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Abstract

Let k and m be positive integers. A collection of k-multisets from {1, . . . ,m} is

intersecting if every pair of multisets from the collection is intersecting. We prove

that for m ≥ k + 1, the size of the largest such collection is
(

m+k−2
k−1

)

and that when

m > k + 1, only a collection of all the k-multisets containing a fixed element will

attain this bound. The size and structure of the largest intersecting collection of

k-multisets for m ≤ k is also given.

1 Introduction

The Erdős-Ko-Rado Theorem [6] is an important result in extremal set theory that gives
the size and structure of the largest pairwise intersecting k-subset system from [n] =
{1, . . . , n}. This theorem is commonly stated as follows:

Theorem 1.1. Let k and n be positive integers with n ≥ 2k. If F is a collection of
intersecting k-subsets of [n], then

|F| ≤

(

n − 1

k − 1

)

.

Moreover, if n > 2k, equality holds if and only if F is a collection of all the k-subsets
from [n] that contain a fixed element from [n].
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Note that if n < 2k, any pair of k-subsets will be intersecting and so the largest
intersecting collection will have size

(

n

k

)

.
A multiset is a generalization of a set in which an element may appear more than

once. As with sets, the order of the elements is irrelevant. The cardinality of a multiset
is the total number of elements including repetitions. A k-multiset system on an m-set is
a collection of multisets of cardinality k containing elements from [m]. We say that two
multisets are intersecting if they have at least one element in common and that a collection
of multisets is intersecting if every pair of multisets in the collection is intersecting.

In this paper, we give a generalization of the Erdős-Ko-Rado Theorem to intersecting
multiset systems. Specifically, we prove the following two theorems for the cases when
m ≥ k + 1 and m ≤ k respectively.

Theorem 1.2. Let k and m be positive integers with m ≥ k + 1. If A is a collection of
intersecting k-multisets of [m], then

|A| ≤

(

m + k − 2

k − 1

)

.

Moreover, if m > k+1, equality holds if and only if A is a collection of all the k-multisets
from [m] that contain a fixed element from [m].

If m < k + 1, larger collections are possible. For example, if m = k =3, the seven k-
multisets containing either two or three distinct elements from [m] will form an intersecting
collection since each multiset contains more than half the elements from [m]. We will
use M(> m

2
) to denote the collection of all k-multisets that contain more than m

2
distinct

elements from [m] and M(m

2
) to denote the collection of all k-multisets from [m] containing

exactly m
2

distinct elements. Then

∣

∣

∣
M(m

2
)

∣

∣

∣
=

(

m
m
2

)(

k − 1

k − m
2

)

and
∣

∣

∣
M(> m

2
)

∣

∣

∣
=

m
∑

j=⌈m+1

2
⌉

(

m

j

)(

k − 1

k − j

)

.

Theorem 1.3. Let k and m be positive integers with m ≤ k. If A is a collection of
intersecting k-multisets of [m], then:

1. If m is odd, |A| ≤
∣

∣

∣
M(> m

2
)

∣

∣

∣
and equality holds if and only if A = M(> m

2
).

2. If m is even, |A| ≤
∣

∣

∣
M(> m

2
)

∣

∣

∣
+ 1

2

∣

∣

∣
M(m

2
)

∣

∣

∣
and equality holds if and only if A consists

of M(> m

2
) and a maximal intersecting collection of k-multisets from M(m

2
).
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A k-multiset on an m-set can be represented as an integer sequence of length m with
the integer in each position representing the number of repetitions of the corresponding
element from [m]. For example, if m = 6, the multiset {1, 2, 2, 4} can be represented
by the integer sequence (1, 2, 0, 1, 0, 0). For a k-multiset, the sum of the integers in the
corresponding integer sequence will equal k.

Erdős-Ko-Rado type results for intersecting families of integer sequences are known
(e.g. [9], [10], [11]). In these, the sum of the entries in the integer sequence is not restricted
to k and the definition of intersection is different from our definition for multisets. In [2],
Anderson proves an Erdős-Ko-Rado type result for multisets but uses yet another def-
inition of intersection. A definition of intersection equivalent to ours is used in several
theorems for intersecting collections of vectors presented by Anderson in [3]. These theo-
rems were originally written in terms of sets of noncoprime divisors of a number by Erdős
et al. in [5] and [7], and again the sum of the entries is not restricted to k.

More recently, Brockman and Kay [4] proved the result in Theorem 1.2 provided that
m ≥ 2k. Mahdian [13] proved the bound on the size of a collection of intersecting k-
multisets when m > k using a method similar to Katona’s cycle proof for sets [12]. Our
results improve the bound on m given in [4] and give the size and structure of the largest
possible intersecting collection for all values of m and k.

2 Proof of Theorem 1.2

Our proof of this theorem uses a homomorphism from a Kneser graph to a graph whose
vertices are the k-multisets of [m].

A Kneser graph, K(n, k), is a graph whose vertices are all of the k-sets from an n-set,
denoted by

(

[n]
k

)

, and where two vertices are adjacent if and only if the corresponding k-
sets are disjoint. Thus an independent set of vertices in the Kneser graph is an intersecting
k-set system. We will use α(K(n, k)) to denote the size of the largest independent set in
K(n, k).

We now define a multiset analogue of the Kneser graph. For positive integers k and
m, let M(m, k) be the graph whose vertices are the k-multisets from the set [m], denoted

by
(

(

[m]
k

)

)

, and where two vertices are adjacent if and only if the corresponding multisets

are disjoint. For this graph, the number of vertices is equal to
((

m

k

))

=
(

m+k−1
k

)

and an
independent set is an intersecting k-multiset system.

Let n = m + k − 1. Then K(n, k) has the same number of vertices as M(m, k) and
B ∩ [m] 6= ∅ for any B ∈

(

[n]
k

)

.
For a set A ⊆ [m] of cardinality a where 1 ≤ a ≤ k, the number of k-sets, B, from [n]

such that B ∩ [m] = A will be equal to

(

n − m

k − a

)

=

(

k − 1

k − a

)

.

Similarly, the number of k-multisets from [m] that contain all of the elements of A and
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no others will be equal to
((

a

k − a

))

=

(

a + (k − a) − 1

k − a

)

=

(

k − 1

k − a

)

.

Hence there exists a bijection, f :
(

[n]
k

)

→
(

(

[m]
k

)

)

, such that for any B ∈
(

[n]
k

)

, the set

of distinct elements in f(B) will be equal to B ∩ [m].
If A, B ∈

(

[n]
k

)

are two adjacent vertices in the Kneser graph, then (A∩[m])∩(B∩[m]) =
∅ and hence f(A) ∩ f(B) = ∅. Therefore f(A) is adjacent to f(B) if A is adjacent to

B and so the bijection f :
(

[n]
k

)

→
(

(

[m]
k

)

)

is a graph homomorphism. In fact, K(n, k) is

isomorphic to a spanning subgraph of M(m, k). Thus

α(M(m, k)) ≤ α(K(n, k)).

From the Erdős-Ko-Rado Theorem, we have that if n ≥ 2k,

α(K(n, k)) =

(

n − 1

k − 1

)

.

Thus, for m ≥ k + 1,

α(M(m, k)) ≤

(

n − 1

k − 1

)

=

(

m + k − 2

k − 1

)

.

An intersecting collection of k-multisets from [m] consisting of all k-multisets contain-
ing a fixed element from [m] will have size

(

m+(k−1)−1
k−1

)

=
(

m−k−2
k−1

)

. Therefore

α(M(m, k)) =

(

m + k − 2

k − 1

)

which gives the upper bound on A in Theorem 1.2.
To prove the uniqueness statement in the theorem, let m > k + 1 and let A be an

intersecting multiset system of size
(

m+k−2
k−1

)

. With the homomorphism defined above, the

pre-image of A will be an independent set in K(n, k) of size
(

n−1
k−1

)

. Since m > k + 1 and
n = m + k − 1, it follows that n > 2k so, by the Erdős-Ko-Rado theorem, f−1(A) will
be a collection of all the k-subsets of [n] that contain a fixed element from [n]. If the
fixed element, x, is an element of [m], then it follows from the definition of f that every
multiset in A will contain x. Thus A will be a collection of all the k-multisets from [m]
that contain a fixed element from [m] as required. If x /∈ [m], then f−1(A) will include the
sets A = {1, m+1, . . . , n} and B = {2, m+1, . . . , n} since m > k +1 implies that m > 2.
But f(A)∩f(B) = ∅ which contradicts our assumption that A is an intersecting collection
of multisets. Therefore, when m > k + 1, if A is an intersecting collection of multisets of
the maximum possible size, then A is the collections of all k-multisets containing a fixed
element from [m].

The case when m = k +1 is analogous to the case when n = 2k in the Erdős-Ko-Rado
theorem. The size of the largest possible intersecting collection is equal to

(

m+k−2
k−1

)

but
collections attaining this bound are not limited to those having a common element in all
k-multisets.
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3 Proof of Theorem 1.3

Although Theorem 1.2 is restricted to m ≥ k+1, the inequality α(M(m, k)) ≤ α(K(n, k))
still holds when m ≤ k. However, the resulting inequality

α(M(m, k)) ≤

(

n

k

)

=

(

m + k − 1

k

)

is not particularly useful since for m > 1 this bound is not attainable. Clearly, two
multisets consisting of k copies of different elements from [m] will not intersect.

Before proceeding with our proof of Theorem 1.3, we define the support of a multiset.
If A is a k-multiset from [m], the support of A, denoted by SA, is the set of distinct

integers from [m] in A. Note that two k-multisets, A, B ∈
(

(

[m]
k

)

)

, will be intersecting if

and only if SA ∩ SB 6= ∅ and that each SA will have a unique complement, SA = [m]\SA,
in [m].

Let A be an intersecting family of k-multisets of [m] of maximum size and let M ∈ A
be a k-multiset such that |SM | = min{ |SA| : A ∈ A}. If m = 2, it is easy to see that the
theorem holds, so we will assume that m > 2.

Suppose that |SM | < m
2
. Let B1 = {A ∈ A : SA = SM} and let B2 = {B ∈

(

(

[m]
k

)

)

:

SB = SM}. Then B1 ⊆ A and B2 ∩ A = ∅.
We will now show that A′ := (A\B1) ∪ B2 is an intersecting family of k-multisets

from [m] that is larger than A. By construction, every multiset in A\B1 contains at least
one element from [m]\SM , and [m]\SM = SB for all B ∈ B2. Thus A′ is an intersecting
collection of k-multisets.

Let |SM | = i. Then

|B1| =

((

i

k − i

))

=

(

k − 1

k − i

)

.

Since
∣

∣SM

∣

∣ = m − i, it follows that

|B2| =

((

m − i

k − (m − i)

))

=

(

k − 1

k − m + i

)

.

To show that |A′| > |A|, it is sufficient to show that

(

k − 1

k − m + i

)

>

(

k − 1

k − i

)

,

or equivalently, that

(k − i)!(i − 1)! > (k − m + i)!(m − i − 1)! .
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Since i < m
2

and m ≤ k, we have that k − i > k − m
2

> k − m + i ≥ 1. Therefore,

(k − i)!(i − 1)! = (k − i)(k − i − 1) . . . (k − m + i + 1)(k − m + i)!(i − 1)!

≥ (m − i)(m − i − 1) . . . (i + 1)(k − m + i)!(i − 1)!

=
m − i

i
(m − i − 1)!(k − m + i)!

> (m − i − 1)!(k − m + i)!

as required. Thus if A is of maximum size, it cannot contain a multiset with less than m
2

distinct elements from [m].
It is easy to see that any k-multiset containing more than m

2
distinct elements from [m]

will intersect with any other such k-multiset. This completes the proof of the theorem for
the case when m is odd. When m is even, it is necessary to consider the k-multisets which
contain exactly m

2
distinct elements, that is, the k-multisets in M(m

2
). These multisets will

intersect with any multiset containing more than m
2

distinct elements. However, M(m

2
)

is not an intersecting collection. For any A ∈ M(m

2
), all of the k-multisets, B, where

SB = SA will be in M(m

2
) and will not intersect with A. Since the size of a maximal

intersecting collection of m
2
-subsets of [m] is 1

2

(

m
m

2

)

and each m
2
-subset is the support

for the same number of multisets in M(m

2
), an intersecting collection of k-multisets will

contain at most half of the k-multisets in M(m

2
).

4 Further work

An obvious open problem is determining the size and structure of the largest collection
of t-intersecting k-multisets, i.e. collections of multisets where the size of the intersection
for every pair of multisets is at least t. (We define the intersection of two multisets to
be the multiset containing all elements common to both multisets with repetitions.) The
following conjecture is a version of Conjecture 5.1 from [4].

Conjecture 4.1. Let k, m and t be positive integers with t ≤ k and m ≥ t(k − t) + 2. If
A is a collection of intersecting k-multisets of [m], then

|A| ≤

(

m + k − t − 1

k − t

)

.

Moreover, if m > t(k − t) + 2, equality holds if and only if A is a collection of all the
k-multisets from [m] that contain a fixed t-multiset from [m].

The lower bound on m in this conjecture was obtained by substituting m + k − 1
for n in the corresponding bound for sets given by Frankl [8] and Wilson [14]. The
conjecture is supported by the fact that when m > t(k − t) + 2, a collection consisting
of all k-multisets containing a fixed t-multiset is larger than a collection consisting of all
k-multisets containing t + 1 elements from a set of t + 2 distinct elements of [m] and
that these two collections are equal in size when m = t(k − t) + 2. Furthermore, when
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m = t(k − t) + 1, collections larger than
(

m+k−t−1
k−t

)

are possible. For example, if t = 2,
k = 5 and m = 7, the cardinality of the collection of all k-multisets containing three or
more elements from {1, 2, 3, 4} is 91 while

(

m+k−t−1
k−t

)

= 84.
The existence of a graph homomorphism from the Kneser graph K(n, k) to its multiset

analogue M(m, k) in the proof of Theorem 1.2 gave a simple and straight-forward way to
show that the size of the largest independent set in M(m, k) is no larger than the size of
the largest independent set in K(n, k). These graphs can be generalized as follows: let
K(n, k, t) be the graph whose vertices are the k-subsets of [n] and where two vertices,
A, B, are adjacent if |A ∩ B| < t and let M(m, k, t) be the graph whose vertices are the
k-multisets of [m] and where two vertices, C, D are adjacent if |C ∩ D| < t.

If a bijective homomorphism from K(n, k, t) to M(m, k, t) exists, it could be used to
prove a bound not only on the maximum size of a t-intersecting collection as given in
Conjecture 4.1 but also on the maximum size when k − t ≤ m ≤ t(k − t) + 2 using the
Complete Erdős-Ko-Rado theorem of Ahlswede and Khachatrian [1]. However, it is not
clear that such a homomorphism exists. The conditions placed on the bijection in the
proof of Theorem 1.2 are not sufficient to ensure that the bijection is a homomorphism
since for two k-multisets, A and B, having |SA ∩ SB| < t does not imply that |A ∩ B| < t.

The simple fact that if a graph G is isomorphic to a spanning subgraph of a graph
H , then α(H) ≤ α(G) may be useful in proving Erdős-Ko-Rado theorems for different
objects. It would be interesting to determine if there are combinatorial objects other
than multisets which have this relationship to an object for which an Erdős-Ko-Rado
type result is known.
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[10] P. Frankl and N. Tokushige. The Erdős-Ko-Rado theorem for integer sequences.
Combinatorica, 19(1):55–63, 1999.
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