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Abstract

In this paper we first prove that if the edge set of an undirected graph is the
disjoint union of two of its spanning trees, then for every subset P of edges there
exists a spanning tree decomposition that cuts P into two (almost) equal parts.
The main result of the paper is a further extension of this claim: If the edge set of
a graph is the disjoint union of two of its spanning trees, then for every stable set
of vertices of size 3, there exists such a spanning tree decomposition that cuts the
stars of these vertices into (almost) equal parts. This result fails for 4 instead of 3.
The proofs are elementary.
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1 Introduction

An undirected graph G = (V, E) is a 2-tree-union if E is the disjoint union of the edge
sets of two spanning trees of G. A coloring of the edges of a 2-tree-union to red and blue is
a 2-tree-coloring if both the red and the blue edges form a spanning tree. If G = (V, E)
is a 2-tree-union and P is a collection of disjoint subsets of E, then a 2-tree-coloring of E
is equitable to P, if in every element of P the number of red and blue colors differ in at
most 1. We say that a 2-tree-union G = (V, E) is k-equitable if for any sub-partition P
of E consisting of k disjoint subsets of edges, G has a 2-tree-coloring equitable to P. An
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edge set F ⊆ E is a star if all the edges in F have an end vertex, the center, in common.
We say that a 2-tree-union G = (V, E) is k-star-equitable if for any sub-partition P of
E consisting of k disjoint stars, G has a 2-tree-coloring equitable to P.

In this paper we consider the question of equitability and star-equitability. In Section 2
we prove that 2-tree-unions are 1-equitable (Theorem 2.3), but not necessarily 2-equitable.
In Section 3 we prove that 2-tree-unions are k-star-equitable for k = 1, 2, 3 (Theorem 3.1),
but not necessarily 4-star-equitable. The proof of Theorem 3.1 is elementary but quite
involved.

The star of a vertex v ∈ V , denoted by ∆(v) ⊆ E, consists of the edges of G
incident to v. Theorem 3.1 implies that if s1, s2, s3 are independent vertices in a 2-tree-
union G, then G has a 2-tree-coloring equitable to {∆(s1), ∆(s2), ∆(s3)}. However, the
same statement with four vertices would be false, by the counterexample in the beginning
of Section 3.

Observe that our results imply also that if the edge set E of an undirected graph can
be partitioned into l spanning trees, then one can choose such a partition to be equitable
to a given set P ⊆ E, or to be equitable to a given sub-partition P of E consisting of at
most three stars.

The following conjecture gave some motivation to the above questions.

Conjecture 1.1 ([3], Exercise 4.69). Let G = (V, E) be an undirected graph. For X ⊆ V
let iG(X) denote the number of edges of G induced by X. If |E| = 2|V | − 2, iG(X) ≤
2|X| − 3 for every X ( V, |X| ≥ 2, and every vertex of G has degree at most 4, then E
can be partitioned into two Hamiltonian paths.

Observe that a partition of E into two Hamiltonian paths is just a partition into two
spanning trees equitable to the set of all stars. Thus it would be interesting to investigate
equitable partitions in 2-tree-unions which satisfy properties like iG(X) ≤ 2|X| − 3 or
connectivity requirements.

The question of the paper can also be put in a matroidal setting. Call a matroid a
2-base if its ground set is the disjoint union of two of its bases. If M = (E, r) is a 2-base
and P is a sub-partition of E, then call a partition of E into two bases B1, B2 equitable
to P if ||B1 ∩P |− |B2 ∩P || ≤ 1 for all P ∈ P; and call a 2-base M = (E, r) k-equitable
if for any k-element sub-partition P of E there is a partition of E into two bases equitable
to P. Observe that the cycle matroid of a 2-tree-union is a 2-base.

It is an intriguing open problem whether every 2-base matroid is 1-equitable. This
definitely holds for graphic matroids by Theorem 2.3. It is also true for weakly base
orderable matroids, as one can greedily modify the current base decomposition E =
B1∪̇B2 to decrease ||B1 ∩ P | − |B2 ∩ P ||, until the bases cut P into two (almost) equal
parts. Finally, we mention a result of Davies and McDiarmid [1], who proved that if M1

and M2 are two strongly base orderable matroids on the same ground set E, and both of
them can be partitioned into l bases, then E can be partitioned into l common bases. It
follows that 2-base strongly base orderable matroids are k-equitable for any k.

The paper was also motivated by coverings of common independent sets of two ma-
troids, a problem to which no characterization is known yet. One solved example is
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Kőnig’s edge-coloring theorem ([4], see [6, p. 321]). If G(V1, V2; E) is a bipartite graph,
and we define matroids M1 and M2 on E with I ⊆ E independent in Mi if degI(v) ≤ 1 for
all v ∈ Vi, then Kőnig’s edge-coloring theorem states that E can be covered by ∆ common
independent sets if and only if both M1 and M2 can be covered by ∆ independent sets.
Another example is Edmonds’ arborescence theorem ([2], see [6, p. 904]), stating that if
a directed graph D can be partitioned into k undirected trees and every in-degree is k,
except at a specified vertex r where it is 0, then D can be partitioned into k arborescences
rooted at r. In other words, the cycle matroid of D has a partition into k bases equitable
to the sub-partition with classes the in-stars of the vertices.

In the rest of this paper all graphs G are undirected. If G = (V, E) is a graph and
X, Y ⊆ V are disjoint vertex sets, then iG(X) denotes the number of edges of G induced
by X; edge e enters X if exactly one end-vertex of e is contained in X; dG(X, Y ) denotes
the number of edges between X and Y ; and δG(X) = dG(X, V − X).

2 2-tree-unions are 1-equitable

We need some preliminaries on 2-tree-unions. First observe that a 2-tree-union may have
double parallel edge pairs but no loops. A characterization of 2-tree-unions was given by
Nash-Williams [5].

Theorem 2.1 (Nash-Williams [5]). The graph G = (V, E) is a 2-tree-union if and only

if |E| = 2|V | − 2 and iG(X) ≤ 2|X| − 2 for all ∅ 6= X ⊆ V .

We call a set X ⊆ V tight if iG(X) = 2|X| − 2. By the supermodularity of iG the
next claim follows easily.

Claim 2.2. If G is a 2-tree-union then the union of two intersecting tight sets is tight.

Moreover, if X is tight and u /∈ X then dG(X, u) ≤ 2.

Pinching edges e and f in a graph means subdividing these edges with two new
vertices ve and vf , and then identifying these nodes with one new node vef = ve = vf .
Note that deg(vef) = 4.

Let G = (V, E) be a 2-tree-union. An operation used throughout is the split at vertex
v ∈ V , defined below. We call a split admissible if it results in a 2-tree-union. The
inverse operation of a split is called unsplit.

• If degG(v) = 2 then splitting v means simply deleting v from G. Clearly, G − v
is also a 2-tree-union and any 2-tree-coloring of G − v can be extended to a 2-tree-
coloring of G in two ways, by arbitrary coloring one of the edges of v to blue and
the other one to red.

• If degG(v) = 3 then let the edges incident to v be ei joining v to ui for i = 1, 2, 3.
Splitting the edge-pair ei, ej (i 6= j) means deleting v from G and adding the
uiuj-edge e, resulting in the graph H . We also say that we split v to a uiuj-edge.
Note that splitting the pair ei, ej is admissible unless G has a tight set X such that
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ui, uj ∈ X and v /∈ X. So Claim 2.2 clearly implies that for at least two choices of
the edge-pair ei, ej the graph H is a 2-tree-union. In this case any 2-tree-coloring of
H can be extended to a 2-tree-coloring of G in the following way (the unsplitting
at v). If the split edge e is, say, blue then delete e from H , add v, add the edges
ei, ej colored blue and let the third edge incident to v be red.

• If degG(v) = 4 then let the edges incident to v be ei joining v to ui for 1 ≤ i ≤ 4.
Splitting the edge-pair e1, e2 means deleting v from G and adding the u1u2-edge
e and the u3u4-edge f resulting in the graph H . We also say that we split v to
a u1u2-edge and to a u3u4-edge. It is easy to see that this split is admissible
unless G has a tight set v /∈ X such that either u1, u2 ∈ X or u3, u4 ∈ X. By Claim
2.2 at least two splits give a 2-tree-union. In this case any 2-tree-coloring of H can
be extended to a 2-tree-coloring of G in the following way (the unsplitting at v).
First pinch e and f by vertex v. If e and f had different colors then we are done.
Otherwise, say, both e and f were blue so we produced a circuit C in the blue tree.
Now re-color an edge of C incident to v to red.

Theorem 2.1 implies that a 2-tree-union with at least two edges has either a vertex of
degree 2 or two vertices of degree 3. Thus it is always possible to perform an admissible
split.

Now we prove that 2-tree-unions are 1-equitable. That they are not necessarily 2-
equitable is shown by K4 and the sub-partition of E(K4) consisting of two disjoint perfect
matchings.

Theorem 2.3. 2-tree-unions are 1-equitable.

Proof. Let G = (V, E) be a 2-tree-union and P ⊆ E. We prove by induction on E that G
has a 2-tree-coloring equitable to P . If E = ∅ then the statement is trivially true. Recall
that by Theorem 2.1, G has a vertex of degree at most 3.

Assume that G has a vertex v of degree 2. Let ∆(v) = {e, f}. If |{e, f} ∩ P | ∈ {0, 2}
then apply the induction hypothesis to G − v and P − {e, f}. If, say, e ∈ P and f /∈ P
then by induction, G − v has two disjoint spanning trees F1 and F2 equitable to P − e.
Assume that, say, |F1 ∩ (P − e)| ≤ |F2 ∩ (P − e)|. Now F1 + e and F2 + f are two disjoint
spanning trees of G equitable to P .

Assume now that G has a vertex v of degree 3. Let ∆(v) = {e1, e2, e3} such that ei

joins v to ui ∈ V for i = 1, 2, 3. Recall that G− v + uiuj is a 2-tree-union for at least two
choices of 1 ≤ i < j ≤ 3. We distinguish four cases.

• |∆(v) ∩ P | = 0. Here we apply induction to any admissible split at v. Now the
unsplitting at v gives a 2-tree-coloring of G equitable to P .

• |∆(v)∩P | = 1. We can assume that, say, G−v +u1u2 is a 2-tree-union and e1 ∈ P .
We apply induction to G − v + u1u2 and P − e1 + u1u2. Then the unsplitting at v
gives a 2-tree-coloring of G equitable to P .
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• |∆(v) ∩ P | = 2. We can assume that, say, G − v + u1u2 is a 2-tree-union and
e1, e3 ∈ P . We apply induction to G − v + u1u2 and P − {e1, e3}. As before, the
unsplitting at v gives a 2-tree-coloring of G equitable to P .

• |∆(v) ∩ P | = 3. We apply induction to an admissible split at v to some edge uiuj

and P − ∆(v) + uiuj .

3 2-tree-unions are 3-star-equitable

In this section we prove that 2-tree-unions are k-star-equitable for k = 1, 2, 3. On the other
hand, the following 2-tree-union is not 4-star-equitable. Consider the 2-tree-union H in
Figure 1 and the sub-partition P = {{ae, ab}, {ce, cd}, {bf, bc}, {df, da}}. One can check
that H has no 2-tree-coloring equitable to P. Now pinch each edge pair {e1

i , e2

i } ∈ P by a
new vertex vi for 1 ≤ i ≤ 4 resulting in the 2-tree-union G. The set of new vertices is stable
in G. Assume that G has two disjoint spanning trees equitable to {∆(vi) : 1 ≤ i ≤ 4}.
Observe that each vertex vi is incident to exactly one parallel edge-pair. Contracting this
edge-pair for each vi would give a 2-tree-coloring of H , which is impossible.

ba

e

dc

f

Figure 1: The graph H

Theorem 3.1. Let G be a 2-tree-union, S ⊆ V with |S| ≤ 3 and ∅ 6= Ps ⊆ ∆(s) be a

star for all s ∈ S. If the stars Ps are disjoint then G has a 2-tree-coloring equitable to

P = {Ps : s ∈ S}.

Theorem 3.1 implies that 2-tree-unions are 3-star-equitable. Indeed, if the centers of
the stars of P are different then we are done by Theorem 3.1. Otherwise, if the centers
of P1 ∈ P and P2 ∈ P are the same vertex v ∈ V , then replace v by two vertices v1 and
v2 joined by a parallel edge-pair, and detach the incident edges of v in such a way that
Pi ⊆ ∆(vi) holds for i = 1, 2.

Proof of Theorem 3.1

The proof proceeds as follows. First we show some properties which a counterexample
minimizing |S|+ |V | must have, and then we explore the possible connected components
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of an auxiliary graph Gaux (definition below). Finally, using the description of the com-
ponents of Gaux, we prove that no counterexample exists. For S = ∅ the statement clearly
holds, so we assume otherwise.

Definition 3.2. Replace each vertex s ∈ S by degG(s) vertices of degree 1, called leaves,
see Figure 2. The resulting graph is Gaux. For a connected component C of Gaux let V2(C)
denote the set of the non-leaf vertices of C, that is V2(C) = {v ∈ V (C) : degC(v) ≥ 2}.

G
leaves: non-leaves:

∈ S∈ S

∈ S

Gaux

Figure 2: The construction of Gaux

Definition 3.3. The edges of
⋃

{Ps : s ∈ S} are called significant. For a vertex v /∈ S
we denote by s-degG(v) the number of significant edges incident to v.

Let the pair (G,P) be a counterexample to the theorem minimizing |S| + |V |. We
may assume that |Ps| is even for all s ∈ S. Otherwise, delete one edge from each Ps of
odd size, resulting in a new sub-partition P ′. Since each 2-tree-coloring of G which is
equitable to P ′ is also equitable to P, we get that (G,P ′) is also a counterexample to the
theorem. Thus we assume that (G,P) is a counterexample to the theorem minimizing
|S| + |V |, and |Ps| is even for all s ∈ S.

Proposition 3.4. degG(s) ≥ 4 for all s ∈ S.

Proof. If degG(s) = 2 then a 2-tree-coloring equitable to {Pt : t ∈ S − s} guaranteed
by the minimality of (G,P) is equitable to Ps as well. Similarly, if degG(s1) = 3 then a
2-tree-coloring equitable to {Pt : t ∈ S − s} is equitable to Ps as well, except possibly
when |Ps| = 2. So assume that Ps = {e1, e2} and ∆(s) = {e1, e2, e3}, where ei joins s
to vi for i = 1, 2, 3. Assume that, say, splitting the edge-pair e1, e3 to the v1v3-edge f
results in a 2-tree-union H . If e3 ∈ Pt for t ∈ S − s then let P H

t = Pt − e3 + f , otherwise
let P H

t = Pt. By the minimality of (G,P), the graph H has a 2-tree-coloring equitable to
{P H

t : t ∈ S − s}. Now the unsplitting at v results in a 2-tree-coloring of G equitable to
{Pt : t ∈ S − s} such that also e1, e2 have different colors, a contradiction.

Proposition 3.5. G has at most one vertex of degree 2. If v is such a vertex then

s-degG(v) = 2 and the edges incident to v are not parallel.
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Proof. Let v ∈ V be a vertex with degG(v) = 2. By Proposition 3.4, v /∈ S. Let
P ′

s = Ps − ∆(v) for s ∈ S. Suppose first that s-degG(v) ≤ 1. By the minimality of
G, the graph G − v has a 2-tree-coloring equitable to P ′ = {P ′

s : s ∈ S}, which can
trivially be extended to a 2-tree-coloring of G equitable to P. We could also extend this
2-tree-coloring of G−v equitable to P ′ if s-degG(v) = 2 and the edges of v are parallel. So
degG(v) = 2 implies that s-degG(v) = 2 and that the edges incident to v are not parallel.
Suppose that v1 and v2 are two such vertices with neighbors s1, s2 and s1, s, resp. If
s = s2 then a 2-tree-coloring of G − {v1, v2} equitable to {Ps − ∆(v1) − ∆(v2) : s ∈ S}
can be easily extended to a 2-tree-coloring of G equitable to P. If s = s3 then let H
be the following 2-tree-union: add to G a vertex v of degree 2 with neighbors s2 and
s3 and delete v1 and v2. Let P H

s1
= Ps1

− v1s1 − v2s1, P H
s2

= Ps2
− v1s2 + vs2 and

P H
s3

= Ps3
− v2s3 + vs3. By the minimality of G, the graph H has a 2-tree-coloring

equitable to {P H
s1

, P H
s2

, P H
s3
}, and this coloring can be easily extended to a 2-tree-coloring

of G equitable to P, a contradiction.

Corollary 3.6. There exists at most one component C of Gaux such that V2(C) contains

a vertex v with degG(v) = 2. Such a component is called the null-component, and it

has the property that V2(C) = {v}, and that v is adjacent to two distinct vertices in S.

Proposition 3.7. degG(v) = 3 implies s-degG(v) ≥ 2.

Proof. Suppose that s-degG(v) ≤ 1 and let the edges incident to v be e1, e2, e3 such that
e2, e3 /∈ Ps for any s ∈ S. We may assume that splitting the edge-pair e1, e2 to edge e
results in a 2-tree-union H . For s ∈ S, if e1 ∈ Ps then let P H

s = Ps − e1 + e, otherwise let
P H

s = Ps. Now H has a 2-tree-coloring equitable to {P H
s : s ∈ S} by the minimality of

G. This coloring gives a 2-tree-coloring of G equitable to P, a contradiction.

Theorem 3.8. Only the following type of sets can be tight in G:

1. a singleton,

2. V ,

3. V − v where degG(v) = 2,

4. {s, t} such that s, t ∈ S and E contains a parallel st-edge-pair.

Proof. The graph we get when contracting X ⊆ V to one vertex and deleting the loops
created is denoted by G/X. Suppose that X ⊆ V is a tight set of G not listed in the
theorem. Observe that by Theorem 2.1 both G/X and G[X] are 2-tree-unions. We have
four cases depending on the size of X ∩ S.

• X ∩ S = ∅. X is not a singleton so by the minimality of G, the graph G/X has
a 2-tree-coloring equitable to P. Extending this by an arbitrary 2-tree-coloring of
G[X] gives a 2-tree-coloring of G equitable to P, a contradiction.
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• |X∩S| = 1. Let s ∈ X∩S. X is not a singleton so by the minimality of G, the graph
G/X has a 2-tree-coloring equitable to {Ps∩E(G/X)}∪{Pt : t ∈ S−s}. Moreover,
G[X] has a 2-tree-coloring equitable to P1∩E(G[X]). By possibly oppositely coloring
the edges of G[X], these give a 2-tree-coloring of G equitable to P, a contradiction.

• |X ∩ S| = 2, see Figure 3. Observe that |X| ≥ 3. Let s1, s2 ∈ X ∩ S and let
P 1

i = E(G/X) ∩ Psi
and P 2

i = E(G[X]) ∩ Psi
for i = 1, 2. If |S| = 3 then denote

the third vertex by s3 /∈ X. Denote the vertex of G/X to which X was contracted
by w1. Let G1 be the following graph: add to G/X a new vertex w2, join it by two
parallel edges e1, e2 to w1 and re-join the edges of P 1

2
to w2 instead of w1. Moreover,

let G2 = G[X]. By the minimality of G, the graph G1 has a 2-tree-coloring equitable
to {P 1

1
, P 1

2
, Ps3

} (or to {P 1

1
, P 1

2
} if |S| = 2) and G2 has a 2-tree-coloring equitable

to {P 2

1
, P 2

2
}. If not all |P 1

i |, |P
2

i | are odd for i = 1, 2, then by possibly oppositely
coloring the edges of G2, these 2-tree-colorings of G1 and G2 give a 2-tree-coloring
of G equitable to P, a contradiction. If |P 1

i |, |P
2

i | are odd for i = 1, 2, then let G′
2

be
the graph we get when adding a new vertex v to G2 and joining it to s1 and s2. Note
that |V (G′

2
)| < |V | since degG(s3) ≥ 4 by Proposition 3.4. Now G1 has a 2-tree-

coloring equitable to {P 1

1
+ e1, P 1

2
+ e2, Ps3

} (or to {P 1

1
, P 1

2
} if |S| = 2), and G′

2
has

a 2-tree-coloring equitable to {P 2

1
+ vs1, P 2

2
+ vs2}. By a possible opposite coloring

these 2-tree-colorings give a 2-tree-coloring of G equitable to P, a contradiction.

e1

e2

v

G

X

s1

s1

s1

w2w2

s2

s2

s2

P 1

2
P 1

2

{P 1

1
, P 1

2
, Ps3

}

{P 2

1
, P 2

2
}

{P 2

1
+ vs1, P 2

2
+ vs2}

{P 1

1
+ e1, P 1

2
+ e2, Ps3

}

G1
G1

w1 w1

s3s3

s3

G[X]
G[X]

Figure 3: The case |X ∩ S| = 2

• |X ∩ S| = 3. Assume that X is a maximal tight set which is not of the form V or
V − v for degG(v) = 2. Now there exists a component C of Gaux different from the
null-component such that Y = V2(C)−X 6= ∅. By Corollary 3.6, degG(y) ≥ 3 holds
for all y ∈ Y . Suppose that y ∈ Y is a vertex with degG(y) = 3. Now s-degG(y) ≥ 2
holds by Proposition 3.7, hence dG(y, X) = 2 by Claim 2.2. But then Y − y 6= ∅ so
the tight set X + y would contradict to the maximality of X. So even degG(y) ≥ 4

the electronic journal of combinatorics 18 (2011), #P221 8



holds for all y ∈ Y , implying 2iG(Y ) + δG(Y ) ≥ 4|Y |. But now

iG(X ∪ Y ) = iG(X) + (2iG(Y ) + δG(Y )) − iG(Y )

≥ (2|X| − 2) + 4|Y | − (2|Y | − 2)

= 2|X ∪ Y |,

contradicting Theorem 2.1.

Corollary 3.9. G contains no parallel edges except possibly induced by S.

Corollary 3.9 implies that if e is an xy-edge such that {x, y} 6⊆ S, then it has multi-
plicity 1, hence we may use the notation ‘xy’ for e.

Corollary 3.10. If v ∈ V − S and degG(v) = 3 or 4 then all three splits at v give

2-tree-unions, except a split to a parallel st-edge-pair with s, t ∈ S.

Proposition 3.11. If v ∈ V − S with degG(v) = 4 then s-degG(v) = 2 or 3.

Proof. Corollary 3.9 implies that the edges incident to v go to 4 distinct vertices u1, u2,
u3, u4. This already excludes s-degG(v) = 4. Suppose that s-degG(v) ≤ 1. We know
that at least one split at v gives a 2-tree-union, say, splitting v to the u1u2-edge e and to
the u3u4-edge f results in a 2-tree-union H . If s-degG(v) = 1 and, say, u1 = s ∈ S and
vs ∈ Ps, then let P ′

s = Ps − vs + e and P ′
t = Pt for t ∈ S − s. If s-degG(v) = 0 then let

P ′
t = Pt for t ∈ S. By the minimality of G, the graph H has a 2-tree-coloring equitable

to {P ′
s : s ∈ S}. Now pinch the edges e and f by the vertex v and if e and f had the

same color, then re-color an edge vui different from vs. This gives a 2-tree-coloring of G
equitable to P.

The components of Gaux

Our next step in proving Theorem 3.1 is to describe the possible connected components
of Gaux. There are altogether 24 of them.

Definition 3.12. For a component C of Gaux let b = b(C) = |E(C)| − 2|V2(C)|. We
denote the number of vertices v ∈ V (C) with degC(v) = k by dk = dk(C), especially, the
number of leaves of C by δ = δ(C) = d1. Moreover, V4 = V4(C) = {v ∈ V (C) : degG(v) ≥
4}.

Observe that b(C) ≥ 0 because |E(C)| = |E| − iG(V − V2(C)) ≥ 2|V | − 2 − (2|V −
V2(C)| − 2) = 2|V2(C)|. E.g. the null-component C has b(C) = 0. Besides,

∑

{b(C) : C is a component of Gaux} = |E| − 2|V − S| = 2|S| − 2.

Proposition 3.13.
∑

{δ(C) : C is a component of Gaux} ≥ 4|S|.
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Proof.
∑

C δ(C) =
∑

{degG(s) : s ∈ S} ≥ 4|S| by Proposition 3.4.

Next we list some properties of these components.

Proposition 3.14. For each component C of Gaux the following properties hold.

b ≥ 1 ⇒ d2 = 0 (1)

∑

k≥2

(4 − k)dk = δ − 2b (2)

d2 = 0 ⇒ δ − 2b ≤ d3 ≤

⌊

δ

2

⌋

(3)

d2 = 0 , δ − 2b ≥ 3 ⇒ δ − 2b + 1 ≤ d3 (4)

b ≥ 2 ⇒ d3 ≤ δ − b − 2 and equality implies |V4| = 1 (5)

b ≥ 1 ⇒ 2 ≤ δ ≤ 4b (6)

Proof. (1) If degC(v) = 2 for v ∈ V (C) then trivially degG(v) = 2 so Corollary 3.6
implies that C is the null-component, which has b(C) = 0.

(2)
∑

k≥2
(4 − k)dk =

∑

{4 − degC(v) : v ∈ V2(C)} = 4|V2(C)| − 2|E(C)| + δ = δ − 2b.

(3) The lower bound is implied by (2) while the upper by Proposition 3.7.

(4) Let C ′ = C[V2(C)]. Now δ − 2b ≤ d3 holds by (3) so suppose that δ − 2b = d3.
This implies that degC(v) ≤ 4 holds for all vertices v ∈ V2 by (2). Moreover,
degC(v) ≥ 3 for v ∈ V2 since d2 = 0. Let v ∈ V2. Now degC′(v) ≤ 1 if degC(v) = 3
by Proposition 3.7 and degC′(v) ≤ 2 if degC(v) = 4 by Proposition 3.11. Thus the
highest degree of C ′ is at most 2. So C ′ is a path or a circuit because it is connected.
So C ′ has at most 2 vertices of degree one hence δ − 2b = d3 ≤ 2, a contradiction.

(5) Note that d2 = 0 by (1). Let v ∈ V2 be a vertex with degG(v) = 3. If s-degG(v) = 3
then v and its three leaves would form a component C of Gaux with b(C) = |E(C)|−
2|V2(C)| = 1. Thus s-degG(v) = 2 holds by Proposition 3.7. Denote by e the non-
significant edge incident to v. If e joins v to a vertex w ∈ V (C) with degG(w) = 3,
then the vertices v, w together with the 4 incident leaves would form a component
of Gaux with b = 1. Hence e joins v to V4 implying that V4 6= ∅ and δG(V4) = δ−d3.
Moreover,

δ − 2b =
∑

k≥2

(4 − k)dk = d3 +
∑

{4 − degC(v) : v ∈ V4(C)}

= d3 + 4|V4| − 2iG(V4) − δG(V4).
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So
δ − b = d3 + 2|V4| − iG(V4) ≥ d3 + 2,

where the last inequality is due to Theorem 2.1. Equality holds only if V4 is tight,
and thus a singleton by Theorem 3.8.

(6) The lower bound is due to the 2-edge connectivity of G. The upper is implied by the
inequalities δ−2b ≤ d3 (by Properties (1) and (3)) and 2d3 ≤ δ (by Proposition 3.7).

Now we are ready to describe the connected components of Gaux. These components
are depicted in Figures 4–7 and in the rest of the proof of Theorem 3.1 we refer to them
using the notations (a) - (x) of these figures. The leaves of the components are not
shown in the figures at all, only their incident edges. The notations (1) – (6) refer to the
statements of Proposition 3.14. Without even mentioning, we frequently use Corollary 3.9,
Propositions 3.7, 3.11 and statements (1) – (6) of Proposition 3.14.

Components with b = 0

Assume that d2 = 0. (3) yields that d3 ≥ δ − 2b = δ ≥ 2. For all vertices v ∈ V (C)
with degG(v) = 3 we know that s-degG(v) ≥ 2 by Proposition 3.7. Thus δ ≥ 2d3, a
contradiction. So d2 ≥ 1. Now Proposition 3.6 implies that C is the null-component (see
Figure 4 (a)) and that Gaux contains no other components with b = 0.

Components with b = 1

δ = 2: Now d3 ≤ 1 by (3). If v ∈ V (C) with degC(v) = 3, then two edges would join v
to S in G and the third edge incident to v would be a cut edge of G. So d3 = 0.
(2) implies that degC(v) = 4 for all v ∈ V2(C). d4 ≤ 1 by Proposition 3.11 but
d4 = 1 is impossible. So d4 = 0 and we get the edge-graph shown in 4 (b). Such
a component comes from an edge induced by S.

δ = 3: Now d3 = 1 by (3). (2) implies that degC(v) = 4 for all v ∈ V4(C) but d4 = 0 by
Proposition 3.11. So |V2| = 1 and we get 4 (c). Observe that by Corollary 3.9,
such a component comes from a subgraph of G where the three edges are incident
to three distinct vertices of S.

δ = 4: (3) implies that d3 = 2. degC(v) ≤ 4 for v ∈ V (C) by (2) and d4 = 0 by
Proposition 3.11. Hence this component is as shown in 4 (d). There is a strong
restriction on the position of this component in G. First, there are no parallel edges
in G by Corollary 3.9. Second, assume that C comes from a subgraph depicted in
4 (d’). Proposition 3.7 implies that e1, e2 ∈ P1 and e3, e4 ∈ P2. Now replace this
subgraph by an edge e joining s1 to s2 (that is with component (b)) resulting in
the 2-tree-union H . Let P H

1
= P1−{e1, e2}, P H

2
= P2−{e3, e4} and P H

3
= P3. By

the minimality of G, H has a 2-tree-coloring equitable to {P H
1

, P H
2

, P H
3
}, which
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gives a 2-tree-coloring of G equitable to P, a contradiction. So only the subgraph
of 4 (d”) remained.

vc

va

s2 ∈ S

s1 ∈ S
e2

v2

d v2

d
v2

d

(a)

∈ S

∈ S∈ S

e1

(d”)

(b)

(c)

(d) (d’)

v1

d v1

d
v1

d

e3 e4

Figure 4: The components of Gaux, I. (a) has b = 0, the others b = 1

Components with b = 2

(3) and (5) give that d3 = δ − 4, moreover, |V4| = 1 by (5). Let V4 = {w}. Now
degC(w) = 4 by (2). Finally, d3 = δ − 4 gives that δ ≥ 4.

δ = 4: d3 = 0 so degC(w) = 4 contradicts to Corollary 3.9.

δ = 5: Now d3 = 1, giving the component of Figure 5 (e).

δ = 6: Now d3 = 2, giving a component shown in Figure 5 (f ).

δ = 7: Contradicts to (4).

δ = 8: Contradicts to (4).

(e)

v1

e

v2

e

v3

f

(f)

v1

f

v2

f

Figure 5: The components of Gaux, II. Components with b = 2
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Components with b = 3

Such a component is accompanied in Gaux with one component of b = 1 for which
δ ≤ 4 by (6), and possibly with the null-component, where δ = 2. So δ ≥ 6 holds by
Proposition 3.13. (3) and (5) give that δ− 6 ≤ d3 ≤ δ− 5. If d3 = δ− 6 then degC(v) = 4
for all v ∈ V4 by (2), and if d3 = δ − 5 then V4 = {w} by (5) and degC(w) = 5 by (2).

δ = 6: If d3 = 0 then the vertices of V4 are adjacent to altogether 6 leaves so d4 = 2 or
3 by Proposition 3.11. The first case gives Figure 6 (g) and the second Figure
6 (h). Finally, if d3 = 1 then degC(w) = 5 would contradict to Corollary 3.9.

δ = 7: If d3 = 1 then the vertices of V4 are adjacent to altogether 5 leaves so |V4| = 2
by Proposition 3.11, and one vertex of V4 is adjacent to 3 leaves and the other
one to 2 leaves, see Figure 6 (i). If d3 = 2 then we get Figure 6 (j ).

δ = 8: If d3 = 2 then |V4| = 2 by Proposition 3.11, and both vertices of V4 are adjacent
to 2 leaves, see Figure 6 (k). In the case d3 = 3 we get Figure 6 (l).

δ = 9: d3 = 3 is excluded by (4) so d3 = 4. Now we get Figure 6 (m).

δ = 10: d3 = 4 is excluded by (4) so d3 = 5 yielding Figure 6 (n).

δ = 11: d3 = 5 by (3) but this is excluded by (4).

δ = 12: d3 = 6 by (3) but this is excluded by (4).

(h) (i) (j)

(k)
(n)

(g)

(l) (m)

v2

j

v3

j

vg
2

v1

l v3

l

v2

l

vg
1 v1

j

Figure 6: The components of Gaux, III. Components with b = 3

Components with b = 4

Such a component can be accompanied in Gaux only with the null-component. The null-
component has δ = 2 so now δ ≥ 10 by Proposition 3.13. Moreover, δ ≤ 16 by (6). (3)
and (5) give that δ − 8 ≤ d3 ≤ δ − 6. If d3 = δ − 8 then degC(v) = 4 for all v ∈ V4 by
(2). If d3 = δ − 7 then degC(w) = 5 for a specified vertex w ∈ V4 and degC(v) = 4 for
v ∈ V4 − w by (2). Finally, if d3 = δ − 6 then V4 = {w} by (5) and degC(w) = 6 by (2).
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(p)

(r) (t)

(q)

(s)

(o)

(u) (v)

(x)

(w)

v1

p v2

p

vr

Figure 7: The components of Gaux, IV. Components with b = 4

δ = 10: Let first d3 = 2. The vertices of V4 are adjacent to altogether 6 leaves so Propo-
sition 3.11 yields that d4 = 2 or 3. Now d4 = 2 would give a disconnected graph
and d4 = 3 gives Figure 7 (o). If d3 = 3 then d4 ≤ 2 by Proposition 3.11. Now
d4 = 2 gives Figure 7 (p), d4 = 1 gives Figure 7 (q) and (r), while d4 = 0 is
impossible. Finally, d3 = 4 gives Figure 7 (s).

δ = 11: d3 = 3 is excluded by (4). If d3 = 4 then the vertices of V4 are adjacent to
altogether 3 leaves so d4 ≤ 1 by Proposition 3.11. Now d4 = 1 gives Figure 7 (t)
and Figure 7 (u), while d4 = 0 is impossible. d3 = 5 gives Figure 7 (v).

δ = 12: d3 = 4 is excluded by (4). If d3 = 5 then d4 ≤ 1 by Proposition 3.11. Now d4 = 1
gives Figure 7 (w), while d4 = 0 is impossible. Finally, d3 = 6 gives Figure 7
(x ).

δ = 13: d3 = 6 by (4) and by the upper bound of (3). d4 = 0 by Proposition 3.11, so this
graph would be disconnected.

δ = 14: d3 = 7 by (3) and (4). d4 = 0 by Proposition 3.11, so this graph would be
disconnected.
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δ = 15: Impossible by (3) and (4).

δ = 16: Impossible by (3) and (4).

Reductions to smaller graphs

Using the above description of the components we enumerate all possibilities for Gaux.
For two cases of Gaux we cannot do else than directly giving a 2-tree-coloring of G
equitable to P, see Figures 12–13. However, in all the other cases we prove that we can
apply admissible splits to G to reduce the problem to a smaller 2-tree-union H with sub-
partition PH = {P H

s : s ∈ S}. We use Reductions 1 – 3 below. These reductions all have
the property that if H is really a 2-tree-union, then a 2-tree-coloring of H equitable to PH

can be extended to a 2-tree-coloring of G equitable to P. So our only task will be to prove
that H is indeed a 2-tree-union. Since proving that H is a 2-tree-union will be always
easy, we will not consider this issue, we only show a general scheme after Reduction 2 and
an example in Figure 11.

We will apply the following reductions. We use Corollary 3.9 and Propositions 3.7,
3.11 without mentioning. In Figures 8–13 the vertices of S are shown as big dots and
each edge vs ∈ Ps is indicated by an arrow showing from v to s.

Reduction 1. (Figure 8.) Let x1, x2 ∈ V − S be two vertices such that degG(xi) ∈
{3, 4}, s-degG(x1) = 2, s-degG(x2) ≤ 3 and xis ∈ Ps, xit ∈ Pt for s, t ∈ S. We pose the
restriction that if x1 and x2 are adjacent in G, then degG(x2) = 4 must hold. Now first
split x1 to the st-edge e1 resulting in the graph G2. Then in G2 split x2 to the st-edge e2

(note that if x1 and x2 are adjacent in G and degG(x1) = 3, then degG2
(x2) = 3 holds.)

The second splitting results in the graph H , see Figure 8 (1 ). Let P H
s = Ps − x1s − x2s

and P H
t = Pt − x1t − x2t. If s-degG(x2) = 2 then let P H

u = Pu for u ∈ S − {s, t}. If
s-degG(x2) = 3 then let P H

u = Pu −x2u in case degG2
(x2) = 3, and let P H

u = Pu − x2u + e
in case degG2

(x2) = 4 and x2 was split to the edges e2 and e. If H is a 2-tree-union then
it has a 2-tree-coloring equitable to PH by the minimality of G. In this coloring e1 and e2

have different colors. By possibly exchanging the colors of e1 and e2 we can achieve that
at the unsplitting at x2

• we can keep equitability to P H
u in case s-degG(x2) = degG2

(x2) = 3, and

• we do not need to re-color any edges in case degG2
(x2) = 4.

Next unsplit at x1 yielding a 2-tree-coloring of G equitable to P, see Figure 8 (2 ). Note
that if degG(x1) = 4 and both split edges of x1 had the same color before the unsplitting
at x1, then it is possible to re-color an edge incident to x1 keeping equitability.

Reduction 2. (Figure 9.) We assume that S = {s1, s2, s3}. Let x1, x2 ∈ V −S be two
vertices such that degG(xi) ∈ {3, 4}, s-degG(xi) = 2 for i = 1, 2 and x2s1 ∈ P1, x1s2 ∈ P2

and x1s3, x2s3 ∈ P3. We pose the restriction that if x1 and x2 are adjacent in G, then
degG(x2) = 4 must hold. Now first split x1 to the s2s3-edge e1 resulting in the graph
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(1) (2)
G

H

x2x2

v′′v′′v′′v′′

e2e2

e1e1

ssss tttt

x1x1

v′v′v′v′

Figure 8: Reduction 1.

e1

e1

e1

(2)

(1)

G

G

e2e2

e2

x2

x2

x1

x1

s2

s2s2 s2

s2s2

s3

s3s3 s3

s3s3

s1

s1s1 s1

s1s1

H

HG3

G3

x3

x3x3

x3

Figure 9: Reduction 2.

G2. Then in G2 split x2 to the s1s3-edge e2 resulting in the graph G3. Finally, let
degG3

(x3) = 2 for some x3 ∈ V −S such that the neighbors of x3 in G2 are s1 and s2 and
x3s1 ∈ P1, x3s2 ∈ P2. Now delete x3 from G3 resulting in the graph H , see Figure 9 (1 ).
Let P H

1
= P1 − x2s1 − x3s1, P H

2
= P2 − x1s2 − x3s2 and P H

3
= P3 − x1s3 − x2s3. Assume

that H is a 2-tree-union and that it has a 2-tree-coloring equitable to PH such that e1

and e2 have different colors. First unsplit at x3 such that x3s1 has the color of e1 and
x3s2 has the color of e2. Next unsplitting at x2, and then at x1 gives a 2-tree-coloring of
G equitable to P, see Figure 9 (2 ).

These reductions are of no use unless H is a 2-tree-union. To show that H is really
a 2-tree-union it is enough to show sequential splits described in page 3 which reduce H
to a 2-tree-union with vertex set S. Observe that a graph with vertex set S and with 4
edges is always a 2-tree-union unless it has a loop or an edge with multiplicity at least 3.
Every time we apply Reductions 1 and 2 it will be an easy task to show such sequential
splits. For an example see one case below (Figure 11.). Recall that when using Reduction
2 one also has to check whether H has a 2-tree-coloring equitable to PH such that the
split edges e1 and e2 have different colors. We will leave this to the reader when applying
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Reduction 2.

Unlike in Reductions 1 and 2, in the next Reduction there is no need to check if H is
a 2-tree-union.

Reduction 3. We assume that S = {s1, s2, s3}. Let x1, x2 ∈ V − S be two non-
adjacent vertices such that degG(xi) = 3 and xis1 ∈ P1, xis2 ∈ P2 hold for s1, s2 ∈ S.
Assume also that the edge s1s2 has multiplicity 1 in G. Let the neighbor of xi distinct
from s1, s2 be vi for i = 1, 2. Splitting the vertices xi to the sivi-edge ei for i = 1, 2
results in a graph H (see Figure 10 (1 )). If sivi had multiplicity 2, then Gaux would
have 3 components of type (b), so x1, x2 would belong to a component (d) which is
impossible. Thus if H is not a 2-tree-union, then by Theorem 2.1, there exists a vertex
set W ⊆ V (H) such that iH(W ) ≥ 2|W | − 1. Corollary 3.10 implies that si, vi ∈ W for
i = 1, 2. But then iG(W ∪{x1, x2}) ≥ 2|W ∪{x1, x2}|−1, a contradiction. So H is always

a 2-tree-union. Let P H
1

= Ps1
− x1s1 − x2s1, P H

2
= Ps2

− x1s2 − x2s2 and if |S| = 3, then
P H

3
= (P3 \ {x1s3, x2s3}) ∪ {ei : xis3 ∈ P3}. H has a 2-tree-coloring equitable to PH by

the minimality of G. If e1 and e2 have the same colors in this coloring, then simply unsplit
x1 and x2, see Figure 10 (2 ). If e1 and e2 have different colors, then use the extension of
Figure 10 (3 ). In both cases we get a 2-tree-coloring of G equitable to P.

HH

H

GG

G
(1)

(3)(2)

x2x2x2x2

x2

s1s1s1s1s1 s1

s1s1

s2s2s2s2s2 s2

s2s2

v1v1v1v1v1 v1

v1v1

v2v2v2v2
v2 v2

v2v2

e1

e1

e1e2

e2

e2
x1x1

x1

Figure 10: Reduction 3.

Now we prove that 2-tree-unions are 1-, 2-, and 3-star-equitable, by enumerating the
possibilities for Gaux, according to how the b values of the components can sum up to
2|S|−2. We use the notations of Figures 4–7, that is we refer to the components of Gaux
as (a) - (x ) and to specified vertices of these components as va, v1

d, v2

d etc. (see Figure
4).
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2-tree-unions are 1-star-equitable

As
∑

b = 0, Gaux can consist only the null-component, but then |S| ≥ 2 by Corollary
3.6. So no counterexample exists.

2-tree-unions are 2-star-equitable

0 ≤ b(C) ≤ 2 holds for each component C of Gaux. As Gaux contains at most one
component with b = 0, the null-component (a), the b values of the components can sum
up to 2 in four ways: 2, 2+0, 1+1, 1+1+0. Observe that Gaux has no component (c) by
Theorem 3.8.

2(+0)

By Proposition 3.13, Gaux must consist of (a) and (f ). Apply Reduction 1.

1+1(+0)

Taking Proposition 3.13 into account, the possible components of Gaux are as follows.

• (b) + (d) + (a). By our assumption every P ∈ P has even cardinality. However,
by Corollary 3.6 and Proposition 3.7, at least one of them must be 3.

• (d) + (d), and perhaps (a). Apply Reduction 1.

2-tree-unions are 3-star-equitable

0 ≤ b(C) ≤ 4 holds for each component C of Gaux, and the b values of the components
can sum up to 4 in five ways (not taking into consideration the components with b = 0):
4, 3+1, 2+2, 2+1+1, 1+1+1+1.

4(+0)

Denote the component of Gaux with b = 4 by C4. C4 has at least 4 vertices x with
degG(x) ∈ {3, 4} and s-degG(x) = 2 by Propositions 3.7 and 3.11 (except if C4 = (r)
in the case s-degG(vr) = 3). In any case we can choose two vertices x1, x2 ∈ V2(C) such
that, say, xis1 ∈ P1 and xis2 ∈ P2 for i = 1, 2. If x1 and x2 are adjacent in G then make
sure that degG(x2) = 4 holds. Now apply Reduction 1 to x1, x2 resulting in the graph H .
We have to prove that H is a 2-tree-union. degG(s3) ≥ 4 by Proposition 3.4 which clearly
implies that degH(s3) ≥ 3, so it is straightforward to show a sequence of splits in H which
gives a 2-tree-union with vertex set S. We illustrate this in the case C4 = (o), see Figure
11. If C4 = (o) then Gaux also contains the null-component (a) by Proposition 3.13.
For instance, assume that H is the graph shown in Figure 11 (1 ). Now split v1 to s1s3

resulting in the graph H1. Then split v2 to s1s3 resulting in the graph H2. Finally delete
from H2 the vertices v3 and va resulting in H3, see Figure 11 (4 ). Since H3 is trivially
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a 2-tree-union, we get that H is a 2-tree-union as well so we are done. You only have to
be careful if C4 = (p) where it is forbidden to choose x1, x2 to be v1

p and v2

p because H
would contain a loop.

v1

v2v2

v3v3v3

s2s2s2s2 s1s1s1s1

s3s3s3s3

H1 H2 H3

(2)(1) (4)(3)
H

vavava

Figure 11: Proving that H is a 2-tree-union

3+1(+0)

Let these components be denoted by C3, C1 (and C0), resp.

• C3 = (g). Proposition 3.13 gives that C1 = (d) and also the null-component C0 =
(a) is present. Independently of the value of s-degG(vg

i ) for i = 1, 2, we can apply
Reduction 1.

• C3 = (h). Proposition 3.13 gives that C1 = (d) and also the null-component C0 =
(a) is present. Proposition 3.4 yields that V2(C3) is adjacent to each si ∈ S. So we
can apply Reduction 1 by appropriately choosing x1 ∈ V2(C3) and x2 ∈ V2(C1).

• C3 = (i). If C1 = (c) or C1 = (d) then we can apply Reduction 1. C1 = (b) is
excluded by Proposition 3.4.

• C3 = (j ). C1 6= (b) by Proposition 3.4 and if C1 = (d) then we are done by
Reduction 1. If C1 = (c) then also the null-component C0 = (a) is present. The
only possibility when we cannot apply Reduction 1 is when s-degG(vc) = 2 and the
two significant edges incident to v1

j , v3

j and vc go to pairwise distinct pairs of vertices
in S. So we can apply Reduction 2 by appropriately choosing x1, x2 ∈ {v1

j , v3

j , vc}
and x3 = va.

• C3 = (k). If C1 = (c) or (d) then we can apply Reduction 1. Assume C1 = (b),
that is an edge s1s2. Proposition 3.4 implies that degG(s3) ≥ 4 so at least three
vertices of V2(C3) are adjacent to s3. Thus Reduction 1 can be applied.

• C3 = (l). If C1 = (c) or C1 = (d) then Reduction 1 can be applied. Assume that
C1 = (b), that is an edge s1s2. Proposition 3.13 implies that Gaux contains the
null-component (a) as well. Now the only case when we cannot apply Reduction 1
or 3 is when the two significant edges incident to vi

l go to pairwise distinct pairs of
vertices in S for i = 1, 2, 3. So we can apply Reduction 2 by appropriately choosing
x1, x2 ∈ {v1

l , v2

l , v3

l } and x3 = va.
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• C3 = (m) or C3 = (n). If C1 = (c) or (d) then we can apply Reduction 1. If C1 =
(b) then Reduction 1 or 3 can be applied.

2+2(+0)

In all cases Reduction 1 can be applied.

2+1+1(+0)

Denote the component with b = 2 by C2. We list the cases according to the two compo-
nents with b = 1.

• (b) + (b). Proposition 3.4 implies that Gaux contains the null-component (a),
C2 = (f ) and degG(si) = 4 for i = 1, 2, 3. Assume that the two edges of the
components (b) are parallel, say, s1s2-edges. Then each vertex of V2(C2) is adjacent
to s3 because degG(s3) = 4. Thus we can apply Reduction 1. So assume that the
two edges of the components (b) are, say, s1s2 and s1s3. If the two significant edges
incident to vi

f go to pairwise distinct pairs of vertices in S for i = 1, 2, 3, then we
can apply Reduction 2 by choosing xi = vi

f for i = 1, 2, 3. The fact that degG(s) = 4
for s ∈ S implies that otherwise for at least two indices i the two significant edges
incident to vi

f go to s2 and s3. So we can apply Reduction 1.

• (b) + (c). Assume that the edge of the component (b) joins s1 to s2. Proposi-
tion 3.4 implies that Gaux contains the null-component (a), too.

– C2 = (e). Proposition 3.4 implies that degG(si) = 4 for i = 1, 2, 3. So there is
only one choice for G up to isomorphism, namely, say, va is adjacent to s2 and
s3 and v2

e is adjacent to s1 and s3. If s-degG(vc) = 3 or s-degG(v1

e) = 3, then
we can apply Reduction 1 with x1 = v2

e and x2 = vc or v1

e resp. So assume
that s-degG(vc) = s-degG(v1

e) = 2. For v = vc or v1

e , if the two significant
edges incident to v go to s1 and s2, then we can apply Reduction 2 with
x1 = v2

e , x2 = v, x3 = va. Otherwise vcs3, v1

es3 ∈ P3 so we can apply Reduction
1.

– C2 = (f ). If the two significant edges incident to vi
f go to pairwise distinct

pairs of vertices in S for i = 1, 2, 3, then we can apply Reduction 2 with xi = vi
f .

Otherwise vi
f and vj

f are adjacent to the same pair of vertices in S for some
1 ≤ i < j ≤ 3. This pair cannot be s1, s2 since degG(s3) ≤ 3 would hold. Thus
we can apply Reduction 1.

• (b) + (d). If C2 = (f ), then G contains 4 vertices v with degG(v) = 3 and
s-degG(v) = 2 so we can apply Reduction 1 or 3. So assume that C2 = (e) and
that component (b) joins s1 to s2. We can apply Reduction 1 or 3 unless the two
significant edges incident to v1

d, v2

d and v2

e go to pairwise distinct pairs of vertices
in S. In this case Reduction 1 can be applied unless s-degG(v1

e) = 2 and the two
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significant edges incident to v1

e go to s1 and s2. |Pi| is even for i = 1, 2, 3 so also va

is adjacent to s1 and s2. But then degG(s3) ≤ 3 would hold, which is impossible.

• (c) + (c), (c) + (d) and (d) + (d). Apply Reduction 1.

1+1+1+1(+0)

We list all possible cases.

• (b) + (b) + (b) + (b) and (b) + (b) + (b) + (c) are impossible by Proposi-
tion 3.13.

• (b) + (b) + (b) + (d). Gaux contains also the null-component by Proposition 3.13.
Here we cannot apply any reductions. Assume that v1

d is adjacent to s1, s3 and v2

d

is adjacent to s2, s3. There are two cases on the position of the null-component up
to isomorphism.

– First, let va be adjacent to s1 and s2, see Figure 12 (1 ). Denote P 1 =
{v1

ds1, vas1}, P 2 = {v2

ds2, vas2} and P 3 = {v1

ds3, v2

ds3}. |Pi| is even for
i = 1, 2, 3 so there are 3 possibilities for P up to isomorphism: {P 1, P 2, P 3},
{P 1 +s3s1 +s2s1, P 2, P 3} and {P 1, P 2, P 3 +s1s3 +s2s3}. The 2-tree-coloring
of the graph in Figure 12 (1 ) is equitable to all these 3 cases of P.

– Let va be adjacent to s1 and s3, see Figure 12 (2 ). Now the evenness of |Pi|
implies that with an s1s2-edge e it holds that P = {{vas1, v1

ds1}, {e, v2

ds2},
{vas3, v1

ds3, v2

ds3, s2s3}}. Figure 12 (2 ) shows a 2-tree-coloring equitable to
P.

e

s2s2 s1s1

s3s3

va

va

(1) (2)

v2

dv2

dv1

d v1

d

Figure 12: (b) + (b) + (b) + (d)

• (b) + (b) + (c) + (c). Gaux contains also the null-component by Proposition 3.13.
Denote the two vertices vc of the two components (c) by v′

c and v′′
c . Proposition 3.4

implies that, say, the two edges of the components (b) are s1s3- and s2s3-edges and
va is adjacent to s1 and s2. If s-degG(v′

c) = 3 or s-degG(v′′
c ) = 3, then we can apply

Reduction 1 or 3 so assume otherwise. If the two significant edges incident to v′
c and

v′′
c go to the same pair of vertices in S, then apply Reduction 1 or 3. Otherwise there
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are two cases up to isomorphism. First, if the significant edges incident to v′
c go to

s2, s3 and the significant edges incident to v′′
c go to s1, s3, then apply Reduction 2

with x1 = v′
c, x2 = v′′

c , x3 = va. Second, if the significant edges incident to v′
c go to

s1, s2 and the significant edges incident to v′′
c go to s2, s3, then the evenness of |Pi|

implies that there is only one choice for P. A 2-tree-coloring of G equitable to P is
shown in Figure 13.

s1

s3

v′′
cv′

c

s2

va

Figure 13: (b) + (b) + (c) + (c)

• (b) + (b) + (c) + (d). If s-degG(vc) = 3 then apply Reduction 1 or 3. Assume
that s-degG(vc) = 2. If the edges of the components (b) are not parallel, then we
can apply Reduction 1 or 3 unless the two significant edges incident to vc, v1

d and
v2

d go to pairwise distinct pairs of vertices in S. In this latter case Reduction 2 can
be applied with x1 = vc, x2 = v1

d and x3 = v2

d. Now assume that the edges of the
components (b) are parallel s1s2-edges. degG(s3) ≥ 4 so va is adjacent to s3 and,
say, vi

d is adjacent to si for i = 1, 2. |P3| is even thus vcs3 ∈ P3. So we can apply
Reduction 1 with x1 = vc and x2 = vi

d for i = 1 or 2.

• (b) + (b) + (d) + (d). If the edges of the components (b) are not parallel, then
apply Reduction 1 or 3. Assume that the edges of the components (b) are parallel
s1s2-edges. degG(s3) ≥ 4 so at least three vertices of type vi

d (i = 1, 2) are adjacent
to s3, so it is possible to apply Reduction 1.

• (b) + (c) + (c) + (c). Denote the vertices vc of the components (c) by vi
c for

i = 1, 2, 3. If s-degG(vi
c) = 3 for at least one index i, then apply Reduction 1 or 3.

Otherwise we can apply Reduction 1 or 3 unless the two significant edges incident
to vi

c go to pairwise distinct pairs of vertices in S for i = 1, 2, 3. Suppose that the
edge of the component (b) is an s1s2-edge. degG(s3) ≥ 4 so Gaux contains also the
null-component (a) and va is adjacent to s3. But then |P3| = 3 would hold, which
is impossible.

• (b) + (c) + (c) + (d) and (b) + (c) + (d) + (d) and (b) + (d) + (d) + (d).
Apply Reduction 1 or 3.

• (c) + (c) + (c) + (c). Denote the vertices vc of the components (c) by vi
c for

1 ≤ i ≤ 4. If s-degG(vi
c) = 2 for some 1 ≤ i ≤ 4, then apply Reduction 1.

Assume that s-degG(vi
c) = 3 for all i. Now independently of the existence of the
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null-component, split v1

c and v2

c to s1s2-edges and split v3

c and v4

c to s2s3-edges. The
resulting graph is H with V (H) = S. Now take any 2-tree-coloring of H and unsplit
the vertices vi

c giving a 2-tree-coloring of G equitable to P = {∆(s1), ∆(s2), ∆(s3)}.

• (c) + (c) + (c) + (d) and (c) + (c) + (d) + (d) and (c) + (d) + (d) + (d)
and (d) + (d) + (d) + (d). Apply Reduction 1.

End of proof of Theorem 3.1.
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