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Abstract

A signed graph (or sigraph in short) is an ordered pair S = (Su, σ), where
Su is a graph G = (V,E) and σ : E → {+,−} is a function from the edge set E
of Su into the set {+,−}. For a positive integer n > 1, the unitary Cayley graph
Xn is the graph whose vertex set is Zn, the integers modulo n and if Un denotes
set of all units of the ring Zn, then two vertices a, b are adjacent if and only if
a− b ∈ Un. For a positive integer n > 1, the unitary Cayley sigraph Sn = (Su

n , σ)
is defined as the sigraph, where Su

n is the unitary Cayley graph and for an edge
ab of Sn,

σ(ab) =

{
+ if a ∈ Un or b ∈ Un,

− otherwise.

In this paper, we have obtained a characterization of balanced unitary Cayley
sigraphs. Further, we have established a characterization of canonically consistent
unitary Cayley sigraphs Sn, where n has at most two distinct odd prime factors.

1 Introduction

For standard terminology and notation in graph theory we refer Harary [21] and West [34]
and Zaslavsky [35, 36] for sigraphs. Throughout the text, we consider finite, undirected
graph with no loops or multiple edges.
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A signed graph (or sigraph in short) is an ordered pair S = (Su, σ), where Su is a
graph G = (V, E), called the underlying graph of S and σ : E → {+,−} is a function
from the edge set E of Su into the set {+,−}, called the signature (or sign in short)
of S. Alternatively, the sigraph can be written as S = (V, E, σ), with V , E, σ in
the above sense. Let E+(S) = {e ∈ E : σ(e) = +} and E−(S) = {e ∈ E : σ(e) = −}.
The elements of E+(S) and E−(S) are called positive and negative edges of S, re-
spectively. A sigraph is all-positive (respectively, all-negative) if all its edges are positive
(negative). Further, it is said to be homogeneous if it is either all-positive or all-negative
and heterogeneous otherwise.

The negative degree d−(v) of a vertex v in S is the number of negative edges
incident at v in S. For a sigraph S, Behzad and Chartrand [9] defined its line sigraph
L(S) as the sigraph in which the edges of S are represented as vertices, two of these
vertices are defined adjacent whenever the corresponding edges in S have a vertex in
common, any such edge ef is defined to be negative whenever both e and f are
negative edges in S. The negation η(S) of a sigraph S is a sigraph obtained from S
by negating the sign of every edge of S, that means to find, η(S) we change the sign of
every edge to its opposite in S.

A cycle in a sigraph S is said to be positive if it contains an even number of negative
edges. A given sigraph S is said to be balanced if every cycle in S is positive (see [20]).
A spectral characterization of balanced sigraphs was given by Acharya [2]. Harary and
Kabell [22, 23] developed a simple algorithm to get balanced sigraphs and also enumerated
them. The following important lemma on balanced sigraphs is given by Zaslavsky:

Lemma 1. [37] A sigraph in which every chordless cycle is positive, is balanced.

A marked sigraph is an ordered pair Sµ = (S, µ), where S = (Su, σ) is a sigraph
and µ : V (Su) → {+,−} is a function from the vertex set V (Su) of Su into the set
{+,−}, called a marking of S. A cycle Z in Sµ is said to be consistent if it contains
an even number of negative vertices. A given sigraph S is said to be consistent if every
cycle in it is consistent [10, 11]. In particular, σ induces a unique marking µσ defined
by

µσ(v) =
∏
e∈Ev

σ(e),

where Ev is the set of edges incident at v in S, is called the canonical marking of S.

Now, if every vertex of a given sigraph S is canonically marked, then a cycle Z in S
is said to be canonically consistent (C-consistent) if it contains an even number of negative
vertices and the given sigraph S is said be C-consistent if every cycle in it is C-consistent.

Let Γ be a group and B be a subset of Γ such that B does not contain identity
of Γ. Assume B−1 = {b−1 : b ∈ B} = B. The Cayley graph X ′ = Cay(Γ, B) is an
undirected graph having vertex set V (X ′) = Γ and edge set E(X ′) = {ab : ab−1 ∈ B},
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where a, b ∈ Γ. The Cayley graph X ′ is a regular graph of degree |B|. Its con-
nected components are the right cosets of the subgroup generated by B. Therefore, if
B generates Γ, then X ′ is a connected graph. The books on algebraic graph theory by
Biggs [13] and by Godsil & Royle [19] provide many information regarding Cayley graphs.

For a positive integer n > 1, the unitary Cayley graph Xn is the graph whose vertex
set is Zn, the integers modulo n and if Un denotes set of all units of the ring Zn, then
two vertices a, b are adjacent if and only if a− b ∈ Un. The unitary Cayley graph Xn

is also defined as, Xn = Cay(Zn, Un). The structure and various properties of unitary
Cayley graphs have been studied in literature (see [7], [8], [12], [14], [15], [16], [17], [18],
[25], [26], [29]). The following theorem on bipartite unitary Cayley graphs is obtained by
Dejter and Giudici:

Theorem 2. [15] The unitary Cayley graph Xn, n ≥ 2, is bipartite if and only if n is
even.

For a positive integer n > 1, the unitary Cayley sigraph Sn = (Su
n , σ) is the sigraph,

where Su
n is the unitary Cayley graph and for an edge ab of Sn,

σ(ab) =

{
+ if a ∈ Un or b ∈ Un,

− otherwise.

Two examples of unitary Cayley sigraphs are shown in Figure 1. Throughout the
text, we consider n ≥ 2.
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Figure 1: Unitary Cayley sigraphs for Z6 and Z10.

2 Balanced Unitary Cayley Sigraphs

In this section, we establish a characterization of balanced unitary Cayley sigraphs.
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Lemma 3. For the unitary Cayley sigraph Sn, if n = pa, where p is a prime number,
then Sn is an all-positive sigraph.

Proof. For the unitary Cayley sigraph Sn, if n = pa, then Un consists of all the numbers
less than n, which are not multiples of p. Suppose αp and βp are two numbers less
than n and multiples of p. By the definition of unitary Cayley sigraph, we have a
negative edge only when αp is adjacent to βp. But αp is not adjacent to βp since
their difference αp− βp /∈ Un. Thus, Sn is the all-positive sigraph.

Theorem 4. The unitary Cayley sigraph Sn = (Su
n , σ) is balanced if and only if either

n is even or if n is odd, then it does not have more than one distinct prime factor.

Proof. Necessity: Suppose the unitary Cayley sigraph Sn = (Su
n , σ) is balanced. As-

sume that the conclusion is false. Suppose n is odd and it has at least two distinct prime
factors. So, let n = pa1

1 pa2
2 . . . pam

m , where all p1, p2, . . . , pm are distinct primes, p1 6= 2
and p1 < p2 < · · · < pm.

Case(i): There exist twin primes pi and pj for 1 ≤ i < j ≤ m, that means
pj − pi = 2. Since (pi + 1) − pi = 1 ∈ Un, pi and pi + 1 are adjacent in Su

n . Next,
(pi + 2)− (pi + 1) = 1 ∈ Un, therefore pi + 1 and pi + 2 are adjacent in Su

n . Also, pi

and pi + 2 are adjacent in Su
n since (pi + 2)− pi = 2 ∈ Un. Thus, consider the cycle

Z = (pi, pi + 1, pi + 2 = pj, pi)

in Sn. Clearly, pi and pj do not belong to Un. Now, if pi + 1 ∈ Un, then Z has
exactly one negative edge pipj. Next, if pi + 1 /∈ Un, then all the three edges in Z are
negative. Thus, Z is a negative cycle in Sn. This implies that Sn is not balanced, a
contradiction to the hypothesis.

Case(ii): No two pi’s are twin primes. Now, p2 + (p1 − 1) and p2 are adjacent in Su
n

because p2 + (p1 − 1)− p2 = p1 − 1 ∈ Un. Hence, consider the cycle

Z ′ = (p2, p2 + 1, p2 + 2, . . . , p2 + (p1 − 1), p2)

of length p1 in Sn. Since p1 < p2, there is a vertex in Z ′ which is multiple of p1,
say αp1. Clearly, p2 is adjacent to αp1 because their difference αp1 − p2 < p1 and Un

contains all the numbers less than p1. Now p2 is adjacent to αp1 with a negative edge
since neither p2 ∈ Un nor αp1 ∈ Un. This implies, either the cycle

Z ′′ = (p2, p2 + 1, p2 + 2, . . . , αp1, p2)

or the cycle
Z ′′′ = (αp1, αp1 + 1, αp1 + 2, . . . , p2 + (p1 − 1), p2, αp1)

in Sn has exactly one negative edge. Thus, either Z ′′ or Z ′′′ is a negative cycle in
Sn. This implies that Sn is not balanced, a contradiction to the hypothesis. So, by
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contradiction, the conditions are satisfied.

Sufficiency: Suppose n is even. Then, Un does not contain any multiple of 2.
Then, by Theorem 2, Sn is bipartite, whence all its cycles are even. Hence, every cycle
in Sn contains alternately either even-odd or odd-even labeled vertices. Without loss of
generality, let

Z ′′′′ = (e1, o1, e2, o2, . . . , em, om, e1)

be a cycle of even length in Sn. Clearly, ei /∈ Un ∀ i = 1, 2, . . . ,m.

Case(i): Suppose oj ∈ Un ∀ j = 1, 2, . . . ,m. Then, all the edges in Z ′′′′ are positive.

Case(ii): Suppose oj /∈ Un for any j = 1, 2, . . . ,m. Then, Z ′′′′ contains two negative
edges ejoj and ojej+1 with respect to each oj /∈ Un. Thus, Z ′′′′ contains an even number
of negative edges. Since Z ′′′′ is an arbitrary cycle in Sn, using Lemma 1, Sn is balanced.

Next, suppose n is odd and it does not have more than one distinct prime factor.
That means, n = pa. Now, using Lemma 3, Sn is an all-positive sigraph. Hence the
theorem.

Corollary 5. For the unitary Cayley sigraph Sn = (Su
n , σ), its negation sigraph η(Sn)

is balanced if and only if n is even.

Proof. First, suppose η(Sn) is balanced. Assume that conclusion is false. Suppose n is
odd. Then, 2 ∈ Un. Thus, we can consider a triangle T : (0, 1, 2, 0) in Sn. Since 1 ∈ Un

and 2 ∈ Un, all the edges of the triangle T are positive. That means, all the edges of
the triangle T are negative in η(Sn). Thus, η(Sn) is unbalanced, which contradicts the
hypothesis. Conversely, suppose n is even. Now due to Theorem 2, Su

n is bipartite and
due to Theorem 4, Sn is balanced. Thus, η(Sn) is balanced.

Theorem 6. [5] For a sigraph S, its line sigraph L(S) is balanced if and only if the
following conditions hold:

(i) for any cycle Z in S,

(a) if Z is all-negative, then Z has even length;

(b) if Z is heterogeneous, then Z has even number of negative sections with
even length;

(ii) for v ∈ S, if d(v) > 2, then there is at most one negative edge incident at v in
S.

Corollary 7. For the unitary Cayley sigraph Sn, its line sigraph L(Sn) is balanced if
and only if n = pa, where p is a prime number.
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Proof. Suppose L(Sn) is balanced for the unitary Cayley sigraph Sn. Assume that the
conclusion is false. Let n have at least two distinct prime factors. Suppose p1 and p2

are two smallest prime factors of n such that p1 < p2. Clearly, the vertex p1 and the
vertex 2p1 are adjacent to the vertex p2 with a negative edge in Sn. That means,
d−(p2) ≥ 2 and clearly, d(p2) > 2 in Sn. Thus, condition (ii) of Theorem 6 does not
hold for Sn, which implies that L(Sn) is unbalanced, a contradiction to the hypothesis.
Hence n = pa, where p is a prime number. Converse part can be proved easily using
Lemma 3.

The ×-line sigraph L×(S) of a sigraph S = (Su, σ) is a sigraph defined on the line
graph L(Su) of the graph Su by assigning to each edge ef of L(Su), the product of
signs of the adjacent edges e and f of S. The semi-total line graph T1(G) of a graph
G is the graph whose vertex set is V (G) ∪ E(G) and two vertices are adjacent if and
only if (i) they are adjacent edges in G, or (ii) one is a vertex and the other is an edge in
G incident to it. Let S = (V, E, σ) be any sigraph. Its semi-total line sigraph T1(S)
has T1(S

u) as its underlying graph and for any edge uv of T1(S
u),

σT1(uv) =

{
σ(u)σ(v) if u, v ∈ E,

σ(v) if u ∈ V and v ∈ E.

Theorem 8. [6] The ×-line sigraph L×(S) of a sigraph S is a balanced sigraph.

Corollary 9. For the unitary Cayley sigraph Sn, its ×-line sigraph L×(Sn) is balanced.

Theorem 10. [33] The semi-total line sigraph T1(S) of a sigraph S is a balanced
sigraph.

Corollary 11. For the unitary Cayley sigraph Sn, its semi-total line sigraph T1(Sn) is
balanced.

3 C-Consistent Unitary Cayley Sigraphs

Beineke and Harary [10, 11] were the first to pose the problem of characterizing con-
sistent marked graphs, which was subsequently settled by Acharya [1, 3], Rao [27] and
Hoede [24]. Acharya and Sinha obtained consistency of sigraphs that satisfy certain si-
graph equations in [4, 30]. Sinha and Garg discussed consistency of several sigraphs in
[31, 32, 33]. In this section, we obtain a characterization of C-consistent unitary Cayley
sigraphs. Throughout the section, (a, b) denotes the gcd(a, b). Now, we require the
following theorem by Hoede and Corollary 14, which play an important role in solving
the problem.

Theorem 12. [24] A marked graph Gµ is consistent if and only if for any spanning
tree T of G all fundamental cycles with respect to T are consistent and all common
paths of pairs of those fundamental cycles have end vertices carrying the same marks.
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Theorem 13. [28] Let a, b and m be integers with m positive. The linear congruence

ax ≡ b (mod m)

is soluble if and only if (a, m)|b. If x0 is a solution, there are exactly (a, m) incongruent
solutions given by {x0 + tm/(a, m)}, where t = 0, 1, . . . , (a, m)− 1.

Corollary 14. [28] If (a, m) = 1 then the congruence

ax ≡ b (mod m)

has exactly one incongruent solution.

Lemma 15. In the unitary Cayley sigraph Sn, if n = 2pa1
1 , where p1 is an odd prime,

then the negative degree of the vertex 2 of Sn is odd.

Proof. Suppose n = 2pa1
1 in Sn, where p1 is an odd prime. By the definition of Sn,

negative edges are incident at the vertex 2 of Sn only when 2 is adjacent to multiples
of p1. Since difference of 2 and any even multiple of p1 is an even number and Un

does not contain an even number, the vertex 2 is not adjacent to any even multiple of
p1. Now, the number of odd multiples of p1 are pa1−1

1 . Since p1 is an odd prime, d−(2)
is odd.

Lemma 16. In the unitary Cayley sigraph Sn, if n = 2pa1
1 pa2

2 , where p1 and p2 are
distinct odd primes, then the negative degree of the vertex 2 of Sn is odd.

Proof. Given that n = 2pa1
1 pa2

2 in Sn, where p1 and p2 are distinct odd primes. By
the definition of Sn, negative edges are incident at the vertex 2 of Sn only when 2 is
adjacent to odd multiples of p1 or p2. Suppose Ai is the set of odd multiples of pi for
i = 1, 2. Then,

|A1| = pa1−1
1 pa2

2 , (1)

|A2| = pa1
1 pa2−1

2 (2)

and
|A1 ∩ A2| = pa1−1

1 pa2−1
2 . (3)

Thus, using principle of inclusion and exclusion,

|A1 ∪ A2| = pa1−1
1 pa2

2 + pa1
1 pa2−1

2 − pa1−1
1 pa2−1

2 . (4)

Since there are some odd multiples of p1(p2) whose difference with 2 is multiple of
p2(p1), such multiples of p1(p2) are not adjacent with 2. These odd multiples of p1(p2)
are given by the two linear congruences,

p1x ≡ 2 (mod p2) (5)
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and
p2y ≡ 2 (mod p1). (6)

Solving first Eq. (5), by Corollary 14, there exists a unique incongruent solution, say x0

of Eq. (5). But all the solutions of Eq. (5), for which p1x− 2 < n are,

x0 + 0(p2), x0 + 2(p2), . . . , x0 + (2pa1−1
1 pa2−1

2 − 2)(p2).

Thus, the total number of solutions of Eq. (5) are pa1−1
1 pa2−1

2 . Similarly, the total
solutions of Eq. (6) are pa1−1

1 pa2−1
2 . Hence, the total number of negative edges incident

at the vertex 2 are,

d−(2) = pa1−1
1 pa2

2 + pa1
1 pa2−1

2 − pa1−1
1 pa2−1

2 − pa1−1
1 pa2−1

2 − pa1−1
1 pa2−1

2

= pa1−1
1 pa2

2 + pa1
1 pa2−1

2 − 3pa1−1
1 pa2−1

2 .

Since p1 and p2 are odd primes, it follows that d−(2) is odd.

Lemma 17. In the unitary Cayley sigraph Sn, if n = pa1
1 pa2

2 , where n is odd, then the
negative degrees of the vertices of Sn that are multiples of p1 or p2 are even.

Proof. Suppose n = pa1
1 pa2

2 in Sn, where n is odd. By the definition of Sn, negative
edges are incident at the vertex p1 when p1 is adjacent to multiples of p2 which does
not have p1 as the factor. Thus,

d−(p1) = pa1
1 pa2−1

2 − pa1−1
1 pa2−1

2

= pa1−1
1 pa2−1

2 (p1 − 1).

Since p1 and p2 are odd, d−(p1) is even. This formula works for any multiple of p1

except those which have p2 as the factor. Similarly,

d−(p2) = pa1−1
1 pa2

2 − pa1−1
1 pa2−1

2 .

= pa1−1
1 pa2−1

2 (p2 − 1).

Since p1 and p2 are odd, d−(p2) is even. This formula works for any multiple of p2

except those which have p1 as the factor. And the negative degrees of the vertices of
Sn that are multiples of p1p2 is zero. Thus, the negative degrees of the vertices of Sn

that are multiples of p1 or p2 is even.

Lemma 18. In the unitary Cayley sigraph Sn, if n = 2a0pa1
1 , where a0 ≥ 2 and p1

is an odd prime, then the negative degrees of the vertices of Sn that are multiples of 2
or p1 are even.

Proof. It can be proved easily, using the similar argument used in Lemma 17.
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Lemma 19. In the unitary Cayley sigraph Sn, if n = 2a0pa1
1 pa2

2 , where a0 ≥ 2 and
p1, p2 are distinct odd primes, then the negative degrees of the vertices of Sn that are
multiples of 2, p1 or p2 are even.

Proof. Using the similar argument used in Lemma 16,

d−(2) = 2a0−1pa1−1
1 pa2−1

2 (p1 + p2 − 3).

Since a0 ≥ 2, d−(2) is even. Similarly,

d−(p1) = d−(p2) = 2a0−1pa1−1
1 pa2−1

2 (p1p2 − p1 − p2 + 1).

Since a0 ≥ 2, d−(p1) and d−(p2) are even.

Theorem 20. The unitary Cayley sigraph Sn = (Su
n , σ), where n has at most two

distinct odd prime factors, is C-consistent if and only if n is odd, 2, 6 or a multiple of
4.

Proof. Necessity: Suppose the unitary Cayley sigraph Sn = (Su
n , σ) is C-consistent.

Let on contrary, n ≡ 2 (mod 4) with n 6= 2 and n 6= 6. Then, either n = 2pa1
1 or

n = 2pa1
1 pa2

2 , where p1 and p2 are distinct odd primes.

Case(i): Suppose n ≡ 0 (mod 3). Then, either n = 2.3a1 or n = 2.3a1 .pa2
2 . First,

suppose p2 6= 5 and p2 6= 7. Then, due to Lemma 15 and Lemma 16,

µσ(2) = −.

Since the vertex 7 ∈ Un, by the definition of Sn, d−(7) = 0. It follows,

µσ(7) = +.

Now, the vertex 7 is adjacent to the vertex 2 since 7 − 2 = 5 ∈ Un. Consider two
cycles, Z ′ = (2, 3, 4, . . . , 7, 2) and Z ′′ = (7, 8, 9, . . . , (n − 1), 0, 1, 2, 7) in Sn. Clearly,
the cycles Z ′ and Z ′′ share the chord whose end vertices are 2 and 7. Now, if either
Z ′ or Z ′′ is an C-inconsistent cycle, then we have a contradiction to the hypothesis.
Therefore, Z ′ and Z ′′ are both C-consistent cycles. However, the end vertices 2 and
7 of their common chord are marked oppositely under the canonical marking and this
contradicts Theorem 12.

Now, if n = 2.3a1 .pa2
2 , where either p2 = 5 or p2 = 7, then since the vertex 13 ∈ Un,

by the definition of Sn, d−(13) = 0. It follows,

µσ(13) = +.

Now, the vertex 13 is adjacent to the vertex 2 since 13− 2 = 11 ∈ Un. Then, consider
the two cycles, Z ′′′ = (2, 3, 4, . . . , 13, 2) and Z ′′′′ = (13, 14, 15, . . . , (n− 1), 0, 1, 2, 13) in
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Sn. Clearly, the cycles Z ′′′ and Z ′′′′ share the chord whose end vertices are 2 and 13.
As argued above, Z ′′′ and Z ′′′′ are both C-consistent cycles. However, the end vertices
2 and 13 of their common chord are marked oppositely under the canonical marking, a
contradiction to Theorem 12.

Case(ii): Suppose either n ≡ 1 (mod 3) or n ≡ 2 (mod 3). That means, 3 does not
divide n, which implies that the vertex 3 ∈ Un. Now, consider a cycle Z = (0, 1, 2, 3, 0)
in Sn. Since 1 ∈ Un and 3 ∈ Un, by the definition of Sn, d−(1) = d−(3) = 0. It follows
that in the cycle Z,

µσ(1) = µσ(3) = +.

Since the vertex 0 is adjacent to those vertices which belong to Un, d−(0) = 0. That
means,

µσ(0) = +.

Now due to Lemma 15 and Lemma 16,

µσ(2) = −.

Thus, the cycle Z is C-inconsistent. Hence Sn is not C-consistent, a contradiction to
the hypothesis. Thus, the result follows.

Sufficiency: Suppose n is odd, 2, 6 or a multiple of 4.

Case(i): Let n be odd, and n = pa1
1 pa2

2 , where p1 and p2 are distinct odd primes.
By the definition of Sn, there is a negative edge in Sn only when both the end vertices
of the edge are multiples of either p1 or p2. Thus using Lemma 17, all the vertices of
Sn are marked positively under the canonical marking. Hence, Sn is C-consistent.

Case(ii): Suppose n = 2, 6 in Sn. Then, we can easily verify that S2 and S6 are
C-consistent.

Case(iii): Suppose n is a multiple of 4. Then, let n = 2a0pa1
1 or n = 2a0pa1

1 pa2
2 , where

a0 ≥ 2 and p1, p2 are distinct odd primes. By the definition of Sn, there is a negative
edge in Sn only when both the end vertices of the edge are either multiples of 2, p1 or
p2. Thus, using Lemma 18 and Lemma 19, all the vertices of Sn are marked positively
under the canonical marking. Hence, Sn is C-consistent.

Corollary 21. For the unitary Cayley sigraph Sn = (Su
n , σ), its negation sigraph η(Sn)

is C-consistent if and only if Sn is C-consistent.

Proof. Suppose η(Sn) is C-consistent. That means, each cycle of η(Sn) consists of
an even number of vertices whose negative degree is odd. Since degree of a vertex in Sn

and hence in η(Sn) is even, an even number of vertices are left in each cycle of η(Sn),
whose positive degree is odd. Thus, there are an even number of vertices in Sn whose

the electronic journal of combinatorics 18 (2011), #P229 10



negative degree is odd. Hence, Sn is C-consistent. Converse part can be proved in a
similar manner.

4 Conclusion

In this paper, we have obtained a characterization of balanced unitary Cayley sigraphs
and a characterization of canonically consistent unitary Cayley sigraphs. But the prob-
lem of canonically consistent unitary Cayley sigraphs is solved for n with at most two
distinct odd prime factors. One can think the problem for general n. In our opinion, our
result would also work for general n.
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