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Abstract

A matching is indecomposable if it does not contain a nontrivial contiguous

segment of vertices whose neighbors are entirely contained in the segment. We prove

a Ramsey-like result for indecomposable matchings, showing that every sufficiently

long indecomposable matching contains a long indecomposable matching of one of

three types: interleavings, broken nestings, and proper pin sequences.

1 Introduction

A (labeled, complete) matching is a graph on the vertex set [2n] = {1, 2, . . . , 2n} in which
every vertex is incident to exactly one edge. An interval in a matching is a contiguous
segment of vertices [i, j] = {i, i + 1, . . . , j} such that no vertex in [i, j] is adjacent to a
vertex outside [i, j]. Every matching has two trivial intervals: the empty set and the
set of all its vertices; it is worth noting that unlike other objects, there are no intervals
containing only a single vertex. A matching is said to be indecomposable if it has no other
intervals (and decomposable if it does have nontrivial intervals, see Figure 1).

Indecomposable matchings have been studied by Nijenhuis and Wilf [2], who provided
a recursive algorithm for constructing all indecomposable matchings. From their recur-
sion, it follows that the number, sn, of indecomposable matchings of [2n] satisfies the
recurrence

sn = (n − 1)
n−1∑

i=1

sisn−i.

The contribution of this paper is to show that every large indecomposable matching
contains a large submatching in one of three explicit families.

Theorem 1.1. Every indecomposable matching with at least (2k)2k edges contains a bro-

ken nesting, interleaving, or proper pin sequence with k edges.
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Figure 1: A decomposable matching with the nontrivial interval [4, 7]
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Figure 2: From left to right, the interleaving on [8], the right-broken nesting on [8], the
left-broken nesting on [8], and a proper pin sequence on [8].

This result is the matching analogue of the results of Brignall, Huczynska, and Vat-
ter [1], who proved a similar result for permutations.

In Theorem 1.1, we say that the matching M contains the matching N if N can be
obtained from M by deleting a collection of edges and the vertices incident with those
edges, and then relabeling the remaining vertices. For the remainder of this section we
discuss the three types of indecomposable matchings mentioned in Theorem 1.1. The
proof of the theorem follows in the next section.

The interleaving on [2n] is the indecomposable matching defined by i ∼ i + n for all
i ∈ [n]. The interleaving on [8] is depicted in the first matching of Figure 2.

The nesting on [2n− 2] is the matching defined by i ∼ 2n− 2− i + 1 for i ∈ [n]. This
matching is not indecomposable, but can be made indecomposable by adding a new edge
which breaks the nesting. This new edge can break the nesting either to the left or the
right. The right-broken nesting on [2n] has edges n ∼ 2n and i ∼ 2n − i for i ∈ [n − 1],
while the left-broken nesting on [2n] has edges 1 ∼ n + 1 and i + 1 ∼ 2n − i + 1 for
i ∈ [n−1]. The right- and left-broken nestings on [8] are depicted in the second and third
matchings of Figure 2.

The most diverse family of indecomposable matchings is the family of pin sequences.
In order to define pin sequences, we need a few preliminaries. Given a set of edges in
a matching, its shadow is the smallest contiguous segment of vertices containing their
endpoints. In an indecomposable matching, every nonempty shadow must either consist
of all the vertices, or be split, meaning that there is a vertex in the shadow which is
adjacent to a vertex outside of the shadow. We refer to such edges as pins.

A pin sequence is then a sequence of edges p1, p2, . . . such that each pi breaks the
shadow of {p1, . . . , pi−1}. Thus one pin sequences on [8] is 3 ∼ 5, 4 ∼ 7, 6 ∼ 1, 2 ∼ 8,
shown in the fourth matching of Figure 2. First we verify that all pin sequences are
indecomposable.

Proposition 1.2. Every pin sequence is an indecomposable matching.
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Proof. Let us say that an interval contains an edge if it contains one (and thus both)
endpoints of that edge. We begin by noting that in any matching, if two edges cross,
any interval containing one must contain both. It follows that if I is an interval in a pin
sequence containing pins pi and pj, then I contains all pins with indices between i and j.

Suppose that I is a maximal interval in a pin sequence P = p1, p2, . . . , pn. By the
previous observation, I consists of a contiguous sequence pi, pi+1, . . . , pj for some i ≤ j.
If i > 1 there is a pin pi−1 that splits the interval I and if j < n there is a pin pj+1 thats
splits I. Therefore, by the maximality of I, we see that I contains the entire pin sequence,
proving the proposition.

We note that the permutation analogue of Proposition 1.2 does not hold.

2 Proof of Theorem 1.1

Our proof of Theorem 1.1 consists of analyzing two possibilities. First, we show that if a
single edge is crossed by many different edges, then the matching contains an interleaving
or broken nesting. The alternative is that no edge is crossed by many different edges, in
which case we show that the matching contains a long proper pin sequence.

Lemma 2.1. If a single edge e is crossed by 2(k − 1)2 + 1 edges of a matching, then the

matching contains either a broken nesting or an interleaving with k edges.

Proof. Every edge that crosses e crosses either to the left or to the right, thus at least
(k−1)2 +1 of the edges must cross to the same side of e. By symmetry call that side left.
Now order these (k − 1)2 + 1 edges by their left endpoints, preserving the natural order
on the integers. Let S be the unique sequence formed by the right endpoints of the these
edges under this order.

By the Erdős-Szekeres Theorem, S has a monotone subsequence of length k. If this
subsequence is increasing, the matching contains an interleaving. Otherwise this subse-
quence is decreasing and the matching contains a nesting that is broken by e.

In order to prove the main theorem, we will need two special types of pin sequences.
Proper pin sequences satisfy, for each 1 < i < 2n, pi+1 splits the shadow cast by
{p1, . . . , pi} but not the shadow cast by {p1, . . . , pi−1}, and right-reaching pin sequences,
which have their final pin incident with the vertex 2n.

It is helpful to know that proper right-reaching pin sequences are always available in
indecomposable matchings.

Lemma 2.2. Every indecomposable matching has a proper right-reaching pin sequence

beginning with any edge.

Proof. Let p1 be an arbitrary edge of the indecomposable matching M . If the vertex 2n
is incident with p1, then we are done. Otherwise, by the indecomposability of M , there is
an edge which crosses p1; label this edge p2. If 2n is incident with p2, then we are done.
Otherwise, the edges p1 and p2 define a new shadow, which is still not an interval, so there
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is an edge, p3, which splits this shadow. Since the only interval is [2n], by repeating this
process, we can create a pin sequence p1, . . . , pm such that 2n is incident with pm.

We now construct from this right-reaching pin sequence a proper right-reaching pin
sequence q1, q2, . . . , qs. First, set q1 = p1. Then we successively extend this sequence by
choosing qi to be the pin pj of the greatest index which crosses qi−1. We stop when qi

is incident with 2n. Note that by this selection procedure, qi crosses qi−1 but does not
cross q1, . . . , qi−2. Therefore the resulting sequence q1, . . . is a proper right-reaching pin
sequence, as desired.

In the proof of Theorem 1.1, we use Lemma 2.2 to show that every indecomposable
matching with n edges contains at least n distinct right-reaching proper pin sequences.

We can now derive the main result.

Proof of Theorem 1.1. Let M be a matching which does not contain a broken nesting,
interleaving, or proper pin sequence with at least k edges. We construct a tree of all the
proper right-reaching pin sequences of M in the following manner. The parent of the pin
sequence p1, . . . , pm (m ≥ 2) is the sequence p2, . . . , pm, so the root of this tree is the edge
(thought of as a pin sequence) incident with the vertex of the greatest label.

Since M does not have a pin sequence with k edges, this tree has height at most k−1.
Because M does not contain an interleaving or broken nesting with k edges, Lemma 2.1
implies that no node may have 2(k − 1)2 + 2 children. This bounds the size of the tree
with the sum

k−1∑

i=0

(2(k − 1)2 + 1)i <

k−1∑

i=0

(2k2)i ≤ (2k)2k

By Lemma 2.2, every edge of M begins a proper right-reaching pin sequence. Therefore
M can have at most (2k)2k edges, proving the theorem.
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