors). It is conjectured that all such graphs
have interval colorings (see [17]); the first open case is (a, b) = (3, 4).

Pyatkin [20] proved that if a (3, 4)-biregular bipartite graph has a 3-regular subgraph
covering the vertices of degree 4, then it has an interval coloring. In [1, 8] another
sufficient condition for the existence of an interval coloring of a (3, 4)-biregular bipartite
graph G was obtained: G admits an interval coloring if it has a spanning subgraph F ,
every component of which is a nontrivial path with endpoints at 3-valent vertices and of
length not exceeding 8. We call this a proper path factor of G. It was conjectured in [1]
that every simple (3, 4)-biregular bipartite graph has a proper path factor. (3, 4)-biregular
bipartite graphs with multiple edges need not have proper path factors, as shown in [1, 8].

In general, a path factor of a graph G is a spanning subgraph of G whose components
are nontrivial paths. In [2] Asratian and Casselgren showed that every simple (3, 4)-
biregular bipartite graph has a path factor F such that the endpoints of each path are
at vertices of degree 3. However, no upper bound on the lengths of the paths in F was
established. In this note we present a variant of an algorithm introduced in [2] and show,
using this algorithm, that there is an absolute constant k, such that every simple (3, 4)-
biregular bipartite graph has a path factor consisting of paths with endpoints at 3-valent
vertices and of maximum length k. To be more precise, we prove the following theorem,
which provides some further evidence for the conjecture in [1].

Theorem 1.1. Every simple (3, 4)-biregular bipartite graph has a path factor F where the
endpoints of each path are at 3-valent vertices, and the length of each path in F is at most
22.
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2 Proof of Theorem 1.1

We denote by dG(v) the degree of a vertex v in G and by NG(v) the neighborhood of v
in G. For a subset V ′ ⊆ V (G), we set NG(V ′) = ∪v∈V ′NG(v). For any integer n ≥ 1, the
complete bipartite graph K1,n is called a star. A pseudo path factor of a bipartite graph
G with bipartition (X, Y ), where the vertices in Y all have degree four, is a spanning
subgraph F of G such that every component of F is a path (possibly of length 0) and
dF (y) = 2 for every y ∈ Y .

In [2] the author and Asratian proved that a pseudo path factor F of a simple (3, 4)-
biregular bipartite graph G can be transformed into a path factor F ′ of G, such that the
endpoints of each path in F ′ have degree three in G and no path in F ′ is longer than the
longest path in F (this is done by augmenting F along trails with edges alternately in
F and G − E(F ), see Theorem 4 in [2]). This implies that instead of proving Theorem
1.1 we may show the following theorem, the proof of which will take up the rest of this
section.

Theorem 2.1. Every simple (3, 4)-biregular bipartite graph has a pseudo path factor such
that the length of each path is at most 22.

We need the following easy lemma.

Lemma 2.2. If a loop-free graph G has no isolated vertices, then there is an edge cover
M of G, such that every component of G[M ] is a star.

Proof. Let M ′ be a maximum matching in G. Clearly, all vertices that are unsaturated
by M ′ are nonadjacent. Furthermore, if uv ∈ M ′, then u and v cannot be adjacent to
different unsaturated vertices, because then there is an M ′-augmenting path in G. We
can thus extend M ′ to an edge cover M by adding to M ′ an edge incident with each
unsaturated vertex.

Proof of Theorem 2.1. Let G be a (3, 4)-biregular bipartite graph with bipartition
(X, Y ) and let Y ′ be a maximum subset of Y , such that the vertices in Y ′ have disjoint
neighborhoods in G. Note that every vertex y ∈ Y \ Y ′ is adjacent to at least one vertex
of degree 2 in G − Y ′, because otherwise y would have been included in Y ′. Let Y3

be the set of vertices in Y \ Y ′ that are adjacent to exactly three vertices of degree 3
in G − Y ′. Remove from G − Y ′ a maximum subset Y ′′ ⊆ Y3 of vertices with disjoint
neighborhoods in G and denote the obtained graph by H . Let H have bipartition (X, YH),
where YH = Y \ (Y ′ ∪ Y ′′). We set Ŷ = Y ′ ∪ Y ′′ and define a new graph I by setting
I = G[Ŷ ∪ X]. We need some properties of the graphs H and I.

Claim 2.3. Every vertex in YH is adjacent to at least two vertices of degree at most 2 in
H, or adjacent to at least one vertex of degree 1 in H.

This is evident, since if a vertex y ∈ YH does not satisfy the conditions of Claim 2.3,
then it belongs to Y3 and would have been included in Y ′′.

Claim 2.4. The graph I is a forest, every component of which is either
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(i) an isolated vertex that belongs to X,

(ii) a star consisting of one vertex y ∈ Ŷ with four neighbors in X, or

(iii) a subgraph consisting of two vertices y, y′ ∈ Ŷ with |NI({y, y′})| = 7, and
|NI(y) ∩ NI(y

′)| = 1.

Proof. Since Y ′′ ⊆ Y3, if v ∈ Y ′′, then there is exactly one vertex u ∈ Y ′, such that u and
v have a common neighbor and, clearly, |NG(u) ∩ NG(v)| = 1. Furthermore, if w ∈ Y ′,
then there cannot be two vertices y, y′ ∈ Y ′′, such that

NG(w) ∩ NG(y) 6= ∅ and NG(w) ∩ NG(y′) 6= ∅,

because this would contradict the maximality of Y ′. Thus a component in I contains at
most two vertices from Ŷ .

The proof of the next lemma is based on a variant of an algorithm introduced in [2]
and is postponed to the next section.

Lemma 2.5. H has a pseudo path factor F such that the length of each path in F does
not exceed 4, and for each vertex x ∈ X with dH(x) ≤ 2, we have dF (x) ≤ 1.

Consider now the graph I defined above. By Claim 2.4, I might contain a component
with two vertices from Ŷ . For each component of I with two vertices from Ŷ , remove
exactly one of the edges incident with the common neighbor of the vertices in Ŷ , and
denote the obtained graph by I ′. Suppose now that F is a pseudo path factor of H that
satisfies the conditions of Lemma 2.5. Since F is a pseudo path factor, the endpoints of
all paths in F are in X. If x ∈ X and dI′(x) > 0, then dH(x) ≤ 2 and Lemma 2.5 yields
that x is either an endpoint of a path in F or is not in any nontrivial path in F . We
construct from I ′ a new graph J by setting J = I ′ +E ′, where E ′ is a set of edges defined
as follows: e = xx′ ∈ E ′ if and only if x and x′ are distinct endpoints of one path in F .

In the remaining part of the proof of Theorem 2.1 we will describe a method for
constructing a subgraph Q of J , such that every component of Q is a path and dQ(y) = 2

for every vertex y ∈ Ŷ . Additionally, we require that E ′ ⊆ E(Q). Since the edges in E ′

correspond to paths in a pseudo path factor F of H , the graph Q will correspond to a
pseudo path factor in G. The construction of Q will be carried out in several steps.

We construct a new graph K from J by contracting every component of I ′ into a single
vertex and removing all possibly arising loops but retaining multiple edges (if a component
of I ′ already consists of a single vertex, then this vertex is included in K without any
changes). Thus two vertices v, v′ ∈ V (K) are adjacent if and only if two vertices of the
corresponding components of I ′ are adjacent in J , that is, if they are joined by an edge
from E ′. Let K ′ be the graph obtained from K by removing all isolated vertices. By
Lemma 2.2, there is an edge cover M in K ′ such that every component of K ′[M ] is a
star. Denote by MJ the edges in J corresponding to the edges of M . Let MI be the set
of edges e ∈ E(I ′) such that e is adjacent to an edge from MJ .
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Suppose that there is some vertex y ∈ Ŷ that is not incident with any edge in MI .
Then, if A is the component of I ′ containing y, we must have that the vertex in K
corresponding to A is isolated. Consequently, if e ∈ E ′ and e is incident with some vertex
of A, then both ends of e is in A. Since dJ(y) ≥ 3, we may select two edges e1, e2 ∈ E(J)
incident with y, such that if e1 is adjacent to some edge e′ ∈ E ′, then e2 is not adjacent
to e′. (If no edges of E ′ are adjacent to edges in A, then two arbitrary edges of A incident
with y are selected.) By repeating this procedure for every vertex y ∈ Ŷ that is not
incident with any edge from MI , we obtain a set of edges E0. Let E ′

0 be the set of edges
e′ ∈ E ′ such that e′ is adjacent to an edge from E0. Next, we define a set of edges
M ′

I ⊆ MI as follows: For every vertex y ∈ Ŷ that is incident with at least one edge of MI ,
if more than two edges of MI are incident with y, then only two of those edges belong
to M ′

I (which ones do not matter), otherwise all edges of MI incident to y belong to M ′

I .
We now define a subgraph Q0 of J by setting

V (Q0) = V (J) and E(Q0) = MJ ∪ M ′

I ∪ E0 ∪ E ′

0.

It follows from the construction of Q0 that it satisfies the following conditions:

(a) dQ0
(y) ≥ 1 for each vertex y ∈ Ŷ ;

(b) every component of Q0 is a path of length not exceeding 6;

(c) every component of Q0 contains at most three vertices from Ŷ , at most four vertices
from X, and at most two edges from E ′;

(d) if y ∈ Ŷ and dQ0
(y) = 1, then there are at least two edges e1, e2 ∈ E(J)\E(Q0) that

are incident with y, and if e′ ∈ E ′ and e′ is adjacent to e1 or e2, then e′ /∈ E(Q0).

(e) if e′ ∈ E ′ and e′ is adjacent to distinct edges e1, e2 ∈ E(I ′), then e′ ∈ E(Q0) if and
only if {e1, e2} ∩ E(Q0) 6= ∅.

Let Ŷ2 be the set of vertices y ∈ Ŷ such that dQ0
(y) = 2, let X1 be the vertices x ∈ X

such that dQ0
(x) ≥ 1, and define the graph L by setting L = J − Ŷ2 −X1. Next, let L′ be

the graph obtained from L by contracting all edges in E ′ ∩ E(L) and removing all loops
but retaining multiple edges in the resulting graph. Note that L′ is bipartite and Ŷ \ Ŷ2

is one part in the bipartition.

Claim 2.6. There is a matching in L′ that saturates every vertex in V (L′) ∩ Ŷ .

Proof. It is easily seen that if x ∈ V (L′) \ Ŷ , then dL′(x) ≤ 2. Let y ∈ Ŷ with dQ0
(y) = 1.

It follows from condition (d) and (e) that dL′(y) ≥ 2. Moreover, if |NL′(y)| = 1, then y is
the only neighbor of the vertex in NL′(y). Thus, by Hall’s condition there is a matching
in L′ that saturates all vertices in V (L′) ∩ Ŷ .

Let R be a matching in L′ that saturates every vertex in V (L′) ∩ Ŷ . Denote by RJ

the edges in J corresponding to edges in R. By the construction of L′, each edge of E ′ is
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adjacent to at most one edge of RJ in J . It follows from this and conditions (a), (b), (d),
(e) that the graph

Q = Q0 + RJ + E ′ \ E(Q0)

is a subgraph of J such that dQ(y) = 2 for every y ∈ Ŷ , and every component of Q is a

path of length at most 10. If an endpoint of a path in Q0 belongs to Ŷ , then the above
construction of Q adds one or two edges (in the latter case one of these edges belong to
E ′) to this endpoint.

To sum up, every component of Q is a path, dQ(y) = 2 for every vertex y ∈ Ŷ , the
length of a path in Q is at most 10, E ′ ⊆ E(Q) and each path in Q contains at most four
edges from E ′. Since the edges of E ′ correspond to paths of length at most 4 in a pseudo
path factor of H , Q induces a pseudo path factor P in G, such that the length of each
path in P does not exceed 22. We have thus proved Theorem 2.1.

3 Proof of Lemma 2.5

We prove Lemma 2.5 by presenting below an algorithm for constructing a pseudo path
factor F of H , such that the length of each path in F is at most 4 and for each vertex
x ∈ X with dH(x) ≤ 2, we have dF (x) ≤ 1.

The algorithm constructs a sequence of subgraphs F0, F1, F2, . . . of H , where V (F0) =
V (H), ∅ = E(F0) ⊂ E(F1) ⊂ E(F2) ⊂ . . . and each component of Fp is a path, for every
p ≥ 1. At each step i ≥ 1 the algorithm constructs Fi by adding to Fi−1 one or two
edges until the condition dFj

(y) = 2 holds for all y ∈ YH , where j ≥ 1. Then F = Fj is
a pseudo path factor of H . Parallelly the algorithm constructs a sequence of subgraphs
U0, U1, U2, . . . of H , where V (U0) = V (H), ∅ = E(U0) ⊂ E(U1) ⊂ E(U2) ⊂ · · · ⊂ E(Uj).
The edges of each Ui will not be in the final pseudo path factor F .

The algorithm is based on Properties 3.1-3.6. During the execution of the algorithm
the vertices in the set X are considered to be unscanned or scanned. Initially all vertices
in X are unscanned. At the beginning of each step i ≥ 1 we have a current vertex yi ∈ YH .
The algorithm selects a vertex xi among the unscanned vertices that are adjacent to yi,
and then determines which edges incident with xi will be in Fi and which ones in Ui. If
dFi

(v) = 2 for each v ∈ YH , then the algorithm stops. Otherwise the algorithm selects a
new current vertex and goes to the next step.

Algorithm

Initially F0 = (V (H), ∅), U0 = (V (H), ∅) and all vertices in X are unscanned.

Step 0. Select a vertex x0 ∈ X with dH(x0) = 2. Let y0, y1 be the vertices in YH

adjacent to x0 in H . Put F1 = F0 + y0x0 and U1 = U0 + x0y1. Consider the vertex
x0 to be scanned. Go to step 1 and let y1 be the current vertex for step 1.
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Step i (i ≥ 1). Step i consists of two parts: the main part, where Fi and Ui are
constructed, and the final part, where the current vertex for the next step is
selected.

Main Part. Suppose that a vertex yi with dFi−1
(yi) ≤ 1 was selected at step

(i − 1) as the current vertex. By Property 3.4 (see below), dUi−1
(yi) ≤ 2.

Therefore, there is an edge xiyi with xi ∈ X, such that xiyi /∈ E(Fi−1) ∪ E(Ui−1).
Moreover, if there is no edge yix ∈ E(Fi−1) such that dFi−1

(x) = 1, then we choose
xi so that dH(xi) ≤ 2. By Property 3.5 we can make such a choice. In any case,
the vertex xi is by Property 3.2 unscanned and therefore the subgraph Fi−1 + xiyi

does not contain a cycle.

Since dH(xi) ∈ {1, 2, 3}, the vertex xi is, besides yi, adjacent to either no vertex

(Case 1), one vertex w
(i)
1 (Case 2-3) or two other vertices, w

(i)
1 and w

(i)
2 (Case 4-6).

Case 1 . dH(xi) = 1:
Put Fi = Fi−1 + xiyi and consider the vertex xi to be scanned.

Case 2 . dH(xi) = 2 and dFi−1
(w

(i)
1 ) = 2:

Put Fi = Fi−1 + xiyi and Ui = Ui−1 + xiw
(i)
1 . Consider the vertex xi to be scanned.

Case 3 . dH(xi) = 2 and dFi−1
(w

(i)
1 ) ≤ 1:

Put Fi = Fi−1 + xiyi and Ui = Ui−1 + xiw
(i)
1 . Consider the vertex xi to be scanned.

Case 4 . dH(xi) = 3 and dFi−1
(w

(i)
1 ) = dFi−1

(w
(i)
2 ) = 2:

Put Fi = Fi−1 + xiyi and Ui = Ui−1 + {xiw
(i)
1 , xiw

(i)
2 }. Consider the vertex xi to be

scanned.

Case 5 . dH(xi) = 3, dFi−1
(w

(i)
1 ) ≤ 1 and dFi−1

(w
(i)
2 ) = 2:

Put Fi = Fi−1 + xiyi, Ui = Ui−1 + {xiw
(i)
1 , xiw

(i)
2 } and consider the vertex xi to be

scanned.

Case 6 . dFi−1
(w

(i)
1 ) ≤ 1 and dFi−1

(w
(i)
2 ) ≤ 1:

Subcase 6a. dFi−1
(w

(i)
1 ) = 0 or dFi−1

(w
(i)
2 ) = 0:

We assume that dFi−1
(w

(i)
2 ) = 0. Put Fi = Fi−1 + {xiyi, xiw

(i)
2 }, Ui = Ui−1 + xiw

(i)
1

and consider the vertex xi to be scanned.

Subcase 6b. dFi−1
(w

(i)
1 ) = dFi−1

(w
(i)
2 ) = 1 and there is a vertex

x ∈ NFi−1
(w

(i)
1 ) ∪ NFi−1

(w
(i)
2 ) such that dFi−1

(x) = 1:

We assume that w
(i)
2 is adjacent (in Fi−1) to a vertex of degree 1 in Fi−1. Put

Fi = Fi−1 + {yixi, xiw
(i)
2 }, Ui = Ui−1 + xiw

(i)
1 and consider the vertex xi to be

scanned.

Subcase 6c. dFi−1
(w

(i)
1 ) = dFi−1

(w
(i)
2 ) = 1 and there is no vertex

x ∈ NFi−1
(w

(i)
1 ) ∪ NFi−1

(w
(i)
2 ) such that dFi−1

(x) = 1:

By Property 3.6, we have dUi−1
(w

(i)
1 ) = dUi−1

(w
(i)
2 ) = 0 or at least one of the

vertices w
(i)
1 and w

(i)
2 is adjacent to a vertex of degree 1 in H .

the electronic journal of combinatorics 18 (2011), #P218 7



First suppose that dUi−1
(w

(i)
1 ) = dUi−1

(w
(i)
2 ) = 0. Put Fi = Fi−1 + xiyi,

Ui = Ui−1 + {xiw
(i)
1 , xiw

(i)
2 } and consider the vertex xi to be scanned.

Now suppose instead that w
(i)
2 is adjacent to a vertex u1 with dH(u1) = 1. By our

assumption about w
(i)
2 and since dH(u1) = 1, the vertex u1 is certainly unscanned.

Put Fi = Fi−1 + {yixi, w
(i)
2 u1}, Ui = Ui−1 + {xiw

(i)
1 , xiw

(i)
2 } and consider the

vertices xi, u1 to be scanned.

Final Part. In Cases 1, 2, 4 above, we select the current vertex for the next step
according to the following rule: If dFi

(v) = 2 for every vertex v ∈ YH then Stop.
Otherwise select an arbitrary vertex yi+1 ∈ YH with dFi

(yi+1) ≤ 1, go to step
(i + 1) and consider yi+1 as the current vertex for step (i + 1).

If Case 3, 5 or 6 above applies, then we put yi+1 = w
(i)
1 , go to step (i + 1) and

consider yi+1 as the current vertex for step (i + 1).

Now we will prove the correctness of the algorithm. At the beginning of step i we have
that yi is the current vertex and the algorithm selects an unscanned vertex xi adjacent to
yi. If dH(xi) = 2 then w

(i)
1 is the other vertex adjacent to xi, if dH(xi) = 3 then another

vertex w
(i)
2 is also adjacent to xi. The following property is evident.

Property 3.1. The algorithm determines which edges incident with xi will be in Fi and
which edges will be in Ui, the edge yixi will always be included in Fi. The vertex xi is then
considered to be scanned and the algorithm will never consider xi again. If dH(xi) ≤ 2,
then only one edge incident with xi will be included in Fi.

The next property follows from Property 3.1.

Property 3.2. If x ∈ X, y ∈ YH and the edge xy /∈ E(Fi−1) ∪ E(Ui−1), then the vertex
x is unscanned at the beginning of step i.

It is straightforward to verify that the next property follows from the description of
the algorithm.

Property 3.3. If an edge incident with a vertex y ∈ YH is included in Ul at step l and
dFl

(y) < dUl
(y), then y will be the current vertex of step (l + 1).

Suppose now that dUl−1
(y) = dFl−1

(y) = 0 and an edge e incident with y ∈ YH is
included in Ul at step l. It follows from Property 3.3 that y will be the current vertex
of step (l + 1) and according to the description of the algorithm, a vertex xl+1 ∈ NH(y)
such that xl+1y /∈ E(Fl) ∪ E(Ul) would be selected at step (l + 1). The vertex xl+1 is
by Property 3.2 unscanned at step (l + 1) and Property 3.1 yields that yxl+1 would be
included in Fl+1 and we would have dFl+1

(y) = dUl+1
(y) = 1.

Similarly, if yet another edge e′ incident with y is included in Um at step m > l, then
either another edge e′′ /∈ E(Fm−1) ∪ E(Um−1), incident with y, would be included in Fm

at step m (Subcase 6c above), or, by Property 3.3, y would be the current vertex of step
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(m + 1). In the latter case, dUm
(y) = 2 and dFm

(y) = 1 and since dH(y) = 4, there is a
vertex xm+1 ∈ NH(y) such that xm+1y /∈ E(Fm) ∪ E(Um). Then xm+1 is unscanned at
step (m+1) and by Property 3.1, xm+1y would be included in Fm+1 at step (m+1). Thus
we have the following property.

Property 3.4. If y ∈ YH and dFi−1
(y) = 0, then dUi−1

(y) ≤ 1, and if y ∈ YH and
dFi−1

(y) = 1, then dUi−1
(y) ≤ 2.

Property 3.5. If the current vertex yi of step i is not incident with an edge yix ∈ E(Fi−1)
such that dFi−1

(x) = 1, then yi is adjacent to a vertex xi with dH(xi) ≤ 2, such that
yixi /∈ E(Fi−1) ∪ E(Ui−1).

Proof. Let yi be the current vertex of step i and assume that there is no edge yix ∈
E(Fi−1), such that dFi−1

(x) = 1. Suppose further that there is no vertex xi adjacent to yi

such that yixi /∈ E(Fi−1) ∪ E(Ui−1) and dH(xi) ≤ 2.
By Claim 2.3, yi is adjacent to at least two vertices of degree at most 2 in H or a

vertex of degree 1 in H . In the latter case, the desired result follows, because if there
is such a vertex u, then by Property 3.1, either uyi ∈ E(Fi−1) or u is unscanned. So
assume that yi is not adjacent to a vertex of degree 1 in H , and let xi1 , xi2 be the two
vertices in NH(yi) that satisfy dH(xi1) = dH(xi2) = 2. Since we assumed that there was
no vertex xi, such that dH(xi) = 2 and yixi /∈ E(Fi−1)∪E(Ui−1), the vertices xi1 , xi2 must
be scanned at step i. Property 3.1 yields that dFi−1

(xi1) ≤ 1, dFi−1
(xi2) ≤ 1 and we thus

have {yixi1 , yixi2} ⊆ E(Ui−1).
Let j be the minimum integer such that j ≤ i − 1 and one of the edges yixi1 , yixi2

was included in Uj at step j. Suppose that yixi1 was included in Uj at step j. Then by
the description of the algorithm (Case 3 above), yi would be the current vertex of step
(j + 1). Since yixi2 /∈ E(Uj), we must have j < i − 1. Moreover, since xi2 is unscanned
at step (j + 1), yixi2 would have been included in Fj+1 at step (j + 1). It follows from
Property 3.1 that dFj+1

(xi2) = 1, because dH(xi2) = 2. Since j + 1 ≤ i − 1, Fj+1 ⊆ Fi−1,
and this is contradiction to our assumption above.

Property 3.6. Let x ∈ X be an unscanned vertex at the beginning of step i that satisfies
dH(x) = 3. Suppose that x is adjacent to a vertex y ∈ YH such that

(i) dFi−1
(y) = 1,

(ii) y is not incident with an edge uy ∈ E(Fi−1), such that dFi−1
(u) = 1,

(iii) y is not the current vertex of step i.

Then dUi−1
(y) = 0 or y is adjacent to a vertex w with dH(w) = 1.

Proof. Suppose that x and y are vertices that satisfy the hypothesis of Property 3.6.
Then there is a vertex x′ ∈ NFi−1

(y) such that dFi−1
(x′) = 2. Property 3.1 implies that

dH(x′) = 3. Suppose that y is not adjacent to a vertex w ∈ X with dH(w) = 1. Then,
since dH(x) = dH(x′) = 3, it follows from Claim 2.3 that the other two vertices xi1 , xi2 in
NH(y) satisfy dH(xi1) = dH(xi2) = 2.
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Suppose, for a contradiction, that dUi−1
(y) > 0. This implies that xi1y ∈ E(Ui−1) or

xi2y ∈ E(Ui−1). Let j be the minimum integer such that j ≤ i − 1 and one of the edges
yxi1 and yxi2 was included in Uj at step j. Suppose, for instance, that yxi1 was included
in Uj at step j. Then by the description of the algorithm (Case 3 above), y would be the
current vertex of step (j + 1). Since y is not the current vertex of step i, we have that
j + 1 < i, and since yxi2 /∈ E(Fj) ∪ E(Uj), xi2 is unscanned at step (j + 1). This implies
that yxi2 would be included in Fj+1 and by Property 3.1, dFj+1

(xi2) = 1. Since j + 1 < i,
Fj+1 ⊆ Fi−1, and this is a contradiction.

It follows from the description of the algorithm and Properties 3.1-3.6 that the algo-
rithm will stop at step i only when dFi

(v) = 2 for every v ∈ YH , that is, when Fi is a
pseudo path factor of H . It is also clear that every vertex y ∈ YH is adjacent to at least
one vertex of degree 1 in the final pseudo path factor F = Fi and therefore the length of
each path in F does not exceed 4. Additionally, by Property 3.1, if x ∈ X and dH(x) ≤ 2,
then dF (x) ≤ 1. The proof of Lemma 2.5 is complete.

4 Concluding remarks

In [1] several examples of simple (3, 4)-biregular bipartite graphs having proper path
factors using only paths of length 6 was presented. If a simple (3, 4)-biregular bipartite
graph has a cut vertex, then it need not have a proper path factor containing only paths
of length 6 [8]. In addition to the conjecture made in [1] (every simple (3, 4)-biregular
bipartite graph has a proper path factor) we conjecture that every simple 2-connected
(3, 4)-biregular bipartite graph has a proper path factor containing only paths of length
6.

The following might also be worth noting: Let G be a simple (3, 4)-biregular bipartite
graph with bipartition (X, Y ). If there is a subset Y ′ ⊆ Y , such that the vertices of Y ′

have disjoint neigborhoods and every vertex in Y \ Y ′ is adjacent to at least two vertices
of degree 2 in G − Y ′, then the method for constructing path factors presented here will
construct a path factor P of G, such that the endpoints of each path in P have degree
three and the length of each path in P does not exceed 10. (In the proof of Theorem 2.1
the set Y ′′ will be empty, every component of I contains only one vertex from Ŷ , and one
can use a simpler method for constructing the subgraph Q so that each path in Q has
length at most four and contains at most two edges from E ′.) It is, however, easy to find
examples of simple (3, 4)-biregular bipartite graphs that do not have this property. An
example of such a graph G with bipartition (X, Y ) can be constructed as follows: Let

Y = {y1, y2, y3, y4, y5, y6, y7, y8, y9} and X = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12},

where adjacency is defined by:

NG(x1) = {y1, y2, y3}, NG(x2) = {y4, y5, y6}, NG(x3) = {y7, y8, y9},

NG(x4) = {y1, y4, y7}, NG(x5) = {y2, y5, y8}, NG(x6) = {y3, y6, y9},
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NG(x7) = {y1, y5, y9}, NG(x8) = {y2, y6, y7}, NG(x9) = {y3, y4, y8},

NG(x10) = {y1, y6, y8}, NG(x11) = {y2, y4, y9}, NG(x12) = {y3, y5, y7}.

For every two vertices yi, yj ∈ Y there is a path of length 2 between yi and yj. Hence, no
two vertices of Y have disjoint neighborhoods and clearly there is no vertex y ∈ Y such
that every vertex in Y \ {y} is adjacent to two vertices of degree 2 in G − y.
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